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Differential Equations and Para-CR Structures

C. DENSON HILL - PAWEEL. NUROWSKI

Dedicated to the memory of Professor Aldo Andreotti
on the 30th anniversary of his death.

Abstract. — We study the local geometry of n dimensional manifolds which are
equipped with two integrable distributions, one of dimension r and one of di-
mension s, where r and s are allowed to be unequal. We call them para-CR
structures of type (k,r,s), with k =n —r —s > 0 being the para-CR codimension.
When r = s they are the real analogues of CR structures. In the general case these
structures are the natural geometric setting in which to discuss the geometry of
systems of ODE’s, as well as the geometry of systems of PDE’s of finite type. For
particular small values of k,r,s we determine the basic local invariants of such
structures.
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1. — Introduction.

Aldo Andreotti liked simple ideas best. He often said “The more simple an
idea is, the better it is”. He also liked explicit provocative examples which begged
for the development of a new general theory. We think he would have enjoyed
hearing the story we tell here.

A para-CR structure is the real analogue of a CR structure (see Definition
2.1). The main point is that K? = I, instead of J? = — I, and one does not
insist that dimH* = dimH~, as in the situation of CR structures (where
dim H'? = dim H%! happens accidentally). Here H* are the +1 eigenspaces
of K. Assuming that one is already familiar with CR structures, then here is
the simple idea: “Change the sign and allow the dimensions of the eigen-
spaces to differ”.

What are the provocative examples? One of the goals of this paper is to
provide a few of them.

Rather than overburden this introduction with a lengthy description of what
is contained here, we refer the reader to the detailed table of contents. If we were
to highlight the Sections of the paper that in our opinion are the most interesting,
we would indicate Sections 7 and 8.

2. — To para-CR structures via ODEs.
2.1 — Geometry of general solutions of ODE's modulo point transformations.

The abstract notion of a para-CR manifold [1] appears naturally in the
context of systems of differential equations considered modulo point transfor-
mations of variables [14, 16]. In the simplest case of a single ordinary differential
equation of nth order,

(2.1) y" =F@,y.y,....y" ),
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for a real function R > x+— y(x) € R, such an equation has a general solution
(22> Y= l//(x7 o, A1, - . . 7a/77/71)>

depending on n arbitrary real parameters (ag,aq,...,a,_1). Thus the general
solution of such an equation may be considered as a hypersurface X in R? x R"
defined by

(23) 2 = {RZ X Rn > (y;x7a/07a17 s ;anfl) | Y/(ya%7 a07a/17 e aanfl) = 0}7

where Y (y,x,a9,01,...,0, 1) =y — w(x, 0,01, . ..,0,_1). Now consider a dif-
feomorphism of R% x R”, which preserves the split of R®*" onto R? and R".
This may mix the variables y and x, and, separately, may mix the variables

ag, 01, -..,0,_1; it cannot however mix y and x with the a;s. Explicitly it is
given by
R? x R" 3 (y,2, 40,01, - . ., 1) = @, &, 8o, @n, . . ., 1) € RZ x R,
where
Y =1yy,x),
(2.4) x=x(y,x),
C_Lj,:di(a(),al,...,(ln,l), iZO,l,...,?’L—l.

This diffeomorphism transforms X to another hypersurface in R? x R”, which
defines the general solution to an ODE which is locally point equivalent to the
ODE (2.1).

To understand the geometry of general solutions of such ODEs (2.1) modulo
point transformations better, it is convenient to pass to a bit more general set-
ting. Thus, without referring to any ODE, we consider RE™ equipped with a
linear operator

K RE _ REMm such that % =1id.

The operator x has two eigenvalues: +1 and — 1, and we assume that the cor-
responding eigenspaces are, respectively, y, = RR?, with eigenvalue + 1, and
y_ = R", with eigenvalue —1. We adapt a coordinate system (y, x, ay, . . ., @,_1) in
R®™ so that y . = Span(9,, d,) and y_ = Span(dy,, . . ., 0, ,)-

Given R®™ with such a «, we consider a smooth real function

. R(2+n) = R.

This function is supposed to have zero as a regular value. With this as-
sumption the set X as in (2.3) is a codimension one submanifold of REH In
addition we assume that X is generically embedded, which means that its
tangent space at each point, T,X, is spanned by the linearly independent
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vectors
X1 =¥.0, —¥,0;
Y1 = ‘1’180 — '1”081
Yo =¥201 — ¥10»
Ynfl =¥, 10h-2 — ¥n-20,1
Z =¥0, —¥,00.
Here 0; = i, 1=0,...,(n—-1),and ¥, = 0.(¥), ¥, = 0,(¥), ¥; = 0;(¥).

oa;

Note that the operator x from the ambient space R®™ defines a vector
subspace H, of T,2 by
H,=x(Ty2)NT,2.

In the above basis of T, 2 we have
Hp = Span (Xl, Yl, ceey Yn—l)-

Moreover, « restricts to H), defining an operator K), : H, — H), K, = k|7, Since
KZ = 1id, it splits H, onto H, = H,; & H; the spaces H;)t correspond to the +
eigenvalues of K;,. We have

H; = Span(Xy), H, =Span(Yy,..., Y, 1).

It further follows that the distributions H+ = Ux H} and H™ = Ux H, are in-
pe Pe
tegrable. They define two foliations on X, one of which has 1-dimensional leaves
tangent to X, and the other has (n — 1)-dimensional leaves tangent to all the Y;s.
These two foliations are obtained by the intersections of X with the leaves 77 (v-),
V+ € 14, of the respective foliations 7, : R®"™ — y_andz_ : R*™ — ..
Note also that although both distributions H* and H~ are automatically in-

tegrable, the distribution H is in general not integrable. For H to be integrable

-1
the defining function ¥ would have to satisfy the % conditions:
ViV — ¥y = 0,

.. 2y 1
foralli,j=0,1,...,(n —1). Here ¥,; = a—, and ¥,V = 5 WiV — V¥,
ote oyoa; 2

2.2 — Abstract para-CR manifolds.

The structure on X consisting of K and H = H" @ H~ is precisely the
structure of a para-CR manifold, which abstractly can be defined, somewhat
more generally, as follows:
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DEFINITION 2.1. — A (k + n)-dimensional manifold M equipped with an w-
dimensional distribution H together with a linear operator K : H — H, such that
K? = id, is called an almost para-CR manifold. If in addition both eigenspaces of
K, Ht ={XeH KX=X} and H ={X € H KX = —X}, are integrable,
[H*,H*] c H*, then an almost para-CR manifold (M, H,K) is called an ab-
stract para-CR manifold. The type of the abstract para-CR manifold will be
denoted by (k,r,s) where k is the para-CR codimension, and r = dimH™,
s=dimH~

In the following we will only consider smooth para-CR structures, i.e. smooth
manifolds M, with both H and K being smooth.

In the case of the hypersurfaces 2 considered above, X has type (1,1,% — 1).
What is more important, in this case the para-CR structure (H, K) was induced
on X from the ambient space (R%™ k). A natural question arises if an abstractly
defined para-CR manifold (M, K, H), as in Definition 2.1, can be (locally) gen-
erically embedded as a submanifold & in some R equipped with a linear
operator x : R — R™* 42 — jd, having R™ as its + 1 eigenspace, and R”
as its —1 eigenspace, so that the induced para-CR structure on X coincides with
that of (M, K, H).

To answer this question we need some preparations.

DEFINITION 2.2. — Two abstract para-CR structures (M, Hy,K1) and
(Ms,Hy, Ko) are (locally) equivalent iff there exists a (local) diffeomorphism
@ : M; — Ms such that @, H; = Hs and @, o K1 = Ky o ®@,. Such a @ is called a
para-CR diffeomorphism.

A dual formulation of the para-CR definition is very useful:

DEFINITION 2.3. — An almost para-CR structure (of type (k,r,s)) is a (k + n)-
dimensional manifold M equipped with an equivalence class of (k + r + s) one-

Jorms (A1, ..., gy yy -« s Hyy V1, - .., Vs) SUCh that
e r+s=mn,
o LA AN AV Vs £ 0 at each point of M,
o two choices of 1-forms (A1, ..., Ay, <oy fls V1, - - Vs) and (A5, ..., 2,
Wiy My Vs - -5 V) are in an equivalence relation iff there exist real

functions a'y by, ¢, [ R§, with i,j=1,...k AB=1,...1
a,f=1,...,s on M such that:

(2:5) K=y iy =fRug 4V V= W+,

and det(a}) det(f4)det (k) # 0.
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An almost para-CR structure is an integrable para-CR structure iff, in ad-
dition, the following equations

dLiAMAN AN N AR =0

(2.6) ,
dpgg NN AN AN A, =0

and
(27) dG AN AAVA . AV =0

' Avg A4 A A AV A AV =0
are simultaneously satisfied, forallt =1,... . k,A=1,...,7r,a =1,...,s,and for
one (therefore all) representatives (41,..., Ak, 1y, .-, 1, V1, - - -, Vs) Of an equiva-
lence class [(A1, ..., Ay gy« s fyy V1o oy Vs

One observes that Definition 2.3 is the dual version of Definition 2.1 identi-
fying H~ with the anihilator of (4, ..., 4, iy, - .., 4,) and H' with the anihilator
of (A1,..., A4, v1,...,vs). Thus H' is r-dimensional, and H~ is s-dimensional, with
H=H"® H being r+ s = n-dimensional. In particular H is integrable iff
diAMA... A =0foralli=1,... k.

ExaMPLE 2.4. — Given an n-th order ODE (2.1) we introduce a canonical para-
CR structure on the space J of the (n — 1) jets. Parametrizing this space by
(@, 9,9, ...,y") we introduce

) =dy — ytde,
w=dx,
(2.8) . - )
v; = dy" — " d, Vi=1,...,n—2,

v =dy" Tt = Fl,y,y's ..y Dde,
and define the class [4, 4, v,] on J via:

Oyptyve) ~ Gl V) i X =ad, f =fu+bl, and v, = Wvg + c,),
with functions a,b,c,h’,c, on 7, such that af det (h;) # 0. Obviously A A uA

WA AV 1#0, dAANAAu=0=duAliApu and for dimensional reasons
dAANAAVA ... AV 1=0=dv, AAAVI A ... Avy_qforalla=1,...,n — 1.This
shows that (7, [4, u, v4]) is an abstract para-CR structure of type (1,1,7 — 1). This
para-CR structure is called the canonical para-CR structure of an ODE

Yy =F@,yy,....y" ")

Returning to the general discussion we have the following Proposition.

PROPOSITION 2.5. — Every abstract para-CR manifold (M, [A;, 14, val) of type
(k,r,s) locally admits two overlaping coordinate systems (y;,xa,a,) and
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(Yi, 24, ay) 0 which the forms (4, 1y, ve) can be written either as:

(2.9) Ji=dy; +LAdxs,  uy =dea, v, =da,,
or by
(210) A = d@l + Lai daa, Hy = dﬁCA, Vg = d(la,

where LA = LA(y,x,a) and L% =L%(y,%,0), i=1,... .k, A=1,...,r,a=1,....s,
are appropriate real functions of the respective variables (y;,xa,a,) and
(i, %4, Qa).

Proor. — The proof is a simple application of the Frobenius theorem:

On one hand, the Frobenius theorem applied to the integrability conditions
(2.6), together with the use of transformations (2.5), imply the existence of
functions (y;, 4, L4) for which 4; = dy; + L4 dxs and py = dwy holds. On the
other hand, the same argument applied to the integrability conditions (2.7),
imply the existence of functions (gi,aa,ig) for which 2; = dy; —|—E“i da, and
vy = da, holds. But since 44 A ... g Ay Ao A Avi... Avs # 0, then taking
As and us from the first representation, and vs from the second we get
dyi A...dyp Aday A ... Adeg Adag A ... Adag # 0. Similarly, taking As and
vs from the second representation, and us from the first we get
dyg A ..dyp Adey Ao Adag Adag A ... Adag # 0. This shows that both sets
of functions (y;,x4,a,) and (¥;,x4,a,) form local coordinates on M. In these
coordinates the para-CR forms have the respective desired representation
(2.9) and (2.10).

2.3 — The embedding problem.

Once an integrable para-CR structure is defined in terms of
[(A1y ooy Ayl - oo s fys V15 - - -, Vs)] 1t IS easy to solve the embedding problem, at
least locally.

We have the following embedding theorem.

THEOREM 2.6. — Every smooth (k+r+ s)-dimensional abstract para-CR
manifold (M, H,K) with dim H" = r and dim H~ = s is locally embeddable in
REDHEES ypith the embedding 1: M — REHE) poing o para-CR diffeo-
morphism between (M,H,K) and the para-CR structure which (M) aquires
from the ambient space (REHES 10 Here 1 is the canonical linear map
i s REFTDHESS) _ RN 2 — i having R¥T and RS as its respective + 1
and —1 eigenspaces.
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ProoF. — Choosing a representative (A1,..., 46y, My, V1,--,Vs) W€
consider vector fields (Zi,...,7;,X1,...,X,,Y1,...,Ys) which are the re-
spective duals of (A1,..., A, Ly, -, Ly, V1, -, Vs). This in particular means that

H™ =Span(Xi,...,X,) and H = Span(Yi,...,Y;). Also any differentiable
function f : M — R has

df = Zi()i + Xa(Ppg + Yo(va
as its differential. Now, one looks for all functions f and & on M which satsify
(2.11) df AN AN A A AR =0, and
(2.12) AN A AN AV A AV =0,
or, what is the same,

Y.(f)=0, Va=1,...,s, and X4(h) =0, VA=1,...,r

If, for example, we choose (A1,...,Ag, fy,--- s V1,...,Vs) in the local re-
presentation (2.9), then equations (2.11)-(2.12) are, respectively,
(2.13) 86({1 =0, VYa=1,...,s,
oh oh
2.14 —— A= =0, VA=1,...,r
( ) 89@4 i ay1, ) ) xa

Thus in this coordinate system equations (2.13) for the function f are trivial
to solve: they obviously have k+ 7 independent solutions given by
A=y, .., fi = y;ﬁfl =2,... ,fr = x,. The equations (2.14) for the function
h do not look very nice in this coordinate system. To analyse them it is
convenient to use the other coordinate system, (¥;,%4, a,), in which equations
(2.11)-(2.12) are, respectively:

af Ta af o —

(215) aaa—ljiai?_/i—07 Va—l,...,s,
oh

(216) %—0, VAfl,...,T.

In this coordinate system equation (2.16) for the function % is trivial: it has k + s
independent solutions, 1 = ¥1, ..., ki, = Yk, hi=a, ..., hs = as. Now since both
coordinate systems (y;, x4, a,) and (¥;, x4, a,) are defined over the same region of
M, and because the coordinates (x, @) are the same in both systems, we have:

:yi = @i(%% a)a and Yi = ?/i(?_/7907 a)-
This shows that the two maps:

M > (i, 2a,a4) v (fi, fa, by he) = iy 4, 9y, ¢, @), a,) € RETTED
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and

M 3 @i, wa,00) — (fiy fas iy ha) = i@, @, @), 4, §j, @) € REDTE)

give two local embeddings of the para-CR structure (M,[(4,x,v)]) in
REFITES) with coordinates (f;, fa, k), k). It follows that the x operator in
REIHE “splitting it onto REHHER — RF" o RS induces two para-CR
structures on the repective images of : and 7. These two para-CR structures
are locally equivalent, and are locally equivalent to the original structure
from M. O

Para-CR structures with k =1, for obvious reasons, are called para-CR
structures of hypersurface type.

2.4 — Para-CR equivalence a’la Cartan.

In the following a reformulation of the (local) equivalence of two para-CR
manifolds, in the language of the differential forms (J,...,4,
Liye oyl V1, ---,Vs), Will be useful. It can be seen that Definition 2.2 is
equivalent to

DEFINITION 2.7. — Two para-CR  structures (M,[(J;, u4,v)]) and
WM g v, i=1,...0k,k A=1,...,7r, a=1,...,s, on k+r+s dimen-
stonal manifolds M and M' are (locally) equivalent iff theve exists a
(local) diffeomorphism @ : M — M' and real functions a;, bl cl, 155 hj on
M such that:

O () = 'y,
2.17) (1) = 1 g + b, 25,
() = hhvp + ¢, 4,

and

det(a’,) det(f*p) det (k') # 0

foralli,j=1,... A/ B=1,...,r;a,=1,...,s.

3. — Para-CR structures of type (1,1,%n — 1).

In Example 2.4 we associated a para-CR structure of type (1,1,7 — 1) with
every n-th order ODE in the form (2.1). A natural question arises: is every para-
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CR structure of type (1,1,7 — 1), at least locally, para-CR equivalent to a ca-
nonical type (1,1,n — 1) para-CR structure of some #-th order ODE (2.1)? Since
all canonical para-CR structures of n-th order ODEs, as in Example 2.4, satisfy
dA A A =dxAdy' Ady # 0, and since nonvanishing of d/ A / is invariant under
any para-CR map 4 — 1’ = a/, then we have

PRrOPOSITION 3.1. — A type (1,1,n — 1) para-CR structure [A, i, v,] which is
locally equivalent to the canonical para-CR structure of an n-th order ODE
Yy =F@,y,y,...,5" V) has dAA L #0.

In view of this proposition, we now ask if every type (1,1,% — 1) para-CR
structure with dA A 4 # 0 is locally equivalent to a structure from Example 2.4.
To illustrate the problems associated with this question we consider low di-
mensions first.

3.1 — Para-CR structures of type (1,1,1).

This case, in a bit different context, was studied by one of us in [16]. We have
the following proposition.

PROPOSITION 3.2. — Every type (1,1,1) para-CR structure (M,[4, i, v]) with
dA A A #£0 is locally para-CR equivalent to a type (1,1,1) para-CR structure
assoctiated with a point equivalence class of second order ODEs.

ProoF. — This Proposition was proved in [16]. For completness we present
this proof also here.

Choosing any representative (4, u, v) of [4, i, v], due to the low dimension of
M, we have dAAANAAu=0 and du A AA u=0. Thus, by the Frobenius theo-
rem, we have functions (x,y,A,B,C,E) on M such that 1 = Adx + Bdy, and
1 = Cdx + Edy. Considering the allowed para-CR gauge of 4 and u, we can
rescale 1 to the form A = dy — p dx, with some function p on M, and shift and
rescale u to the form u = dx. Now our assumption 0 # di A A shows that
0 # dx A dy A dp and, thus, (x,y,p) can be considered a coordinate system on
M. In this coordinate system the form x is locally 1 = adx + fdy + ydp, where
a,f3,y are some functions on M. Because of the allowed para-CR transfor-
mations for x, we can, without loss of generality, take u = dp — Q(x,y, p)de,
with @ = Q(x, y, p) being some function on M. Thus our type (1,1,1) para-CR
structure (M,[A, u,v]) with dAAL1#0 is locally para-CR equivalent to
M,[A=dy — pde, u = dx,v = dp — Qdx]). Therefore M can be locally identi-
fied with the first jet space of the equation y” = Q(x,y,¥’). The (x,y,p) are
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canonical coordinates (x,¥, p) on this jet space and the contact forms are given
by the para-CR forms A =dy — pdx, v=dp — Qdx. The para-CR structure
associated with the point equivalent class of ODEs represented by
y" = Qx,y,y’) is locally para-CR equivalent to the para-CR structure we
started with. O

Further details about this case, including relations to the Fefferman con-
struction, can be found in [16].

3.2 — Para-CR structures of type (1,1, 2).

Let (M, [4, 1, v, v2]) be a general para-CR manifold of type (1,1,2) with
3.1) dIAA#£0.

By Proposition 2.5, we can introduce a coordinate system (x,¥,a;,az) on M in
which

i=dy —pl,y,ar,a2)de,  p=dur, v = day, 2 = dag,

with some function p of the variables (x,y, a1, az).
Our key question is if we can find new coordinates (x,%,%',%?) on M, and
functions A%, ¢4, I on M, so that the form v = h%vl + h%vz + ¢1/ is equal to

Vi = dy' — yPdw
and the form v, = hlv; + h3vs + 2/ is equal to
v/2 = dyQ - F(x7?/1 ylva)dx'

If this were possible, we could bring this para-CR structure, by a para-CR
transformation, to the canonical form corresponding to the third order ODE
y" =F@.y.y,y".
When looking for the desired coordinates (x, %, %", %?) we proceed as follows:
We set

y' = p,y, a1, a2),

and notice that (3.1) implies dx A dy A dy* # 0. Thus the functions (x,%,%') can

serve as three independent coordinates on M. The condition dx A dy A dy' # 0
1 1

also means that at least one of the derivatives 8% or g% is not equal to zero.
1 1 2

Assuming, without loss of generality, that gy

—Z_ £ 0,we cansolve y' = p(x,y, a1, az)
- a1
for a; obtaining

ap = CL](QC, Y, ?/1, a2)~
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This enables us to parametrize M by (x,y, %", a2). In this new parametrization we
have

L= dy - yldxa M= d.%', V1= d[al(gca 2/»2/17 0/2)]; V2 = daZ-

We note that since

c’?al 3@1 8@1
dy+@dy +872d0/2,

= dlai(@,y, 9", a2)] ——d + o

and A A uAvy Ave #0, then dy/\dx/\g—gidyz/\daz # 0, and hence g—Zi;&O.
Thus we may replace the para-CR form v; by the form
day \ -1 daq 0ay
/ - - -
= (8241) (Vl Bas 2 oy i)

from the same para-CR class, obtaining

v, = dy' —yPda.
Here the function %2 is given by
oa day \ (O0ay\ 1
.2 2 = — —_— 1 _— _—
(32) ¥=—(G Y 8y)(8y1>

Summarizing, starting with an arbitrary type (1,1,2) para-CR structure
(M, [A, i, vi,ve]), with dA A 1 # 0, we can always choose the coordinate system
(,7,",az) and the representatives of the basis 1-forms, so that the para-CR
structure is represented by

) =dy —ytde, = dex, v = dy! — y?de, ve = dag,

with a function % = q(x, ¥, %', az) given by (3.2).
Now, two cases may occur:

e the general case, when oy ;é 0, or

2

8?’ —0.

e the degenerate case, when —
6(12

In the general case, i.e. in the case when
0 aal 1 8&1 8@1 -1
. —((— — )= 0
(33) 8&2((8x+y 8y)(8y1> )# ’
we can solve 42 = q(x,y, ", ag) for az obtaining

2 = aZ(xa Y, ylv yz)a



DIFFERENTIAL EQUATIONS AND PARA-CR STRUCTURES 37

and a system of coordinates (x,¥,%"',%?) on M, in which
A= dy - yldxv M= d.’)C7 V1= dyl - ?Izdx» Vo = d[a2(m7ya yl>?/2)]~

Now we have

and since A A A vy Avg #£ 0, we get % # 0. This enables us to replace vz by

another representative
-1 6(12 Bag
!/ A _ & _ e
2= (8y2) (vz " oy A)’
which can be written as:
‘/2 = dyz - F(.’)ﬁ, Y, Z/l, ?/Z)dx,
with
0 0 0 Oag\ 1
o 002 p Oty 02y

1,2

Summarizing we have the following proposition.

ProrosITION 3.3. — Every type (1,1,2) para-CR structure (M,[4,u,vi,v2])
with dA A 2 # 0 can be locally represented by 1-forms

J=dy —y'de, pu=dux, v = dy' — yPde, Vo = dag,
with o function y? = q(x,y,y', as) of coordinates (x,y,y',as) on M. If. in

2

addition, the function y* satisfies % #0 im UC M, one can ntroduce a
2

coordinate system (x,y,y*,y?) in U such that the para-CR structure can be
represented by

A=dy —y'de, pu=dr, v=dy'—yide, v =dy® - Flx,y,y",y da.

In such case the para-CR structure is locally para-CR equivalent to the cano-
"

nical para-CR structure associated with a third order ODE y" = F(x,y,y ,y").

The nongeneric case in which (3.3) is not satisfied can be realized in several

2
ways. The simplest of them is if gl = 0 in the neighbourhood &/ C M. In such a
case we have 2

A=dy—y'de, p=dv, v =dy' —q@y,yHdw, v =das,

and locally U = Us x IR, where Us, parametrized by (x,%,%"), is equipped with
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a canonical (1,1,1) type para-CR structure of the second order ODE
y" = q(x,y,y’). Thus in such a case the type (1,1,2) para-CR structure is ob-
tained by extending the canonical (1,1, 1) type para-CR structure of the equation
y" =q(x,y,y"), from the first jet space J with the canonical forms 4 = dy —y'dx,
u=dx, vy = dy' — q(x,y,y")dx to the Cartesian product 7 x R = 7. If R in
J x R is parametrized by ag, then the type (1,1,2) para-CR structure on 7 x R
is given by the class of para-CR forms [z*(A), 7*(w), 7*(v1), v = dag]. So also in
this nongeneric case the para-CR structure (M, [/, i, v, ve]) is related to the
canonical para-CR structure of an ODE, the only difference with the generic case
is that now, the ODE is of lower order.

This discussion shows that, the structure of type (1,1,2) para-CR manifolds
may change from point to point: in some regions it is locally equivalent to a para-
CR structure of a third order ODE, in some regions, to a para-CR which is
Cartesian product of a para-CR structure of second order ODE and a real line.

To illustrate the discussion of this section we consider the following example.

EXAMPLE 3.4. — Consider R* parametrized by (x,y, a1, ag) and a type (1,1,2)
para-CR structure on it given in terms of a function

P, y, a1, a2) = xay + yaz.

By this we mean that the para-CR structure is defined in terms of the class of
para-CR 1-forms [4, i, v, v2] with representatives

(34) A =dy — (xa; + yag)da, u = deu, v1 = daq, ve = dag.
Proceeding as in our discussion above we define y' = xa; + yaz, solve it for a4,

_ Y -y
x Y

3]

and use (x,,y', a2) as new coordinates, in which

1_
J=dy —ylde,  u=de, vlzd{%], ve = das.

_ 1 d 1
RY Y G -2 dy + & _Y dag, we can replace v; by a new
2 x r

Now because v; =
form

1 1
=y Y g,

Introducing the function

1_‘_?/1—002?/7

2 _
(3.5) Y =y -
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2

we see that we are in the situation gl =y - y # 0. So we can solve for as
obtaining: 2 v

B w2 —

Y-y

Using the coordinates (x,y, %", %%) we get

2 1
oy _ a1 2 _ql7=9T
dy — y du, = d, v =dy — y-de, vo =d {ylx —

Expanding the differential we have

2 1

2.2 1\2 2
x o Y-y 1 W) -ty Yy —y
Ve =T dy” + N 5 +- 5 doe +— 5 dy ~
Y Y (e —y) (e —y) Wle —y)
20,1 2
o Yy —y-)
ylx—y<dy Ty d%)'

This means that locally the starting para-CR structure is equivalent to

2002, o1
Y (y~x y)dm

4= dy — y de, = d, v =dy' — y?de, vy = dy® —
Y-y H 1=ay -y 2 Y yle —y

)

and thus it comes from the third order ODE

y//(y//x _ y/)
3.6 y"=2-—_7°
(36) yr—y

To solve this equation we may use our result on local embeddability. We can start
with any representation of the class [4, i, v1, v2], then find an embedding, and
finally interpret it as a general solution to (3.6). It turns out that the simplest
calculations are in the representation (3.4):

Obviously the two independent solutions (f;, f) of the embedding equations
df AAAu=0aref; =xand f; = y. Also, two independent solutions of the em-
bedding equation dh A LAV Ave=dh A (dy — (xa; + yag)dx) A da; Adag =0
are obviously /; = ag and g = ap. The third independent solution of this equa-

tion can be taken as: k; = e~ %" (y + % x+ % ) Thus the embedding is given by:
2 2

>4 _ ay ay »2+3
R B(x,y,al,az)—>(9c,y,a0,a1,a2)—<ac,y,e “2“(y+a—x+$),a1,a2>el&+ ,
2 2

which is a hypersurface in R® with coordinates (x,y,ao,a1,a2), given by
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ape®” =y + %x + %. It is easy to check that, magically,
2 2

is the general solution to (3.6).

We end this example with a comment that if we had started with a function
p(x,y, a1, az) = xay, then our procedure would change after equation (3.5). In
such case, the function %? would be independent of az everywhere, and we would
end up with

1
4 =dy —ytda, u=du, v =dyt — % de, vo = dag.

Thus the (1,1,2) type para-CR structure [A=dy — xaidx,u=dx,v; =
day, ve = dag] would be equivalent to a Cartesian product of/the canonical type

(1,1,1) para-CR structure of the second order ODE 3" = y_’ and the real line
represented by ag. v

4. — Para-CR structures of type (n — 1,1, 1).

Returning to Example 2.4, and using the contact 1-forms (2.8) defining the
canonical para-CR structure of type (1,1,7 —1) corresponding to an ODE
Yy =F@,y,y, ...,y ), we can define another para-CR structure on the
space J of (n — 1) jets. This para-CR structure is of type (n —1,1,1), and is
obtained from the contact forms (Iy = A,lo = v1,...,ly_1 = Vy2, M = U, M = V;_1)
as in (2.8) by extending them to a class [[y,...,l,_1,m,n] via

li — l; = aijlj,
m —m' = fm + bil;,
n—n' = hn+ ¢l; ,j=1,...,n—1
where the functions a;;, b;, ¢;, f, h on J satisfy det (a) f # 0. Since this para-CR

structure has dim H* = dim H~ = 1, the integrability conditions [H*, H*] c H*
are automatically satisfied here.

ExamPLE 4.1. — It is instructive to examine this para-CR structure in case of
n = 3. In such case we have

(4.1) L =dy —yldx, lp=dy' —yide, n=dy* —Fx,y,y",y*)de, m=de
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Iy = anly + arels,

Iy = asly + asgls,

n = hn + c1ly + cols,
m' = fm + byly + balg,

(4.2)

We now consider a contact transformation (x,y,%',%%) — @,%,%",%% of the
variables of the corresponding third order ODE y® = F(x,y,%',%"). This
changes the ODE to a new form #® = F(%,%,¥',%"). It follows that, if we started
with this equation and calculated the corresponding forms (I, Iz, 2, #2) as in (4.1),
then these forms would be expressible in terms of forms (4.1) via

Zl = anly,

Iy = anly + asls,
= hn + c1ly + cals,
m = fm + byly + balg,

(4.3)

with functions a;;, b;, ¢;, f and h which would depend on the particular form of the
contact transformation we considered, and which would satisfy det (a)fh # 0.
Although transformation (4.3) seems to be more restrictive than the one in (4.2),
it turns out that they are equivalent. Actually, it follows that starting with a
general transformation (4.2) and forms (4.1) there is unique way of killing a;2 in
(4.2). This is done by observing that the most general forms (I, 5, m’, »') from
(4.2) satisfy
AL AL AL :%m’An’Al’l/\l’z.

Thus we can alsways normalize the transformation (4.2) to one in which a2 = 0.
This proves the following proposition.

PROPOSITION 4.2. — The local geometry of the type (2,1,1) para-CR structure
defined in (4.1)-(4.2) is identical to the local geometry of a general third order
ODE y® = F(x,y,y,y") considered modulo contact transformation of variables.

The geometry described by the above proposition was studied by Chern [4] in
the context of ODEs, and by Tanaka [19] in the context of para-CR structures.
Actually Tanaka in [19] showed that the natural geometry associated with an »-
th order ODE %™ = F(x,y,y/,...,y" ), considered modulo contact transfor-
mations, is the geometry of type (n — 1,1, 1) para-CR structures, which he called
pseudo-product structures.

REMARK 4.3. — It is interesting to note that the passage from a (1,1,7 — 1)
para-CR structure to atype (n — 1,1, 1) para-CR structure, in the context of para-
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CR structures associated with an ODE 4™ = F(x, v,/ ...,y"™ V), corresponds
to the passage from the geometry of an ODE given modulo point transformations
to the geometry of an ODE given modulo contact transformations. This is a first
instance of a more general phenomenon, which will be discussed in Section 8.1.

5. — Invariants.

We are interested in objects naturally associated with a given para-CR
manifold which are not changed under (local) para-CR diffeomorphisms. We call
such objects (local) invariants. Clearly the simplest invariants of a para-CR
manifold (M, [(A1, ..., Ak, Ly, -+ -y lyy V15 - - -, V5)]) are the integers (k,7,s). If k = 1,
we have also another obvious invariant. This is defined as follows:

REMARK 5.1. — Note that the canonical (1,1,7 — 1) type para-CR structures
corresponding to 7-th order ODEs satisfy d4 A 4 # 0 and dA A d2 A 2 = 0. These
conditions are invariant under para-CR transformations, since any such trans-
formation brings 4 — A = a/, with some a # 0. If we have a general (1,7, s) type
para-CR structure, a simple local invariant, is the rank of the para-CR form 4, i.e.
the integer ¢, such that

A ADAAO  and  dAIA... AALAL=0.
—_— —_—

t times (t+1) times
Immediately there are two questions:

e Are the numbers (k,r, s), (or £t when k = 1), the only local invariants of
(M, [(/117.. . ,/lk,,uh.. My V1 e .,VS)])?

e And if the answer to the above question is negative, how does one con-
struct the system of all local invariants of (M,[(J1,..., A 14q,-- -,
s V1y ey V)]D?

It is rather obvious that the answer for the first question above is ‘no’. We are
thus led to discuss how to construct the invariants. We do not make an exhaustive
discussion in the following. Instead we concentrate on low dimensional cases,
producing invariants for structures of type (1,1,2) and (1,2, 3). These examples
are complicated enough to illustrate the basic features that the general case can
have.

5.1 — Local imvariants for para-CR structures of type (1,1, 2).

In Section 3.1 we proved that every para-CR structure of type (1,1,1) for
which dA A 4 # 0, is locally para-CR equivalent to a second order ODE con-
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sidered modulo point transformation of variables. Thus all local invariants for
such para-CR structures are in one-to-one correspondence with the local in-
variants of second oder ODEs considered modulo point transformations. All such
invariants are known since the times of the classical papers of Lie [11], Tresse
[20] and Cartan [3]. We refer an interested reader to the para-CR treatment of
these invariants in [16]. Since we will need some results about the (1,1, 1) case in
the following, we quote them here for completeness.

5.1.1 — Brief summary of the (1,1,1) case.

As we know (see Proposition 2.5, or the proof of Proposition 3.2) every para-
CR structure (M, [, u,v]) of type (1,1,1) with dAA A # 0 can be locally re-
presented by

A=dy — px,y, a;)de, w = dax, v =day,

with a function p = p(x, y, a1) of variables (x, ¥, a;) on M such that p; = (’?Tp #0.
1
Consider now the most general forms (©°, 0", 6% € [4,v, 1] in the class [A,v, u].
They are given on M by:
O =ai, O =ciA+hyy, P =bi+fu,

with some functions a, k1, ¢1, f and b such that ah;; f # 0 (the strange num-
bering of the forms will become clear in the next section). Extending the
manifold M to M x G, where G is parametrized by (a, k11, ¢1, f,b), we can apply
Cartan’s equivalence method to find the invariants of such structures. This was
done by Cartan in [3]. His result adapted to our situation is summarized in the
following proposition.

ProposITION 5.2. — Every para-CR manifold (M, [4, u, v]) of type (1,1, 1) with

di A 1 # 0 uniquely defines an 8-dimensional manifold P with a unique coframe
(0°,04, 0%, @1, Qs, Q3,Qq7,Q5) on it, which satisfies the following equations

d® = A O° 4+ P N O

d0' = Qo A 0° + Q3 N O

AP = (@1 — Q) NP + Q1 A O°

dQ; =2Qs AN + Q7 AN OF — Qo NP
(5.1) dQ = (2 — Q) A Qs + Q5 A 0" + KO° A 6P

dQs = Qg N 0" +20Q; N O* + Q2 N 6P

dQr = QA Qs+ Qs AP +JO° N O

K
ngZQg/\Ql+Q7/\Qz+aa—;301/\90+%93/\90.
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Here the functions J and K are given by:
6fRp1) J =
— 15p3pu1 + 10p1prp111Pe1Pet + 15p1p3 Patt — 4P3P111Pan1
+ 12pTp5i oy — 15ppiipy1 — 4pip1ipyt + 10ppipupiipy
— 12p3pupyn + 15pp1p3 Py — 4pPipipyn — 6pip11peint

3
+4p3 (% — Qppll)pylll — P2 + ppy)piins + P2 @enin + ppyiinn)

and

(6f3h11p]) K =

— 15puply + 15p1p2ipatt + 10p1p1ipeiPect — 4DTPe11Pant

— 6P3Pe1Purt1 — PP Pwwet + DiPazatl — 2D Dyt — SPPEP11Payt

+ 3?1’?11%?/11 - P%pnpmpxy + p?fpxnpxy — Sp%pnpxpam + Gp‘i’pxlpxyl

+ 20pP1P11 Pt Payt — 8PPEPr1Payt + BDIPuPiy11 — 12PPiDa D1 + 2D7Payy
— 4pPiPayyt — 3PP PIPU Dy + 3PP Pryy1 + 10p1p11p7 Py — 10p3 PPy
— 3p3p1PaDy + 3PiPax11Dy — 61D Dy — IPPIPUPEDy + IPPEDay11Dy
— 2p}pupapl + 203 penp’ + 10p1p1PsPa Py — 6PIP P — 45pP1pZ Py
— 4p}pepeiPy1 + 30PP1PAPIPy — PIPUPePyt + 2D Paa1 Py

+ 10pp1p11Pat Pyt — 6PPIPaa1 1Pyt — 2P1PayPyr — BPPIP1IPay P

+ 10pP3pay Pyt + 2007 P1p1iPayi Pyt — 127 PPyt — 4PTP1DDy Py

+ 8pipapyPy1 + 30pPIPPADyPy — 14PPIP DDy — 4PIPIP

— 6ppiPupips + 203Paply + 10pp1p1paply — 12ppiPaply

— 45p*pupaps, + 15p°pipenpyy + 10ppip,ply + 200" prpup, ), — 6p°piy,
— 15p°pupl; — 6p3PePaPy1 + 15PP1Do P11 + PiPexPyt1 — APPEDaa1 Pyt

+ 3ppipeyPy1t — SPPPIPs Pyt + AP3PePyPy11 — 16pPiPa P11 + 6PPiPiP1
— 10ppTpepyPy1 + 30" P1pa Py — 200°Pipy Py + 159 p1piy Py

— 2p1Pu1Pyy — PPIPUDADyy + PDIPe11Dyy + ADIDyPyy — 4DPIP Py

— 20 P3P Dy + 2P DiPy11Pyy — 2D1PePyy1 — BPPIPIPDyy1 + BPPI PPy
+ 10p*p1p11Pa Dyt — AD° PP 1Pyt — SPPIPyDyy1 — BP°PiP1PY Py

+ 8p*Pipyipy + 10p°P1pup Py — 4P°PIPy11Py + BPPEPLP Y1

— 6p” DIy + 6P PIDyDyy11 — 6P PEDP Y11 + 2Dy — 2P PPy

- p3p§p11pyw1 + pgp:{)pyyyll’
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and % and % denote the coframe derivatives of functions J and K with re-

spect to the coframe element 6° and 6%, respectively.

Two type (1,1,1) para-CR manifolds (M,[1, i, v]) and (M',[7, i/, V'), with
dAAL#0 and AN AL #0 are locally para-CR equivalent iff there exists a
local diffeomorphism ¢ : P — P', of the corresponding 8-manifolds P and P,
which pulls back the coframe (0°,0%,0°, Q) @, @, QL Q) to (©°,0", 6,
Q1, s, 023, 07, €%).

In particular the vanishing of each of the functions J and K is a para-CR
invariant property. These functions are para-CR versions of the classical two
point invariants w; and ws (see [16]) of the corresponding second order ODE,
which were known to Lie and Tresse [11, 20]. This proposition solves the local
equivalence problem for type (1,1,1) para-CR structures: they are either locally
equivalent to [ = dy, u = dx, v = dag], or they are described by the above pro-
position.

5.1.2 — The simplest relative invariant for type (1,1,2).

Passing to the (1,1,2) case we consider a para-CR structure
(M, A, u,v1,v2]), and since all para-CR structures with dA A 1 = 0 are locally
equivalent to (RY? 1 = dy, u = die,v1 = daq, s = das]), we will assume
d2 A Z # 0in the following. As at the begining of Section 3.2 we may introduce
a local coordinate system (x,y,a1,a2) on M so that the para-CR structure is
represented by

A=dy — p,y, a1, az)dx, i = dux, vy = day, ve = das.

Here p is an appropriate function p = p(x,y,a1,a2) on M which satisfies
dx A dy A dp # 0. Without loss of generality we can assume in the following
that

_op
~ dny

P1 # 0.

Now we introduce the most general forms (2, i/, v;, v) from the class [, u, v1, v2].
These are:

A pa a 0 0 0\ /2 0°
V1 Vv, C1 hn ]’le 0 V1 def 91
5.2 — L = =
(5.2) Ve vy C2 har haz 0 || ve 0
1 W b 0 0 f)\u 0’

Now we are in a position to determine the first relative invariant. We do it using
Cartan’s equivalence method (see e.g. [17]) in the following steps:
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(1) We first calculate the invariant form do° A 0°. This is given by

hoop1 — ha1p2) alhi1p2 — hiz2p1)
o p g0 — e P AO AP+ O AP AP
f(highor — hirhoz) f(highor — hi1hez)

(Here and in the following the partial derivatives with respect to a; are denoted
by a subscript ¢ at the differentiated function; derivatives with respect to « and y
are denoted by the respective subscript x or y.)

(2) Then we impose the invariant condition d® A 0° = —0° A O A 6P, This is
achieved by taking

(5.3) a="10" g iz =
D1 b1

(3) Then, on an 11-dimensional manifold M® parametrized by (x,, a1, as,
€1,C2, h11, hot, hea, b, f), we introduce a 1-form € so that we have

do® = 3 A 0° + P A0

The form €, is given by

(5.4) o =Y Y b bpy g by~

f hun  pr huf hi f

where f; is an additional function on M®,
(4) It is easy to check that at this stage we have

hat
p1lhoepr — ho1p2) f

@ + f,0°,

AN A = -1 C AN ANP AP,

where
I = p1(paz + ppy2) — P2(Pa1 + PPy1)-
Comparing this with
a 0 0 0
c1 hu h 0 -
det| o0 Bt B 0| = Gy — o) P 0,
b 0 0 f

we see that the condition that I vanishes or not is a para-CR invariant property of
the class [4, i, vi, vo]. This shows that [ is a relative invariant for the considered
para-CR structure.

(5) For example if I # 0 in the considered neighborhood, we can normalize
dO* A A B to dO A A O = —6° A O AGP AP, by choosing

_ (haap1 — harp2)prf
= 7 ,

Such a normalization is obviously impossible if / = 0 in the considered region.

ha
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(6) It can be checked that it is this invariant that distinguishes between the
(1,1,2) para-CR structures that correspond to the extension of (1,1,1) type
structures by R and the type (1,1,2) para-CR structures equivalent to the ca-
nonical para-CR structures corresponding to third order ODEs.

5.1.3 — Branch I # 0.

Actually, further application of Cartan’s equivalence method proves the fol-
lowing theorem.

THEOREM 5.3. — Every type (1,1,2) para-CR structure (M, [2, i, v1, vel) with
dANZL#£0 for which the invariant I is non vanishing, is locally para-CR
equivalent to a canonical para-CR structure of a certain point equivalence class
of 3-rd order ODE's y"' = F(x,y,y',y").

In particular, if I # 0, all the local invariants of such para-CR structures are
identical with the local point invariants of the corresponding point equivalence
classes of 3rd order ODEs. For example the lowest order relative invariant, next
after 7, is the Wiinschmann invariant [21] of the corresponding class of ODEs.
This can be written explicitly in terms of the function p = p(x,y, a1, ag) used
above. Although we calculated this invariant in terms of p we do not display it
here. It is given by quite a lengthy and complicated expression in terms of p and
its derivatives up to the 5th order.

The above proposition enables us to find the para-CR structures with I # 0
and large symmetry groups. Since third order ODEs with large symmetry
groups of point symmetries are classified in [8, 9], we know that such para-CR
manifolds have a maximal group of para-CR symmetries of dimension seven.
They are locally para-CR equivalent to the para-CR structure corresponding to
the point equivalent class of the simple equation y” = 0. The I # 0 para-CR
structures with a group of symmetries of dimension 6, 5 and 4 are also easily
obtained from the results of [8, 9]. We have the following proposition.

ProposiTiON 5.4. — All homogeneous type (1,1,2) para-CR structures are
locally para-CR equivalent to the canonical para-CR structure of the following
point equivalent classes of 3rd order ODESs:

o " = 0; inthis case the symmetry algebra is c0(2,1) & R3 of dimension T,

12
y" = g(yy/) ; symmetry algebra 0(2,2) of dimension 6;

w_ 3"y N
= 5 symmetry algebra 0(4) of dimension 6;
1+ @)
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m__

o iy = 2uy +vy; each u € R defines a nonequivalent para-CR struc-
ture with a 5-dimensional symmetry algebra, with generators V; sa-
tisfying [V1,Val = —uVa + Vs, [V1,Vsl=V1, [Vo, Vil =V1 —uV3,
[Vo, V5] = Vo [V3, Vil = Vo, [V, V5] = V3,

o " =" symmetry algebra of dimension 4 with generators V; sa-
. 2
tisfying [V, Vyl = 2Vy, [Ve, Vil =5 Vs, [Vo, Vil =V, [V3, Vil = —§V3;
" (y,,)z 3 - .
o ¥y =pu 7 s here each 1 > 5 such that u # 3, defines a nonequivalent

para-CR structure having a 4-dimensional symmetry algebra, with
generators V; satisfying [Vi, Vol = Vi, [V3, Vil = Vs;

mo_ 3y, + M .

1+ @Y

structure with a 4-dimensional symmetry algebra; its generators V;
satisfy [V1, Vel = Vs, [V3, Vil = Vo, [V3, V4l = V3, [Va, Vil = V.

for each u>0 we have a nonequivalent para-CR

5.1.4 — Branch I = 0.

This case is a bit easier to describe explicitly than the above I # 0 case. Thus
we choose this case to present all the details of constructing invariants for such
para-CR structures, rather then those with I # 0.

When constructing these invariants we proceed as follows:

Starting with the defining forms (I = dy — p da, n; = day, ne = dag, m = dx)
as in (4.1), for which the function p = p(x, y, a;, az) satisfies

p1#£0 and 1=0,

we consider the most general forms (©°, 60,67, 0) from the class [, n1, n2, m] as in
(5.2). Then we repeat the entire Cartan’s procedure for these forms we per-
formed in Section 5.1.2 from item (1) up to item (4). After this we have forms &°
and 0" normalized so that

A0° =2 A"+ 0° N O
and
do* A6 A0 = 0.
This second equation holds since we assumed that
I1=0.

The form ©; is given by (5.4), and the normalizations for a and k2 are as in
(5.3). Continuing with Cartan’s equivalence method we now make the fol-
lowing steps:
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e First we introduce forms Qs and Q5 so that the form 0" satisfies:
d0' = QA 0° + Q5 N O
This defines forms Q5 and Q5 to be:
0 = prdey C1P1dh11 N c1p(p1p1z — pupz) + hi(p1pee — pepar) 2

Jh 4 Shuip(hoepr — ho1p2)
cipi(cipr — hupy) 3 0 1
- P2, 0 + c100” + c110°,
= dlog(f11)

N <0nf 213, — beypt | C2PP1pr2 = pupe) + b (prpes — pszl)) g
Nl Jhaip(heepr — haipz)

P11P2 — P12P1 i c1P1

P1(ha2pr — ho1p2) fhn

20 + 0t

As we see the forms Q» and Q3 are defined modulo the terms ¢° and 0!
(the form ©5), and 6" (the form Qs), respectively. Thus to write them
down in full generality one has to introduce additional parameters c;,
C11 and hlll-

o At the next step we introduce forms Q,, Q5 and Qg such that the form 0
satisfies

de® = Qs N O° — Q5 A O + Q4 A .
These forms are defined as follows:

p2dhsay p1dhsge
hoipz — hoopr  hozp1 — ha1pe

Q= + haoo0° + higo1 0" + higgetP

Cdhyr | har , (haihos + haihose) C2P1
+ =0y 0 —
hn hll hll fh

1 C2P1 Cc1P1
des — 2210, +
P O iyt o

f Py (hayharo + hotheso) + pr(crf (Rarhany + harhaay) — c2(bps +ﬂb11h221))

Qs = Z2 0P + ho1o0 + hop 0*

QG Q5

123
pi(cihoor + c2hoon) \ 2 Czplpy
+ (hzzo + T )6 2hy 0 -

Here we had to introduce new parameters hogg, o1, hooo, ko190, 211 and
20, Which take care of the undefined terms in the expressions for Qy, s,
and .
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e Analysing d0® we first observe that
AP A = (25— Q)N AP

ﬂluhm(hzzm — ho1P2) + hoo(fp11 — 20pF) + ho1 (2bp1ps — fp12)
Shi1(hoep1 — ha1p2)

This enables us to fix A111:

ha2(2bp? — fp11) + ho1 (fp12 — prlpz)
Shi1(hoopr — haipe)

o After this normalization an introduction of a form

NN,

hin =

2bclpf
f2 hz
b c2p(P1P12 — P2p11) + o1 (P1Pwe2 — P2Pa1)
+ P11 — 2 y + y1) + ’
f?hn (Pi1 = 2p1py +1P) Shiip(hazpr — ha1p2) )

pldb bp:

Q =
" o | fn

ZPL (0~ @) + bl — (on — o+

brings d@? into the form:
AP = Qe A O° + (@21 — Q) NP
Again we had to introduce a new parameter which we denoted by by

here.

Summarizing our efforts in this section so far, we conclude that the invariant
forms 6°, 0, 6%, ® of a para-CR structure with I = 0 can be gauged in such a way
that they have the following differentials:

de® =, AO° + 63 A 6

do' = QN0 + Q3 N 0!

dP? = Qs N O° — Qs NO* + Qu NP
d6o® = Q7 A 0° + (Q) — Q3) N P

(5.5)

Now we pass to the analysis of this system in terms of Cartan’s characters and
Cartan’s test for the involutivity (see [17], pp. 350-355 for definitions; for a one
page description of the procedure see e.g. [15], pp. 4066-4067). Since the forms o'
are given up to the action of the residual (» = 7)-dimensional group parametrized
by f,b,c1,c2, ka1, hot, koo, We easily calculate the four Cartan characters asso-
ciated to this system. They are s} = 4, s, = 2, s; = 1, s; = 0. Moreover, since the
new forms Q1, Qo, Q3, Q4, Q5, s, 27 transversal to the respective residual group
directions , Oc,, Onyys Os Ohgys Ocys Ob, are determined modulo P = 10 para-
meters fo, 10, C11, 220, fiz21, oze, 210, h211, C20, Do, We have

1} + 2sh, + 3sp + 45, = 11 # 10 = V.
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Thus the system (5.5) is not involutive, and has to be prolonged. Calculating d,
dQs, dQs, dQ7 we fix ¢y, ¢11 and by in such a way that the forms Q1, s, Q3 and Q7
satisfy:

dQ; =205 A0 + Q7 N 0" — 2 A O

dQy = Q5 A (4 793)+98/\91+K90/\93

dQs = Qs A +20; AO* + QO AP

dQr = Q1 A Q3+ Qg NP +TO° A O

(5.6)

Here the form Qg and functions J and K are totally determined by the above
equations. The form Qg is given by:

bp1 | haipiz — hezpn ) P1P12 — P2pii
205 = dfy +fo1 + Q,th -
8 = do +/ofh 11 hi(heepr — hoipe2) 2 p1(heap1 — ho1p2) 6

B 1Pt + hiipa — hupipy + huppy
Sh1ip1

where we skip writing down very compliceted, yet still totally determined,
coefficients at the terms 6°, 0, 6% and 6°. It turns out, and this is the result of our
calculations, that the functions J and K are given by the same formulae as in
Proposition 5.2. This is not surprising, if one notices the identical forms of the
systems (5.5)-(5.6) and (5.1) with the equation for d¢? and dQg removed. Actually,
after calculating dQg in the present situation, we get

(5.7) ng:Qg/\Q1+Q7/\Qg+a—J$HI/\Ho—i-a—lfﬁg/\@o,
o0 o0

which again agrees with the system (5.1). Now we are ready to perform the
Cartan analysis of the the composed system (5.5)-(5.7). We have here m =4 +5
differentials d6°, 0", d6?, d6?, dQy, dQs, dQs, dQ7, ds, of the forms ¢°, 6", 67, 6%,
Q1, o, Q3, Q4, Q5, which are given modulo the (r = 3)-dimensional residual
group parametrized by cg, kg1 and hgs. The new forms Q4, Q5 and Qg, transversal
to the respective vector fields dy,,, 9y, and d, are given up to ¥ = 6 parameters
hzz(), hggl, hzzg (.Q4), h210, hzn (.Q5), and C20 (.QG) Slmple linear algebra giVGS the
following Cartan’s characters of the system (56.5)-(5.7): s] =s, =s;=1,8, =0
for all : = 4,...9. Thus for this system we have

Qi+ (DO + (O + (P (D,

18} + 25} + Bs3 + 48], + 5sh + 6sg + sy + 8sg + 9sy = 6 = 7V,

and, hence, the system is involutive. This result together with Cartan’s Theorem
11.16, [17], p. 367, tells us that there is no para-CR invariant information encoded
in the forms Q4, Q25 and Q4. Hence we can take them in the most simple re-
presentation Q4 = Q5 = Q; = 0. (Note that this can be achieved by setting
Co = ha1 = hae = c20 = hiaro = hony = oo = oz = e = 0, 0% = dap. Cartan’s
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theorem says also that we can do it in many ways. Since we are in the involutive
case, the local group of para-CR symmetries is infinite dimensional; it depends
on s;_g = 1 arbitrary real function of k = 3 variables.) Concluding we have the
following theorem.

THEOREM 5.5. — All type (1,1,2) para-CR structures (M,[A, u,v1,v2]) with
dA A2 #£0, and with the invariant I = 0, are locally equivalent to one of the
para-CR structures (M, [A=dy — pdx,v; = dp — Q(x,y, p)dx, vo = dasg, . = dx]).
Thus they are obtained by extending by ve = dag the type (1,1,1) para-CR
structure defined by [A = dy —pdx,v; = dp — Q(x,y,p)dx, u = da]. All local
mvariants of such (M, [, i, vi, v2]) are given by the point invariants of the cor-
responding point equivalence class of second order ODEs represented by

Y =Q,y,y").

It is convenient to introduce the following definition.

DEFINITION 5.6. — A type (1,1,2) para-CR manifold (M,[, i, v1, ve]) with
di A A £ 01s regular if the invariant I is either not equal to zevo in M or it is zero
everywhere in M.

Now comparing Theorems 5.3 and 5.5 we obtain:

COROLLARY 5.7. — All  reqular type (1,1,2) para-CR  manifolds
M, 2, 11, v1,v2]) with dAAZL#0 are locally equivalent either to canonical
para-CR structures of point equivalence classes of 3rd order ODEs (if I #0),
or to the trivial extensions of the canonical para-CR structures of point
equivalent classes of 2nd order ODEs (if I = 0).

5.2 — Local tnvariants for para-CR structures of type (1,1,n — 1).

We believe that the situation deseribed in Cotrollary 5.7 is typical for any
regular type (1,1,n — 1) para-CR structures (M, [4, i, v,]) with dA A 1 # 0 and
any n > 3. By this we mean the following. In the generic case, such para-CR
structures should be locally equivalent to the canonical para-CR structures as-
sociated with point equivalent classes of nth order ODEs. This generic case
should be distinguished by the simultaneous nonvanishing of a finite number ¢ of
relative invariants (I1,...,1I;), generalizing our invariant I. These invariants
should have some hierarchical structure, so that if all invariants above some
level, say ng, in the hierarchy identically vanish, then the para-CR structure is a
trivial extension of a canonical para-CR structure of type (1,1,% — ng — 1), by
adding ng forms v,_1 = day,_1, . . ., Vy—n, = da,_y, to the canonical contact forms
[Z, 14, V1, ., Vy—n,—1]. Proving or disproving our belief goes beyond this article.
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6. — Relations with other differential equations.

Given a para-CR structure of type (k,r,s) we consider its local embedding
in RE+EH a5 in Theorem 2.6. The obtained codimension-k submanifold X
we intend to interprete as a general solution of a certain system of differ-
ential equations. We know how to do it in the case of para-CR structures of
type (1,1,% — 1): in this case X describes the general solution of an nth order
ODE considered modulo point transformations of variables. In the case of a
general (k,r,s) we expect that 2 corresponds to the general solution of a
system of ODE's, or more generally, to the general solution of a system of
PDEs of finite type.

6.1 — Systems of ODEs.

Given a system of first order ODEs

i
(6.1) %%zFWﬁfw“y%, i=1,2,.. .,

we consider its general solution
yl :l//l(x’a()?a/l?"’?aﬂ/*l)? i: 172,...%,

where the constants a,, u = 0,1,...,% — 1, are the constants of integration. This
defines a codimension » submanifold

2 ={R"M 5 @yl oy an, .. an) | Y =)

in R™*1 which aquires a para-CR structure from the split2n +1 = (o + 1) + n
in the ambient R"*1™ given by the linear operator K(8,) = — Oy, k(D) = Oy,
x(0,) = 0. Interestingly this para-CR structure is of type (n,1,0).

Indeed, the tangent space T2 to X is spanned by

X =0,+v.0,

Zy =0y +wy,0,.
Since x(Z,) NTZ = {0}, for all £ =0,...,7n—1, and x(X) =X, then «(TZ)N
TX = H" = Span(X), and the k( = ) codimensions of the (, 1, 0)-type para-CR
structure on X are spanned by the n vectors Z,..

Hence a typical representantive of para-CR structures of type (n,1,0) is a
system of n first order ODE's for n scalar functions of one variable, considered
modulo point transformations of the variables. The study of invariants of such
para-CR structures, as well as para-CR structures representing systems of
ODEs of higher orders, will be performed elsewhere.
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6.2 — PDEs of finite type.

Recall that the finite type property of a system of PDEs means that its most
general solution depends on a finite number of parameters. Instead of studying
the para-CR structures associated with the most general PDEs of finite type,
in the next few sections we will study the para-CR structures of type (1,2,3)
and (3,2,1). They include, as the simplest example, the para-CR structure
corresponding to 2y, =0 & z,, =0, i.e. a system of two PDEs for one real
function z = z(x,y) of two real variables x and y, with the general solution
z2 = ap + a1 + agy + agxy, depending on four real parameters ay, a1, a2 and as.
Generalization of this example to the finite type PDEs of the form
Zow = R(0,Y,2, 22,2y, 20y) & 2yy =T, Y,2,20,2y,22y), provides examples of
(1,2,3) and (3,2,1) type para-CR structures with very nice properties.

7. — Para-CR structures of type (1,2, 3).
7.1 — The flat model.

Consider a pair of second order PDEs
(7.1) 2y =0 & 2yy = 0,
for a real function z = z(x, ) of two real variables « and y. The general solution
for this system is clearly
(7.2) 2 = ap + a1 + agy + agxy.

This means that the solution space of this system is 4-dimensional, and that its
points are parametrized by @ = (ag, a1, a2, a3) € R*. Thus we have here a gen-
erically embedded hypersurface

2= {R7 > (X, 9,2, 00,01, 02,03) | 2 = 0o + a1 + azy + agxy},

in the ‘correspondence space’ R” = R? x R?, with the respective coordinates
(x,y,2) and (ag, a1, ag, ag). The linear map r : R” — R", such that

K(ﬁ(;, Y,%,00, 01,02, a3) = (OC, Y,z,—0Qp, —Q1, —A2, _(}’3)7

induces a para-CR-structure of type (1,2, 3) on 2. Indeed, the tangent space to X
is spanned by

X = Cblay — 20y, Xo = a0, + 8y,

Y1 =x00 — 01, Yo =y01 — %02, Y3 = a0 — 03,
Z = 0, + O,
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and we have a (k,r,s) = (1,2,3)-type para-CR structure, with k¥ =1 corre-
sponding to Span(Z), » = 2 corresponding to the eigenspace H" = Span(X7, X»),
and s =3 corresponding to the eigenspace H~ = Span(Y7, Yz, Y3). Obviously
H = H" @ H". Any diffeomorphism of R” of the form

D(x,y,2,0;) = (@(w,y,2), Y, y,2),2(x, Y, 2), 0;(a;)

is, on the one hand, a para-CR diffeomorphism of the para-CR manifold 2, and on
the other hand, can be interpreted as coming from a point transformation of the
variables of the system (7.1).

Dually this para-CR manifold is defined on X in terms of the forms

A =dag + xda; + ydag + xydag

= da
=d
(73) Ho Y,
V1 = d(ll
Vo = daz
Vg3 = da3

given up to the transformation

Y Ay a 0 0 0 0 0 J ¢
101 v by fu fiz is 0 0 101 ot
(7.4) e v |02 S S s O 0 vo | def | O
V3 A by fa1 fz fis 0 0 V3 Tk
I u cc 0 0 0 Ay he y Qs
22 o cc 0 0 0 hg he Lo Q2

In this formulation the question of local equivalence of a given para-CR structure
of type (1,2,3) to the one defined by (7.3)-(7.4) can be solved by using Cartan’s
equivalence method, see e.g. [17]. Using it we get the following theorem.

THEOREM 7.1. — The para-CR structure (71.3)-(7.4) defines a unique 11-di-
mensional manifold P on which the forms (', 6%,6%,0*, Qs, Q3), as defined in
(7.4), can be supplemented by the unique 1-forms (21, Q4, 25, 6, A) in such a way
that the eleven 1-forms (Hi, Q,A),1=1,2,3,4 1=1,2,3,4,5,6, constitute a co-
frame on P, and that they satisfy the exterior differential system

(7.5) d0' + TN 6T =0
(7.6) Ari+ ATt =0,
with

) . 1
(7.7) I = g* Iy, Iy = Iy +§Agija
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where
01 0 0
% _ . |11 000
0010
and
0 (o)) Qs
(7.9) S A

Oy Q3 0 O
—Q; —Q5 —-Q 0

Moreover, if (X,[(Z, iy, fis, V1, V2, V3)]) is an arbitrary 6-dimensional para-CR
structure of type (1,2,3), then it is locally para-CR-equivalent to the para-CR
structure (71.3)-(7.4) if and only if its corresponding forms

% a 0 0 0 0 0 7
! bi fu fiz fis 0 0 V1
¢ _ b fa S fis O 0 | _ | W
¢ by fa1 fz fis 0 0 V3
Q3 et 0 0 0 huy e A
Q 2 0 0 0 hy he I

can be suplemented by five_l-forms (024, Q4, Qs5, Qg,A) in such a way that on some
11-dimensional manifold P they satisfy the exterior differential system (7.5)-(7.9).

ProorF. — The proof of this fact is a standard application of Cartan’s method of
equivalence. It requires massive calculations to show that the 1-forms (7.3)-(7.4) can
be uniquely brought to the form, in which they satisfy (7.5)-(7.9) with unique
(021, Q4, 25,2, A). Actually Cartan’s method of equivalence constructs the mani-
fold P with a natural parametrization of P by (x, y, ag, a1, az, a3, a, fi1, fo2, f31, f32),
and gives, in an algorithmic way, the explicit formulae for the coframe 1-forms
(Hi,Qﬂ7A), 1=1,2,3,4, u=1,2,3,4,5,6, which correspond to (7.3)-(7.4) on P.
These coframe 1-forms read:

o — afsz firfoz — xafse

—="(day + ydag) + (day + ydag),
Jo2 fo2
0 = — @(dao + xday) [t —yafn (das + xdas),
Ju Ju
P Wl g Jrfsl(fnfzz — Xafss) o Jrfsz(fnfzz —Yafs) 4.
fufe fife ' fifer ?
(firfoe — xafz2)(fi1foe — yafz) d
- as,
afi foe
0" = a(dag + xda; + ydag + xydas), Qo = @ de, Q5 = @ dy,
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1 a
Q ==dlog (j;;—;) + (f31dy — fezdu),

2 Sirfoz
o= duog (12 +f%%z w
o= 2 g (12 ) + 20 e
Qs = % dlog <f1;];22) _fna}zz (fs1dy + fe2da),

A = —dlog(fi1/22).

It can be checked by a direct calculation that these forms satisfy (7.5)-
(7.9). a

7.2 — Newman’s construction..

After E. Ted Newman [6, 7] we recall that the system (7.1) has the interesting
property that its solution space R? is naturally equipped with a conformal metric
of split signature. This is defined as follows.

Consider two neighboring solutions of (7.1) corresponding to two points a@ and
a + da in R*. These two solutions can be considered as two surfaces, the graphs
of two functions,

2(x,Y) = ay + a1 + agy + agry &
(z + d2)(@,y) = (ag + dag) + (a1 + da1)x + (a2 + dag)y + (az + dag)xy,

in R® with coordinates (x,,z). One can ask what conditions the two points a
and a + da in the solution space R* must satisfy for these two surfaces to be
tangent at some point (x,y,2) in R®. An elementary argument shows that the
point (x,y,2) at which the two surfaces are tangent satisfies the following
equations:

dz = dag + dayx + dagy + dagxy = 0,

(dz), = day +dagy =0 & (dz), = daz + dagx = 0.
The first of the above equations says that the two surfaces intersect at a point
(x, ¥y, 2(x,y)), and the second two equations say that they are tangent at the same

point (x,y,z(x,¥)). These three equations for the two unknowns (x,y) have a
solution if and only if da satisfies a compatibility condition, which is obtained by
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eliminating x and y from the two second equations, and by inserting the so de-
termined x and ¥ in the first equation. This compatibility condition is:

da()d(lg; — daldaz =0.

Thus: two neighboring solutions @ and a + da of (7.1) are tangent to each other at
some point (x,y,2) in R? if and only if they are null separated in the flat split
signature metric

(7.10) g = 2(dagdas — daidasg)

in R This shows that the solution space of (7.1) is naturally equipped with a
conformal structure. This gives a correspondence between the incidence rela-
tions between two solutions of (7.1) treated as surfaces in R® and conformal
properties of points in the solution space R*. This description is very similar to
the well known correspondences in the Lie sphere geometry, or more generally,
in Penrose’s twistor theory.

A new view of Newman’s construction, stressing the Weyl geometric aspect of
it, follows from our Theorem 7.1, and is included in the following theorem.

THEOREM 7.2. — Every para-CR structure of type (1,2,3) which is para-CR
equivalent to the para-CR structure (7.3)-(7.4) uniquely defines an 11-di-
mensional principal fiber bundle CO2,2) — P — S, with the T-dimensional
homothetic structure group CO2,2), over a 4-dimensional manifold S, which
can be identified with the solution space of a pair of PDEs on the plane:
Zew = 0 =2y, It also defines a flat Weyl geometry [g,A] on S, in which the
(2,2)-signature metric g and the 1-form A change conformally, g — e*g,
A — A —2d¢, when the system z,, =0 = z,, undergoes a point transforma-
tion of the variables (x,y,z).

PrOOF. — Given a para-CR manifold locally equivalent to (7.3)-(7.4) we use
the previous theorem and construct an 11-dimensional manifold P with the
coframe (Hi,Qﬂ,A) satisfying (7.5)-(7.8). It is convenient to write down these
equations explicitly. Equations (7.5), when written in the coframe (Hi,Qﬂ,A)
read:

1
dot = <Ql—§A>/\01—Qg/\93—Q5/\H4

de? = (—Ql—%A> AP —Q NP — QN
(7.11) )
d6® = Qu A O + Q5 N 0P + <Qﬁ—2A> A G

do* = Qo A O + Q3 AP + (—Qe—%A> N
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whereas equations (7.6) read:
dQ; = Qe ANQ5 — Q3N Qy
dQs = Q2 N (21 + Q6)
dQs = (21 — Q) N Q23

(7.12) dQy = Q4 A (1 — Q)
dQs = (1 + Q6) N 25
dQs = 2o N Q5 + Q23 A Q4
dA =0.

The appearance of only constant coefficients in front of the 2-forms on the
right hand sides of equations (7.11)-(7.12) enables us to identify the coframe
forms (Hi,Qﬂ,A) with the Maurer-Cartan forms on an 11-dimensional Lie
group with a Lie algebra having structure constants equal to these coefi-
cients. This shows that P is a Lie group. A look at the structure constants of
the corresponding Lie algebra given by (7.11)-(7.12), shows that this Lie
group is P = R* xCO@2,2). The CO2,2) principal fibre bundle structure on
P =R*xC0O2,2) corresponds to the fibration CO(2,2) — R* xCO2,2) — RY,
i.e. to the natural principal CO(2,2) fibration over the homogeneous space
R* ~ (R* x C0(2,2))/CO(2,2). Existence of this fibration on P is guaranteed
by the equations (7.5) (or what is the same (7.11)). They say that the 1-forms
(0, 6%,6%,6*) form a closed differential ideal, so that their annihilator defines
a foliation of P by 7-dimensional manifolds. On each of these 7-dimensional
manifolds the forms (9', 6%, 6%, 6*) vanish identically, and the additional seven
1-forms (Q21, Qs, 23,24, Q5,6,A) form a coframe. The differentials of this
coframe, on each leaf of the foliation, satisfies a closed exterior differential
system with constant coefficients (7.12). Thus each leaf can be identified with
the same Lie group, whose Lie algebra has structure constants determined
by (7.12). It is easy to see that this 7-dimensional Lie algebra is the homo-
thetic Lie algebra co(2,2) of homothetic motions in 4-dimensions associated
with a metric of signature (+, +, —, —).

The appearance of the Lie group CO(2,2) as a subgroup of P suggests that
S =R~ (R* xCO(2,2))/CO2,2) is naturally equipped with a conformal metric
of signature (4, +, —, —). This is indeed the case. The metric is obtained as fol-
lows: consider the bilinear form G on P defined by:

G = 200'¢* + 0°0%).

This form is highly degenerate on P, but its degenerate directions are pre-
cisely along the fiber directions of the foliation CO(2,2) — P — M; actually G
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has signature (+,+,—,—,0,0,0,0,0,0,0). Morever, using the sytem (7.5) it
can be easily checked that the Lie derivatives of G along all the directions
tangent to the fibres are just multiples of G. In particular, if Z is any vector
field on P tangent to the fibres, we have Z _| 0 = 0, and as a consequence of
(7.11) we get

LG =—-(Z_1AG.

Thus G descends to a conformal metric [g] of signature (+,+,—,—) on the
quotient space S = P/CO(2,2).
Using the last equation (7.12) we also get

LA =d(Z_A),

so we see that the pair (G,A), changes as (G,A) — (G',A") = (G, A — 2d¢)
when it is Lie dragged along the fibres of CO(2,2) — P — S. Thus it descends to
a split signature Weyl geometry [g,A] on S. The equations (7.12), when pulled
back to S, show that this Weyl geometry is flat.

To interpret the quotient S = P/CO(2,2) as the solution space of the pair of
equations z,, = 0 = z,, we use the corresponding para-CR forms (7.3), together
with the explicit expressions for the invariant forms (0%, 6%,6%,0* and A in co-
ordinates (x,y, ag, a1, ag, ag, a, fi1, fo2, f31, fz2) on P, as in the proof of Theorem
7.1. A short calculation shows that

G = 2(0'60* + *0*) = —2f11 foo(dagdaz — daiday).

This, together with A = —dlog(fii1fs2), shows that the representative
(9,A) € [g,A] can be taken as

g = 2(dagdas — daiday), A=0,

and that S is parametrized by (ay, a1, ag, ag). Since these parameters constitute
all the integration constants of the equations z,,, = 0 = z,,, the quotient S can be
naturally identified with the solution space of these equations. O

7.3 — The principal bundle point of view and Weyl geometry.
In the previous section we have shown how to associate an 11-dimensional
principal fiber bundle CO(2,2) — P — S to any flat para-CR structure of type

(1,2,3). Here we reverse this construction.

PROPOSITION 7.3. — Every 1l-dimensional manifold P with o coframe
0", 2,,A),1=1,2,3,4 u=1,2,3,4,5,6, satisfying the differential system



(7.13)

DIFFERENTIAL EQUATIONS AND PARA-CR STRUCTURES
1 1 1 3 4
dH:(Ql_EA)/\H — QNP —Q5N0

1
de? = (—Ql—§A> NP — Qo NP —Qu NGO
1
AP = QN0 + Q5 NP + <Qg—§A> N
Ao = QA0 + Q3 NP + (—96—;A> A,
1 o
de, :.Qg/\.Q5—.Qg/\.Q4+§K1ijel/\9]
dQs = Qs A (21 + Q6) +§K27;7'0L A
1 i ;
dQs = (21 — Q6) N Q3 +§K3ij’0 N
1 i ;
dQy = Q4 N (21 — Q6) +§K4ij0 A0
1 o
dQs = (21 + Q6) N Q5 +§K5i7'01 N

1 o
dQg = 2o N Q25+ Q3 AN Q4 +§K6i7‘91 N

1

dA = §Fij0i N
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with Kq; Fy being functions on P, is locally a principal fiber bundle
CO@2,2) — P — S over a 4-dimensional manifold S naturally equipped with a
Weyl geometry [g,Al, in which the split signature conformal metric g is deter-
mined by a bilinear form G = 2(0'6° + 0°0*) on P, and the Weyl potential 1-form is
determined by the 1-form A on P. The curvature of this Weyl geometry is given by

1
where 1, = 5

1

0 K1+ 5.7-' Ko K4
1
—K1 + 5 F 0 K3 K5
1
— K2 —K3 0 K¢ + é F
1
—Ky —K5 —K¢ + 5.7: 0

Kaij0' N 07 and F = %F,Uei N
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PRrOOF. — As in the proof of Theorem 7.2 we easily see that the 7-dimensional
distribution annihilating (6%, 6%, 0°, 9*) is integrable, and hence we have a local
projection 7 : P — S, identifying points along the same leaves of the corre-
sponding foliation. Since on the leaves the forms ¢ vanish, and since the differ-
entials dQ,s differ from those in (7.12) by terms that vanish on the leaves, every
leave is alocal Lie group isomorphic to CO(2, 2). This proves that the manifold P is
locally a principal fiber bundle CO(2,2) — P — S.

To prove that S has a natural Weyl structure [ g, A], one repeats the argument
from the previous proof. Although in (7.13), when compared to (7.11)-(7.12), the
new terms x, and F appear, the argument from the previous proof is not altered.
This is because (1) the new terms do not appear in the ‘conformal metricity/
torsion’ part of the equations (i.e. d¢ equations) and (2) they appear in dA only in
harmless terms which are annihilated by any vertical direction.

The curvature of this Weyl structure can be calculated, by observing that on

. D ; ; 1
any section o(S) of P the Weyl connection is given by I” l] = g*¢* (I 1 + 5 Agry),

where I';; is expressed in terms of the forms 2, appearing in (7.13) via formula
(7.9), and g;5, g“ are as in (7.8). The rest of the proof consists in calculating
le =dI’ Zj + I AT l; using (7.13) and lowering one index. O

This proposition is crucial for the remaining sections. In particular it can be
used to prove the theorem, which gives the converse of Newman’s construction:

THEOREM 7.4. — Every 11-dimensional manifold P which is equipped with a
coframe (Oi, Q,4), 1=1,234 n=123,4,56, satisfying the differential
system (7.11)-(7.12), is locally a principal fiber bundle CO@2,2) — P — S, ort-
ginating from a flat para-CR manifold (X, [, 1y, e, v1, v, v3]) of type (1,2, 3), via
the procedure described by Theorem T.1.

ProOF. — That P with a system (7.11)-(7.12) is locally a principal fiber bundle
CO2,2) — P — S is an immediate consequence of Proposition 7.3 with x, =0
and F = 0. Here we show that apart from the foliation CO(2,2) — P, the system
(7.11)-(7.12) defines another foliation of the manifold P, whose leaf space can be
identified with a 6-dimensional flat para-CR structure X.

To see this consider the forms (0%, 6%, 63,0, s, Q5), and observe that the
system (7.11) and the second and the third equations from system (7.12) guar-
antee that these six forms constitute a closed differential ideal. Therefore their
annihilator is a 5-dimensional integrable distribution on P, whose integral
manifolds define a 6-parameter foliation of P. Putting Q2 = 0 = Q3 in equations
(7.12) we see that the coframe (21, Qq4, 25,2, A) on these integral manifolds
satsifies a closed differential system with all the coefficients being constants.
Thus all these integral manifolds can be identified with a unique Lie group K,
which turns out to be a direct product K = Aff(1) x Aff(1) x R* of two in-
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dependent groups of affine transformations of the real line, Aff(1), and the
multiplicative group of the real numbers R*. This shows that the manifold P, with
the system of 1-forms (7.11)-(7.12), can be also locally viewed as a principal fibre
bundle K — P — 2. Here X is the 6-dimensional leaf space of the foliation whose
leaves are identified with K. Any manifold X transversal to the fibres of these
fibration is equipped with a coframe (0%, s, Q3) = (0, Qs, Q)5 1=1,2,3,4,
which satisfies the system

d@lz(Ql—%A)A91—93A93—525/\94

4 — (—Ql—%A>A02—Qz/\03—Q4/\04

—

40P — Oy N D'+ 05 NP+ (QG—A)A93

[\

(7.14)
do* = @ A0 + Q3 A O + (—Qs—;A> NG,
dQs = Qo A (21 + Qp)
dQs = (@1 — Q) A 23,

with forms Q;, Q4, 25, Qs and A on ~. That these forms are the restrictions of @y,
Qy, Q5, Q6 and A to X is not important in the following. What is important, is that
the system (7.14) on X is satisfied by a coframe ((9i, Q,9Q3), and that it implies
that the quartet of forms (0%, 0%, 0%, 0*), as well as the triplet of forms (0%, Qs, Qs),
both form closed differential ideals of 1-forms on X. Thus the 2-dimensional
anihilator H* of (6%,0%,6°,0%), as well as the 3-dimensional anihilator H~ of
(0%, 2o, Q3), define foliations of X by, respectively, a 4-parameter family of 2-
dimensional leaves, and a 3-parameter family of 3-dimensional leaves. The in-
tegrable distributions H* and H~ obviously have H* N H~ = {0}, equipping
each X with a para-CR structure (X, H*, H™). It is matter of checking that the
(1,2, 3)-type para-CR structures on each X are localy equivalent to each other,
and that they descend to the unique (1, 2, 3)-type para-CR structure (X, H*,H™)
on the quotient X' = P/K. Obviously this para-CR structure is the flat one of
Theorem 7.1. O

7.4 — Non flat case.

Now we generalize the flat example of Sections 7.1-7.3 to systems of PDEs on
the plane of the form

(7.15) Zow = R(2,Y,2, 22,2y, 2ay) & 2yy = T(@,Y, 2,22, 2y, Zay)-
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We assume that they are finite type, or, what is the same, we assume that their
general solution can be written as

z = y(r,y,a,a1,02,03).

This is always the case [7], when the functions R = R(x,¥,2,p,q,s) and
T="T(x,y,z,p,q,s) satisfy

(7.16) DT = DXR,
where the differential operators D, and D, are implicitly given by
(717) Dy =0, +p0.+R0,+s0;+D,R0; & D,=0,+q0.+50,+7T0;+D,T0;.

To make this implicit definition of D, and D,, explicit one has to solve for D, T and
DyR in D,T =T, + pT. + RTy + sTy + (DyR)Ts and D,R = R, +qR, + sk, +
TR, + (D,T)R;. This is only possible if

(7.18) T,R, +# 1,

which when assumed, defines D, T and D, R uniquely, and in turn after insertion
in (7.17), makes the operators D, and D, explicit. Thus we assume (7.18) from
Nnow on.

To define a type (1,2,3) para-CR structure associated with the system
(7.15), (7.16), (7.18) we do as follows. First, using the general solution
z =y(x,y, a9, 01,02, a3), we define the forms

A =yydap + v da; + wedaz + wsydas

= du

o = dy
(7.19) ?

V= da1

Vo = daz

v3 = dag,

Then we extend these forms to the class [4, 1y, 65, v1, v2, v3] via (7.4). This equips
the 6-dimensional hypersurface

7
2 ={(x,y,2,a0,01,02,03,04) € R'| 2 = y(x,¥,00,01,02,03)}

in R?® x R* with the (1,2, 3)-para-CR structure [, 1y, s, v1, v2, v3]. Alternatively,
a para-CR equivalent structure may be defined on the second jets JZ of the
system (7.15)-(7.16). Parametrizing this space by (x, ¥, 2, p, q,s) we use the con-
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tact forms
A=dz —pdx — qdy
= dw
=d
(7.20) fe=9

vy = dp — Rdx — sdy
vg = dq — sdx — T'dy
v3 =ds — D, Rdx — D, Tdy,

and define the type (1,2,3) para-CR structure by extending these forms to a
class of para-CR forms [4, iy, i, v1, v2, v3] on J- 2 via:

A Yy a 0 0 O 0 0 A
U1 Vv by fu fiz fis 0 0 10}
Vo v by for fez fo3 0 0 Vo

721 2 | = ’
(721) v | T Vg b3 fa f2 fis 0 0 V3
I 74 ct 0 0 0 hu he 1
s Uy cc 0 0 0 hy he U

where @, b4, ¢,,f4, h§ are arbitrary parameters such that a det 4 det (hg) # 0.
Let us now define, as before, the lifted coframe

0* a 0 0 0 0 0 !
H; by fu fiz fiz 0 O 141
¢ bo fa f2 fois 0 0 Vo
7.22 =
(7.22) P bs fs1 fzz fiz 0 0 V3
Q3 cic 0 0 0 A hee 1y
Qo 2 0 0 0 hay he s

We ask which conditions the functions R and 7 must satsify so that the forms
(91, 92, & , 94, 25, Q3) are forced to satisfy the system (7.13) with some auxiliary
forms (21,94, Q5,926,A), on a certain 11-dimensional manifold P, where
(Hi, Q,,A) would serve as a coframe. As a first result in this respect we have the
following theorem.

THEOREM 7.5. — A meccessary condition for the equations 2, =
R, Y, 2,20, 2y 2uy) & 2y = T, Y, 2, 20, 2y, 20y) SALISSYiNG D%T:DzR, 1-R,T;>0
to admit forms (7.21)-(7.22) with
(7.23) d0* A 0" = (@2 N O" + Q3 NP N O
(7.24) d0' AO' AP AP A Q23 =0
(7.25) AP AN NP NP AQ =0
(7.26) A" N ANP AP AQ3 =0
(7.27) APANP AP NP AR =0
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1s that the functions R = R(x, Y, 2,2z, 2y, 2uy) ond T = T(x, Y, 2, 22, 2y, 2uy) SOLLSSY
J1 =0, & J2 =0,
where

Jl = (RsTs - 4)DacRs + RS(ZDyRs - RsDsz)
+8R, — 6RR,T, + 4R, R, + 2RT, — 2R,R>T, + 2R3T,

J2 = (RsTs - 4)DyT5 + Ts(ZDsz - TsDyRs)
+ 8T, — 6R,T, Ty + 4T, T + 2R, T? — 2R, T, T + 2R, T?.

PROOF. — We force the forms (6", 02, 03, 94, Qo Q3) to satisfy (7.23)-(7.27) in the
following steps:

First we fix coefficients fo3, f33, 11, h12, ko1 and hgg by forcing do* to satsify
(7.23). For this to be satisfied we must take:

(7.28) Sfis=ris =0,
and
by = - - b = S/
fiefor — fufoe’ fiefor — fufoe’
(7.29)
afas afar

h = e —Fife 2 fafu—fufe

After these normalizations we have

2 2
d@lA(?l/\Hz/\04A!23:2fllﬁ2+§;ﬁ1JrTsfleg/\Qg/\Hl/\(92/\(93/\04
33

and

2 2
d02A01A02A94A922ﬁlﬁ2+§}]§1+TSJ32Q3AQZA01A92A03A64.
33

Thus to satisfy (7.24) and (7.25) we must equate to zero the right hand sides of
these equations. It is the moment, when we need the assumption

1-R, T >0.

When this is assumed we achieve (7.24) and (7.25) by normalizing:

—1t+w -1F

w
(7.30) fa = R—fzz, fir= 7 fiz,  w=+/1—RT,.
S S

With these normalizations we now have
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dO" A O AP A G A Qg
(1+3u)2i3wﬁ:w3)J1—R§J2

2 1 3 4 b
= QDANBNONFANPAG
iz dafnRou? 2 N\ 823 NO" NG A

(7.31)
dP AP AP A A Qs

_p (14 8uw? F 3w F w?)J; — R3J;
Tz dafioR2w?

[N N N N

The right hand sides of these equations vanish identically if and only if

(1+8uw? £3w+w’)J; —RJ2 =0
(1+3uw® 8w F w?)J; — R3J> = 0.

Since
1+8u? £8w+uw® —R3\ _ ;
det<1 +3u F3wFuwr —RS) F2R3wB +u?) #0
this is only possible if and only if J; = J; = 0, which finishes the proof. [

The meaning of vanishing of both J; and Ja, known as Newman’s metricity
conditions [6, 7], is given in the following theorem.

THEOREM 7.6. — If conditions
Jl =0 & Jz =0

are satisfied then one can normalize the forms (01, 07, 63, 6*, s, Q3) in such a way
that they, together with the auxiliary forms (21, Qs, 25, 6, A), satisfy

do' = (91—%A>/\01—!23/\03—.(25/\94—&—1%392/\93

de? = (_Ql—%A>Aez—QzAH?’—Q4A64+t§391/\03

(7.32) .
d® = QN0 + Q5 AP + (QG—§A> N
do* = Qo A O + Q3 A 0P + (—96 —%A) A G,
where
a
tég = - 8f2—w4 (Rss(]- + w)z + TSSRg)a
(7.33) z

iy = (Rss(1 T w) + Ty R2).

a
&f2uw!
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With this normalization the bilinear form G = 2007 + 0°0Y) descends to a
conformal (+, +, —, —) signature metric [ g] on the 4-dimensional leaf space S of
the foliation defined by the integrable distribution anihilating (6*, 6%, 6, 6").

Modulo o discrete point transformation, interchanging 0* with 07, the van-
ishing or not of at least one of

K1 = R — /1 =R, T, + TsR?, Ky = Ry(1++/1— R,T,)? + TR?,

18 a poimt invariant property of the corresponding system 2y, =
R(x,y,2, 20,2y, 2ey) & 24y = T(%, Y, 2, 22, 2y, 2ay)- I particular, the simultaneous
vanishing of Rss and T, Rss = Tss = 0, 1s a point invariant property of the
system.

Proor. — If we prove that the forms (01, (92, 93, 0 can be forced to satisfy the
system (7.32) on some 11-dimensional manifold P, where the forms ©, Q,,A) are
linearly independent, then similarly as in the proof of Proposition 7.3, we will have
a foliation of P by the integral leaves of a 7-dimensional integrable distribution
annihilated by (9", 6%, 8>, 60*). Moreover because (7.32) differs from (7.11) by only
the appearence of 0' A 0° terms, the Lie derivtives of G with respect to the vectors
tangent to the foliation, will be given by the same expressions as in the proof of
Theorem 7.2. Thus, if we prove (7.32), we will get the conclusion that the leaf space
S is equipped with the conformal split signature metrics [ g] to which G descends.

The procedure of bringing the forms (¢°) to the form in which they satisfy
(7.32) is based on Cartan’s equivalence method. The Cartan process of normal-
izing the group coefficients a, b;, ¢;, fi;, hy; has two loops, the first of which ends
after normalization of the coeficient b;.

THE FIRST LooP. — We first impose the conditions (7.23)-(7.27), as in the
previous proof, and as before reduce the possible freedom in the choice of

(617 627837e4792ag3) to

a 0 0 0 0 0
—1Fw
o by R. fiz fiz 0 0 0 /1
o —1+w
, by —p—fn f2 00 0 !
@30 | 7 | = ; 2
P bs fa1 faz f33 0 0 V3
Qs o 0 0 0 <+ aR; a(l £ w) My
Qs 2wz 2ufop U
& 0 0 0 T aR; a( —1+w)

2uwfiz 2wz
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In the next step we impose the condition d0* A 08 A 07 A OF = —Q3 A O A OPA
@ A 0*. This gives the normalization

2uPfiz foo
aR;
and implies also that AP AN ANPNO = —Qo NO* NP AP A G,
Then we require that d6? A 6 A 0* A 0" = 0. This determines by as:
alfsz +furlls Ffow) | o2
2f 12w R2w(3 + w?)
x (A £w)(1 — w?VRy + (1 F w’R(Dy R, + TR + R,T,)

(7.35) f33 =

by = +
(7.36)

Similarly the condition do' A 6* A 0° A 6* = 0 determines b as:
afa2 + fa1Rs £ fow) - Ji2
2foow R2w(3 + w?)
x (A Fw)d — w?VRy + (1 £ w’R(Dy R, + TR + R,T,)
+ A FwR(RsD,Ts + Rp(1 — w2)))

by =

(7.37)

After these normalizations have been imposed, we have to associate the re-
maining undetermined parameters a, fi2, fo2, f31, f32, b3, €1 and ce with the aux-
iliary forms Q1, Q4, Q5,26 and A.

This is done by first observing that the equation

(7.38) Aot = Qe N 0" + Q3 NP — (96 +%A> N

is equivalent to

da bl bz

1
(7.39) QA= Q-2

c c
—_2 Qs+ 20"+ 20° + wn 0",
2 a a a a

with b; and b as above, and an unspecified new parameter u;11.
From now on we only sketch the proof, which is based on massive computer
calculations using Mathematica.

1 .
After relating da to Qg + 5 A we pass to the condition
(7.40) do® A OP NG AP = 0.
It follows that this can only be satisfied if the differential dbg is

1
(7.41) dbs = b30222 + 30323 + b3os (96 + 3 A)

+ b3oa dfsn + ba12dfiz + bssi dfss + bssz Afse + b310" + b320” + bag® + bay0*.
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The functions bsye, b33, b3os, b3z, D312, bsgr and bgge are uniquely determined by
(7.40), and are expressible in terms of R, T, their derivatives up to order two, and the
free parameters a, fiz, fo2, f31, fa2, b3. The parameters b3y, bsg, bs3 and by, are ar-
bitrary. Using Mathematica we found explicit expressions for this differential up to
the undetermined 0’ terms. Due to the enormous size of this formulawe do not quote
it here. We note, however, that the free parameters c; and c; are not present in dbs.

Now, using all the normalizations obtained so far, and dbs as above, we impose
the condition

(7.42) dHl/\Hg/\04:<Ql—%A)/\91/\93/\H4.
This gives

1
(7.43) Q) — § A= legflz —|—f122.Q2 —|—f123.Q3 —l—flzl(‘)z +....

The dots here denote the undetermined (91, 83, 6% terms. The functions fi22, fizs
and fi21 are uniquely and explicitly determined by (7.42). Similarly, imposition of

(7.44) d02/\03/\04:<—Ql—%A)/\02/\03/\04.

gives

1
(7.45) - — é A= legfgz —|—fzzg.Qg —|—fzzg.Qg —|—]0221(91 + ...
with uniquely determined functions foee, foes and foe;, and dots denoting the
undetermined (6‘27 93, 0*) terms.

Now the condition

(7.46) Ao A 0" A 0P = (QG—%A> AOT AP A G
is used to reduce the freedom in the choice of the undetermined #* terms in
(7.39), (7.43), (7.45) and the undetermined 6 term in (7.41). This one scalar
condition gives a linear relation between the coefficient w11, the coefficient bgg at
the @ term in (7 .41), and the two coefficients at 0* in (7.43) and (7.45). Denoting
the last two coefficients by fi24 and foe4 respectively, we use (7.46) to obtain bs3 as
a linear combination (with coefficients depending on R, T, their derivatives, and
the free parameters such as a, ete.) of %111, fi24 and fooq.

At this stage we have associated the forms @, 2;, and A to nonsingular linear
combinations of the differentials da, dfse and dfis. The still unknown forms Qy
and Q5 can now be related to dfs; and dfse by imposing the condition

(7.47) d93:Q4/\91+Q5/\92+<Qe—%A>/\Hg.
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The imposition of this condition results in

B R, 1Fw 1
(7.48) .(24—:F2ﬁ2wdf31:F2ﬁ2wdf32+...+a0 + &P
R 1+w 1
7.49 Q5=+ dfsy + dfse + ... + po' + 0%,
( ) 5 2o If31 oot If32 B J4

where the doted terms are totally and uniquely determined by R, T, their de-
rivatives, and the previous choices. Here a, 5,y are new free parameters.

We stress that we calculated explicitly the right hand sides of equations
(7.41), (7.43), (7.45), (7.48) and (7.49). We do not quote them here in full generality
due to the lack of space. But now, having these right hand sides calculated, we
can calculate d6* and dé?. It follows from these calculations that

AP AN P NP A Qs =HQs A Qs NOY AP AP NG,
and
AP N NP NP NQy=HQ NQy NO' NP AP A
The function H appearing in these equations has the form
H =Ab; + B,

where A # 0 and B are functions of R, T, their derivatives up to order three, and
only five free parameters a,fiz,fo2,f31 and fio. To satisfy the first two of the
equations (7.32) we need H = 0. This gives the normalization of the parameter bs as

B
b3 = — Z .

This, when compared with dbs given by (7.41), and everything after this equation,
might bring compatibility conditions. Thus we are at the end of the first loop: we
have to return to the formula (7.41) with b3 = —B/A and repeat all the steps after
this formula, inserting this b3 everywhere.

Note that as the result of the first loop we have forms (6%, 6%, 0, 0*) satisfying
the last two equations (7.32).

THE SECOND LOOP. — Now we start with the forms (7.34), in which we use f33,
b1, b2 and b3 determined in the first loop. Then, as before, (7.39) guarantees that
(7.38) is valid, and (7.40) is satisfied automatically. This means that we do not
need equation (7.41) anymore. Equations (7.42) and (7.44) as before determine

1 1
Q1 — 5 Aand —Qy — 5 A, so that (7.43) and (7.45) are satisfied, with new but still
explicitly determined fiss, fi23, fi21, foe2, fo3, foe1. Since now we do not have
(7.41), we use (7.46) to determine u;q;. After this, we calculate d6®. This satisfies
(7.47) provided that 24 and Q5 are as in (7.48) and (7.49), with everything de-
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termined except the parameters a, 8, . Choosing these Q4 and Q25 we have also
have

AANOANPAPANQs =dP AP NP NP AQ, =0.

It turns out that out of the nine undetermined parameters: a,f,y and the
ones in the dotted terms in (7.45) and (7.43), eight are totally determined by

1
the requirement that do' = (Ql —5 A) AP — QNP — Qs N0 + téSOZ AP
1 . .
& Ao = <_ Q-5 A) NP — Qo NP — Q4 ANO* + 150" AGP. Tf this condition
is imposed the remaining free parameters are a, fio, fos, f31, f32,c1,¢2, 0. It

also follows that this condition forces the coefficients i, and 3, to be given
by (7.33). This finishes the proof. O

REMARK 7.7. — Further conditions

AR AP ANPANPNQ =0
dQs AP AP A O A Q3 =0,

imposed on the system 01, 6%, 0%, 6%, Qy, Q3) uniquely determine parameters c;
and co. To fix the parameter f we use the requirement that the differential dQ,
does not involve a Q, A 6 term. After imposing this, the remaining free para-
meters in the definitions of (9i7 Q,,A) are only: a, fi2, fo2, f31, f32. This shows that
the system for a (1, 2, 3) type para-CR structure with J; = J2 = 0 naturally closes
on P, and that P can be locally parametrized by (x,¥,z,p,q,s) (the base) and
(a, fi2, fa2, f31, fs2) (fibers).

REMARK 7.8. — Theorem 7.6 assures that the solution space of a pair of
PDEs zu = R, Y,2, 20,2y, 22y) & 2y =T (2, Y,2,24,2y,2y) satisfying DQ%T =
D;R and J; =J3 =0 is naturally equipped with a (+,+,—,—) signature
conformal structure, and that this conformal structure is a point invariant of
the corresponding pair of PDEs. However the appearence of the torsion
terms tl; and 35 in (7.32), as well as the nonhorizontal terms, such as e.g.
Qo A0 in dQs, show, that there might be many point nonequivalent PDEs
Zaw = R, Y, 2,20, 2y, 20y) & 2y = T(@, Y, 2,20, 2y, 20y) With D2T = D;R and J; =
Jo = 0, which correspond to the same conformal class of metrics. Although the
forms (Q1, Qo, Qs, Q4, 25, 6, A) together with (6*, 6%, 6%, 6%), as constructed in the
proof of Theorem 7.6 and in the Remark 7.7, solve the equivalence problem for the
1,2, 3) type para-CR structures in question, they in general do not define a Weyl
connection on S. For this to be possible the torsion coefficients tl,, 2, as well
as the nonhorizontal terms in dQs and dQ3; must vanish. In the rest of this
section we will find those point nonequivalent classes of equations z,, =
R(x,y,2,20,2y,22y) & 2y = T(,¥,2,2s,2y,2) for which this is the case.
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LeEMMA 7.9. — The forms (7.20)-(7.21)-(7.22) satisfy the differential system
(7.13) if and only if they can be brought to the form in which they satisfy:

dgli <Q1;A)/\9193/\9395/\04

de? = (-Ql—%A) NP —Q NP — QNG

d03:Q4/\61+Q5/\02+(Qﬁ—%A>/\H3

d94=92A91+93A02+(—96—%A>A94,

(7.50) dQ; = Qo A Q5 — Q5 A Qy — %0 AP

dQs = Qo A (Q1 + Q26) + x0% A 0*
dQs = (2 — Q) N Qs + %0 A O
dQy = Q4 A (Q1 — Qg) + x0° A P
dQs = (Q1 + Q) A Q5+ x0" A 6P
dQs = Q2 AN Q5+ Q5 A Qy — 2P NG
dA =0,

dx = xA.

Proor. — As we noticed in Theorem 7.6 the forms (7.20)-(7.21)-(7.22)
may satsify the first two of equations (7.13) if and only if K3 = Ky =0, or
what is the same, if and only if Ry, = T = 0. Moreover, because the forms
(0%, Qs,Q3,6%, 0%, 0% are in the class of forms (A, 149, 149, v1, v2, v3) defining the
1,2,3) para-CR structure, the forms (94,.(22,{23) form a closed differential
ideal corresponding to the integrable distribution H~. Thus, since
Ao A QAN =0 and A3 A QA A0 = 0, the only possibility of
satisfaction of the sixth and seventh equations in (7.13) is that:

Ao = QA Q14+ Q)+ T A0
(7.51)
dQs = (@1 — Q) A Q3 + T's A O,

with two 1-forms I'y,I's on P, which can be chosen such that I'y = y1101+
1120% + 7130° and 'y = 5, 0" + poul? + pog0’. Here 7; are some functions on P.
Now, one successively imposes the condition that the differentials of the right
hand sides of the first four of equations (7.50), the differentials of the right hand
sides of equations (7.51), and the differentials of the right hand sides of the last
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five of equations _(7.13) are zero (they must be, as they are differentials of the
coframe forms (0", ©2,)). This straightforwardly leads to the conclusion that it is
possible if and only if (7.50) is satisfied. This finishes the proof. O
THEOREM 7.10. — All finite type systems of PDE's on the plane
Zow = R0, Y, 2,20, 2, 20y) & 2y = T(®,Y,2, 2,2y, 2uy)s

which in a natural way define a split signature Weyl geometry [ g, A] on their 4-
dimensional solution space, are locally point equivalent to the system:

2Yzp2ay
zam - -
2+ X2y — Y2y
(7.52)
2ic Zuy 2x (2 — Yzy)zay
Ryy = o

_?erxzm—yzy Y 2+ a2y — Y2y

with k being a real number. All such systems with x # 0 are locally point
equivalent to the system with x = 1. They are point nonequivalent with the
system with k = 0. For each i system (7.52) has

L _ ey + axa)y + Koy — y — agy® — azvy
a2y — a1x

as its general solution. The Weyl geometry [ g, A, ] on the 4-dimensional solution
space, with points parametrized by (ay, a1, ag, as), is represented by

e = 2(da0da1 + dazdag) A =0,

(1 + r(aoar + (lz(lg))z ’

The type (1,2, 3) para-CR structures corresponding to the two different values 1
or 0 are locally nonequivalent. If k = 0, then the corresponding (1,2, 3) type para-
CR structure has an 11-dimensional group of symmetries COQ2,2), and 1is
equivalent to the (1,2,3) para-CR structure corresponding to the system
Zew = 2yy = 0. If i # 0, the corresponding type (1,2, 3) para-CR structures have a
10-dimensional group of symmetries isomorphic to SO?2,3). This group acts
naturally as the group of motions on the solution space, which is equipped with a
metric of constant curvature g,.

ProoF. — We first show that the (1,2, 3) type para-CR structure associated
with the system (7.52) defines forms (Hi, Q,.,A) satisfying (7.50). Since we have the
general solution of the system (7.52), it is convenient to use the representation
(7.19), rather than (7.20), for the defining forms (4, i, us, v1, v2, v3). Thus, in-
serting

 k(aoa + azas)y + xay —y — agy? — aswy
o agy — a1
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in (7.19), we have

- el
s (e —yy dag + (agr — 2)y(1 + CL39€2 + aoy) day
a1 — agy (a1 — agy)
(a1 — yd + agx + ay) d (agk — )y
- 5 az — ————dag,
(1 — azy) mx — agy

V1 = dal, Vo = dag, Vg = dag

w =de, s =dy.
We now take the forms (7.22) with these (4, uy, ts, v1, v2, v3) and apply the pro-
cedure of fixing the gauge as in the proof of Theorems 7.5, 7.6 and Remark 7.7.

This procedure leads to the following choices for the free parameters
b1, be, bs, ¢1, C2, f13, foz, fo3, /51, 33, 1, iz, hon, hss:

by — fiou
Farfae(are — Yy + agx + apy)
afiz
by = ———=
T fe
by v

 faala — )y + azic + agy)
arx(l + agx + apy)

= —
! for(1 + x(aoan + asas))(arx — y)
_ ala1k —y)
f32(1 + raoar + aza3)) (a1 — azy)
B (a1 — asy)u
.f13 — 2
alarx — Yy + agx + agy)
fo2=0
fy = — (a1 — azy) fa1
2 1+ agx + apy
agic — X
f = (a2 ) f32
aiK =Y
f33=0
ay(1 + agx + ayy)
hi1 =

for(a@ — azy)?
g — alagr — )yl + agx + apy)
for(ar — y)arx — azy)?
gy — A% = Y@ + (@00 + a203))
fro(mz — azy)?
_ alarx — y)ylas + x(aoar + aza3))
faz(ar — azy)® '

hoo =
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Here
w = 05 for fat® — a1y (202 fo1 oot + afir(l + asx + agy))
+ y(a3 for fazy + a1 + azx + agy) (fiz@@ — azi) + fi1y)).

It follows from the construction that these normalizations force the forms
(0%, 6%,6°, 0", s, Q3) to satisfy the system (7.32) and the three conditions from
remark 7.7. Because of the choice of z = z(x, ¥y, ag, ai, ag, ag) as the general so-
lution to (7.52), it turns out that in these normalizations the forms (7.22) satisfy,
in addition (7.50), with
2k(1 + agx + apy)
Forfse( + k(agar + azas)* (@12 — azy)

If x = 0, we get x = 0, and the system (7.50) becomes (7.11)-(7.12). This proves
that if i« = 0, then the system (7.52) is point equivalent to z,, = 2, = 0, or what is
the same, that the corresponding (1,2,3) type para-CR structure is locally
equivalent to the flat one described by Theorem 7.2.

If ¥ # 0 we normalize x to x = 1 by choosing

fo— 2i(1 + age + aoy) .
For(1+ x(agay + azaz))*(a1 — azy)

This choice reduces P to a 10-dimensional manifold Py, with coordinates
(@, Y,2,p,9, 8,0, f11, fiz, fa1, fo2), on which A = 0 and the ten linearly independent
1-forms (0", 2,) satisfy the system

Ao = N0 — Qs NP — Q5 N O
AP = - NP — QNP — QN0
AP = QN0+ Qs NP+ Qs NP
Aot = QA O' + Q3 A O — Qg N O,
A1 = QA Q5 — Q5 N Qy — 0L NP
dQs = Qo A (Q1 + Q) + 0P A O
dQ; = (@) — Q) A Q3 + 0 A O
A2y = Q4 N (Q) — Q) + P N &P
dQs = (1 + Q) A2+ 0" NP

A = QD N Q5+ QN Q2 — P NG

(7.53)

Since in these relations only constant coefficients appear on the right hand sides,
P, is locally a Lie group, with the forms (¢', Q,) as its left invariant forms. This
group is isomorphic to SO(2,3) and, it follows from the Cartan equivalence
method, that it is the full symmetry group of the type (1,2, 3) para-CR structure
corresponding to (7.52) with « # 0. Accordingly it is also the full group of local
point symmetries of the system (7.52) with x # 0. The appearence of the group
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S0O(2,3) is not accidental, since one can check that the so normalized forms
(0%, 0%, 0°, 0) satisty

G = 20'% + Py — F(da0das + dazdas)

A + x(apaq + azag))z .

This means that the 4-dimensional solution space S of the system (7.52) with « # 0
is naturally equipped with a split-signature constant curvature metric G. The
symmetry group of the pseudoriemannian structure (S, G) is obvioulsy SO(2, 3).

Since the parameter x does not appear in the equations (7.53), we conclude
that x # 0 can always be brought to x = 1 by a point transformation of (7.52), or
what is the same, by a para-CR diffeomorphism of the corresponding para-CR
structure. This proves that among type (1,2, ,3) para-CR structures associated
with (7.52) there are only two para-CR nonequivalent ones: the one with x = 0,
and those with x # 0, which are all locally equivalent to the one with x = 1.

To prove that these two structures, modulo para-CR equivalence, are the only
ones that satisfy Lemma 7.9, we proceed as follows:

Suppose that we have a finite type system of PDESs 2., = R(x,¥,2,2;, 2y, 2xy)
& zyy = T(x,y,2,2:, 2y, 2), which via the procedure described in Theorems 7.5,
7.6 and Remark 7.7, leads to the differential system (7.50), as in Lemma 7.9. If we
have » = 0, then our PDEs are point equivalent to z,, = z,, = 0. If x # 0 then the

last equation (7.50) says that A = d— Then putting ¢ = signx we rescale the
forms (0", 6%, 6%, 0") to

0",02,0°,0%) = (ex)(0", 62, 0P, 0.
Obviously this rescaling is a para-CR transformation. The advantage of this

rescaling is that, after it, the form A disappears from the first ten equations
(7.50). Explicitly, after the rescaling, the system (7.50) becomes:

do' = N0 — Qs N 0P — Q5 N O*
d0? = —Q1 NO? —Qu N O — Qu N O*
d6® = QN0 + Q5 NO* + Q5 N OGP
do* = Qs A OF + Q5 A 0% — Qg A O,
dQ; = Qo AN Q5 — Q3 AN Qy — 60 N O?
(7.54) dQs = Qo AN (Q1 + Q) +e0° N 0"
dQs = (Q1 — Q¢) N Q3 + 0 A O*
dQy = Q4 A (Q) — Qg) + 0% A 0P
dQs = (Q1 + Q6) A Q5 + 6 A OP
dQs = Qo A Q5 + Q3 A Qy — 66° A O*

A=

X
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This shows that if x # 0 we can always reduce the system to 10 dimensions, and
that there are at most two different para-CR structures with such x, corre-
sponding to the different signs of &. However, a discrete para-CR transformation
on this system, transforming

(917 93’ 927 ‘Q5) - ( - 917 _93a _QZa _‘Q5)7

and being the identity on the rest of the coframe forms, brings the system (7.54)
into the form (7.53), in which ¢ = +1. This shows that the para-CR structures
with different values of ¢ are equivalent, and that there are only two, locally
nonequivalent type (1,2,3) para-CR structures satisfying system (7.50). We
found the representatives of both of them, as the para-CR structures corre-
sponding to x = 0 or « = 1 in (7.52). This finishes the proof. O

8. — Para-CR structures of type (3,2, 1).

8.1 — Type (3,2,1) versus (1,2, 3).

As noted in Section 4, the flip (1,1,%n — 1) — (»n — 1,1,1), changes a para-CR
structure corresponding to an nth order ODE considered modulo point trans-
formations, to a para-CR structure corresponding to an nth order ODE con-
sidered modulo contact transformations. In this section we further investigate
the meaning of the flip

(k,r,s) — (s,1,k),

on an example of type (k = 1,7 = 2, s = 3) para-CR structures corresponding to
PDEs (7.15). We expect that the passage (1,2,3) — (3,2, 1) will again change the
geometric setting in such a way that the type (1,2,3) para-CR structure corre-
sponding to PDEs (7.15) considered modulo point transformations will become a
para-CR structure corresponding to the same pair of PDEs but considered
modulo contact transformations.

That this is really the case can be seen from the following:

Given a pair of equations

Row = R(2,Y,2, 2, 2y, 2ay) & Zyy = T(@, Y, 2, %0, 2y, 2ay)

we use the contact forms A=dz—pdx—qdy, vi =dp — Rdx —sdy, ve =
dq — sdx — T'dy, v3 = ds — DyRdx — D, Tdy, p; = dx, 1y = dy on the 6-dimen-
sional jet space 7 parametrized by (x,y,z,p, q, s). It is easy to see that when the
equations undergo a point transformation of variables, then the forms change
according to:
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(8.1) 2

i/
!
61
Vo
!
V3
/
H
/
Hy

a 0 0 O 0 O
by fuu fiz 0 0 O
b fa fiz2 0 0 O
b3 fa1 fz2 fis 0 0
C1 0 0 0 hfll hlz
Co 0 0 0 h21 hgz

M

79

and when the equations undergo a contact transformation of variables the forms

change as:

(82) .

0
Ju
fa
fa

11
U21

0
fiz
Jaz
D
U2
U2

0 0 0
0 0 0
0 0 0
Sz 0 0
0 hu hie
0 hor e

M
Ho

Introducing vector fields (7, X1, X5, Y1, Y3, Y3), which are respective duals to the
coframe (4, yq, U, v1, v2, v3), we easily see that under the point transformations
they transform according to:

Z
Y,
Y,
Y3
X
X

and under the contact transformations they transform according to:

A
Y,
Ye
Y3
X
X

SO OO O ¥

SO OO O ¥

SO O *x * ¥

SO O ¥ ¥ ¥

SO O * ¥k ¥

S OO ¥ * ¥

O O ¥* ¥ % *

S O ¥ ¥ ¥x ¥

* X O O O ¥

* X O % ¥ ¥

* X O O O ¥

* ¥ O % X ¥

Z
Y
Y,
Y3
X
X

Z
Y
Ys
Y3
X
X

where by * we denoted the matrix entries that are nonzero. This shows that
the point transformations preserve the two vector spaces: 2-dimensional H =
Span(X7,X;) and 3-dimensional Hﬂoint = Span(Y7, Y2, Y3), while the contact

transformations preserve H and only a 1-dimensional H
have the following proposition:

PROPOSITION 8.1. — Assume that a pair of equations
&

Zow = R(0, Y, 2,20, 2y, Z0y)

2yy = T, Y, 2, 2,2y, 2ay)

contac

. = Span(Y3). We
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satisfies the compatibility conditions DT = D2R, where D, = . + pd; +
RO, + 50, + DyRO;, Dy =0y +q0, +T0;+ 50, +D,T0s and p=2s,q=2y,
§=2y. Let H"=S8panD.;,D,), H;.=Span(Y1,Y2,Y3), and H_
= Span(Y3), with Y1 = 0y, Yo = 0,, Y3 = 0y, be three distributions, with respective
dimensions 2, 3, 1, on the 6-dimensional jet space J parametrized by
(x,9,2,p,q,8). Then:

If this pair of equations is comsidered modulo point tramsformation of
variables, it defines a type (1,2,3) para-CR structure (J,H" 7H§oint) on J.

If this pair of equations is considered modulo contact transformations, it
defines a type (3,2,1) para-CR structure (J,H",H_...) on J.

ProOOF. — In view of the discussion preceeding the Proposition, the only
thing to be proven is that the distributions H* and H_;, are integrable on J.
Using the local coordinates (x,y,z,p,q,s) we see that the duals to a coframe
Ay s 2, v1,v2,v3)  are (Z =0,X1 =D, Xo =D, Y1 =0,,Y2 = 0y, Y3 = 0,).
Hence, obviously, Hﬁoint is integrable. Calculating the commutator [D,,D,] we
get [D,,D,] = (DT — DgR)@S, which vanishes due to our assumptions. Thus

also H* is integrable. O

8.2 — Towards imvariants for type (3,2,1).

The contact transformations (8.2) are more restrictive than the most general
para-CR transformations

i lll a ap; a0 0 0 I o
ls l’z by fu1 fiz O 0 0 lo 0;
I3 b (b fa fz 0 0 0 s | |0
BN 7w | T os F Fo fs 0 0|l n|= ||
m m) ci uir w2 0 ko hie my Q3
me m, c2 U2 Uz 0 hy e mp o

of a (3,2,1)-para-CR structure [ly, s, l3,m1,m2,n] defined on J by I =1 =
dz — pdx — qdy, ls = vy =dp — Rdx — sdy, I3 =ve =dq —sde — T'dy, n = v3 =
ds — DyRdx — D, Tdy, m1 = p; = dx, me = iy = dy. However, when looking for
the local invariants for such structures, we can easily normalize the unwanted a;;
and a;2 parameters in these transformations to a;; = 0 and age = 0 by the re-
quirement that the invariant forms A satisfy a consequence of (7.23), i.e.:

(8.4) do* AP AP A0 = 0.

It is easy to see that (8.4) necessarily implies a;; = 0 and age = 0. Since condition
(7.23) is needed to have a conformal metric on the solution space, from now on we
will assume (8.4), and as a consequence

ai; = aig = 0.
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In such a case the para-CR transformations (8.3) become the contact transfor-
mations (*) for the associated system of PDEs z,, = R(x,y,2, 24,2y, %ay), 2yy =
T(x,y,2,2,%y,22y). As in the previous sections we assume in addition that
DT = D;R, but release the 1 — R, > 0 condition to 1 — R, T # 0. We have the
following theorem.

THEOREM 8.2. — Given a pair of PDEs on the plane 2., = R(x,Y, 2, 2z, 2y, 22y) &
2y = T, Y, 2,20, 2y, 20yy) satisfying DET = DER and 1 — R, T # 0, the condition
J1 = 0, & J2 = O,

where
J1 = (RsTs - 4)Dst + RS(ZDyRs - RsDsz)
+8Ry — 6RR,T, + 4R, R, + 2RT, — 2R,R%T + 2R:T,

J2 = BTs — DDy Ts + Ts2D,Ts — TsDyRy)
+ 8T, — 6R,T,Ts + 4T, Ts + 2R, T% — 2R, T,T? + 2R, T?,
18 preserved under the contact transformations of the variables. If this condition

1s satisfied the 4-dimensional solution space of the PDEs is naturally equipped
with a conformal class [g] of metrics. If

1-RT,>0
these conformal metrics have split signature. If
1-R,T,<0

the metrics have Lorentzian signature. The conformal class [g] is tnvariant
under the contact transformations of the variables of the PDEs.

We also have a useful Proposition, which gives local representatives of the
conformal class [g] from the above Theorem:

ProrosiTiON 8.3. — If BT # 4 a representative g of the conformal class [g]
can be chosen so that it is given by

(8.5) g=2l0 + 2RTs — 4)(TsV% — 2v1vs + Ry13),

(") Note that the situation here is similar to the situation in the point invariant case.
There the para-CR transformations (7.22) of a (1, 2, 3)-type para-CR structure associated
with the system of PDEs (7.15) differed from the point transformations (8.1), by the
appearence of the nonzero parameters fig and fo3 in (7.22. But one of the consequences of
equations (7.23)-(7.27) was that fi3 = fog3 = 0, (see (7.28)), which proved that the para-CR
transformations (7.22) and the point transformations (8.1) were equivalent.
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where
o = (4D, Ts — 2T;D Ry + AR, T — 2R2T,Ts — 2R T, Ts + AR, T%)v
+ (4DyRs — 2R:D,Ts + 4RTy — 2R, R, T® — 2R,R.Ts + AR*T,)v»
+2(4 — RT)(RTs — vz + v,
A =dz —pdx — qdy,
vi =dp — Rdx —sdy, vy =dq—sdx—Tdy, vs=ds—D,Rdx—D,Tdy,
and
20 = 8D, T, — AD2R, + 4D, T,)D, R, + 4R.D,T, — 4R,D,T, — 4R?D,T,
+8R, Ty — 14R,T,D R, + 4R, R, T, + 3RT,D, T, — 6R3T> — 4T, DR
+4R,T,D, Ty — 6R*T,T, + 8T;D,R, — 2(D,R,\*Ts + 4R,T:D,R; — 2R,T:D, T,
+ R,ID2R, + 4R, T:DyR, — R:T,D.T, + R:T,D, T, + R3T,D,T, + 8R.T
+ 2R R T, T + 2R, R2T, T + 8R, T, T — 3R, T, TsD,Rs + AR, R, T, T
—2R3T,T Ty — 2RT.T, + AR, T°Dy R, — 2R, T°DyR, — RZTD,R,, — 2R,R.T*
+ 2R R2T,T? + 2R R, T, T% + 8R,T, — 2R*T,T..

If R, T # 0 another representative g of [g] may be chosen so that:

(8.6) g =20 + Te% —2v1ve + Ry,
where
,  —D,Ts+2T, — RT),Ts + T,Ts —-D.Rg + 2R, — RyR,Ts + R,R;
w = T v + B Vo
S S
v ;
= RT) = g

with 4, vi, vo and vs as before, and
v = 2R%D,R,)D,Ts — AR,R*D,Ts — R,R3D,Ts — AR*T,D.R;
+8R,R2T), + 2R, R3T), + 2(D,R,)*Ts — 8R,T\D R + 8R2T,
—2R,R,T;D,R; + AR,R,R,Ts — R*TD.D,R; + 2R*T;D,R, + R*T,D,T,
+R3TDyR, — R R3T,Ts — 3RET,TsD,R + 6R,R*T,Ts + R,R3T,T;
+ 2R RT?D.R; — 4ARR,T? + RIR.T? + R;T,T..
PrOOF. — (of the Proposition and the Theorem). We start by forcing the
contact invariant forms (6%, %, 8, 0*, 2y, Q3) given in (8.3) to satisfy the first four

equations (7.13). We do it in several steps. The first step consists in the re-
quirement that (0, 6%, 6%, 0", Q,, Q3) satisfy consequences of equations (7.13),
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namely equations (7.23)-(7.27). The first of these conditions implies do* A 0*A
P Ao = 0, and this, as noted before, implies a;; = a;2 = 0.

Let us now, unless otherwise stated, assume that 1 — R;Ts > 0. Then the
conditions (7.23)-(7.27) can be easily fulfilled by taking w11 = %12 = ug1 = uge =0
in (8.3), since this enables us to identify forms (8.3) with (7.22). After this iden-
tification the imposition of the rest of conditions (7.23)-(7.27) may be obtained by
making the same normalizations of parameters %11, he1, h12, ho1, for and fi; as in
the proof of Theorem 7.5. It follows however, that one can achieve (7.23)-(7.27)
without the restriction u1; = w12 = U9y = uge = 0 on the parameters u11, U1z, Ugy
and uge. We checked that the most general normalizations to achieve (7.23)-(7.25)
is to take hy, ko1, Ry, ko1, for and fi; as in (7.29)-(7.30) and to restrict 11, u12, U2
and uge by only one constraint

(8.7) Uz f11 — Ug1 fi2 + wizfor — u11 foe = 0.

If this is not zero, equation (7.23) has an unwanted term proportional to
0" AP NG on the right hand side. Even without the restriction (8.7), but
assuming (7.29)-(7.30), we get that do' A OV AP A O A Qs and d? AP A PA
0* A Qs are still given by (7.31). This proves that the conditions J; = J; = 0 are
neccessary for a conformal metric g to be defined on the solution space. It also
proves that these conditions are contact tnvariant. This surely holds when our
assumption 1 — RTs > 0 is satisfied. (That this assumption is only a technical
one will be clear soon). So from now on we assume the normalizations (7.29)-
(7.30), (8.7) and that the invariants J; and J5 are both zero, J; = J, = 0.

Now it follows that the conditions df' A @' A% AO* = — Q3 A O" AOPA
PP, APNONPANO = - QNI NPANP NG, AP APAP A =0 and
do* A 01 A P A O* = 0 are equivalent to precisely the same normalizations (7.35),
(7.36) and (7.37) of f33, be and b; as in the proof of Theorem 7.6. Further re-
petition, step by step, of the absorbtion/normalization procedure described in the
proof of Theorem 7.6 leads to the last relevant normalization, which determines
the coefficient b3. Here, again this coeffcient turns out to be precisely as in the
proof of Theorem 7.6. That the present expressions for the determined para-
meters Ri1, hot, Rz, hot, fo1, f11, f33, D1, b2 and b do not depend on the parameters
u11, U2, U1 and uge is remarkable. They are invisible because they turn out to
parametrize only that part of the contact transformations, which is related to the
orthogonal group preserving the metric g we are going to construct.

Indeed, assuming J; = J> = 0 and the above discussed normalizations for /1,
hot, hig, ko1, for, fi1, f3, b1, be, bs, we caleulate G = 2(0* % + 0°0"). A direct cal-
culation shows then, that the resulting expression for G has 70 w11, u12, Us1, Uge
dependence! Moreover, the so obtained G is also independent of still un-
determined parameters a, bs, f31, f32, ¢1 and co. Its dependence on the parameters
fi2 and fos is only conformal. By this we mean that the parameters fi2 and fao only
appear as a common factor fis foo in front of the entire expression for G. This
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means that all the remaining free parameters a, bs, f31, f32, €1, C2, U11, U12, U1 and
ugg are group parameters of the dilation group CO(G) preserving conformally
the bilinear form G.

If one wants the explicit expressions for G, with the above normalizations for
hi1, hot, Rag, ho1, fo1, f11, f33, D1, e and bs, in terms of the functions R and T de-
fining the system z,, = R & z,, = T, one has to decide how to mod the resulting
formula by the constraints J; = J2 = 0.

It follows that if we write J; = J = 0 in the form D, R = ... and D, Ts = ..,
and eliminate these derivatives from G, then we obtain G, which up to a factor,
coincides with g from formula (8.5). Similarly, if we write these condtions as
D, Ty =...and D,R; = ..., we get the result that G differs from formula (8.6)
only by a factor. This proves that the bilinear forms ¢ as in (8.5) and (8.6) are
conformally invariant on 7, and that they change conformally when the system
Zew = R & 2y, = T undergoes contact transformation of the variables.

The last thing is to prove that [¢] is actually defined on the solution space of
the PDEs, and that it is nondegenerate there with signature depending on the
sign of 1 — RT.

Letus start to comment on these last issues with aremark about the technicality
of our assumption 1 — R;Ts > 0. We needed the assumption 1 — R;Ts > 0 starting
with the normalization (7.30). It was needed there to maintain the invariant forms 6°
to be real. But this was only made for simplicity, since we did not want to deal with
the complexnumbersin the proof. Moreover, from the point of view of the conformal
metric we wanted to construct, this was a good simplification since in the resulting
formulae (8.5), (8.6) for g the square root /1 — R,T, does not appear at all!
Concluding this issue, we say that if we were in the situationwhen1 — BT <0, our
normalizing procedure for the forms ' would make them complex, but the resulting
G would nevertheless be real and given by (8.5) or (8.6). Thus all the conformal
properties of g established so far are also valid in the 1 — R,T's <0 case.

There is one more technical issue here. The reason for having two different
expressions for g, as in (8.5) and (8.6), is to have local expressions valid every-
where off the set 1 — BTy = 0. Since solving for DR, and D, TsinJ; =J; =0
we devide by (4 — R;T), the metric (8.5) is only defined if RTs # 4; similarly,
because of the division by BT, the metric (8.6) is defined only if BT # 0. Off
the set R,Ts = 0 = 4 — R, T, the conformal metrics (8.5) and (8.6) coincide, since
they are local manifestations of the same formula G = 20'¢* + 8*6*) on 7.

Finally we comment on how G descends to the solution space of the PDEs.

We start with an observation that the bilinear form (8.5) satisfies g(D,, ) =
9Dy, ) = 0, i.e. it is degenerate along the vector fields D, and D, on 7. The first
product 21w in (8.5) has obviously signature (+, —). Thus to determine the sig-
nature of (8.5) we need to determine the signature of the product

2R, T, — 4)(ToV% — 21 + Ro2).
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Since the quadratic form Tsv§ — 2vive + B3 has 4= 4(1 — R T) as its dis-
criminant, then the signature of the product 2(R,Ts — 4)(Tsv5 — 2vyvs + R13) is:
+(+,-) iff 1 - RTs >0 and +(+,+) iff 1 — R;Ts<0. Thus, assuming that
RT, # 4, we conclude that, modulo the degenerate directions D, and D, along
which g is vanishing, the bilinear form (8.5) has either split (iff 1 — R;Ts > 0), or
Lorentzian signature (iff 1 — R;Ts<0) on J.

A straightforward, but lengthy (!), caleulation shows that the Lie derivatives
of g, from formula (8.5), with respect to the degenerate directions D, and D, are:

Lp.g=aDy)yg, & Lp,9 = a(Dy)yg,

where

aD,) = (4 — R,Ty) %x
<8DyRS +16R,, — 8R;D, Ts + 8R2T, + 8RT, — 24R,Ts — AR, TsDyR;—

16R,RTs + 3R*T D, T — 4R3T,Ts — AR*T, T + 10R,R,T? + 4RpR§T§)
and
a(D,) = (4 — R,T,) 2
X <8Dst + 16T, — 8T\Dy, R + 8R,T? + 8R,Ts — 24R,T, — 4R, T:D,T;
—16RT,Ts + 3R, T2DR; — AR R, T? — 4R,R,T? + 10R2T, T + 4R§TqT§)

Recalling the fact that the distribution H* = Span(D,,, D) is integrable on .7, we
see that the bilinear form g descends to a conformal metric g on the 4-dimensional
leafspace J /H*, and that the descended metric has split signatureiff1 — R;Ts > 0
and Lorentzian signature iff 1 — R,Ts <0 and RTs # 4. Obviously the leaf space
J/H* may be identified with the 4-dimensional solution space of the PDEs.
Analogous considerations can be performed for the metric (8.6) if BT # 0.
This is also degenerate along D, and D, in J. It also, apart from the degenerate
directions D, and D,, has signature Lorentzian/split. For this metric we have

D.R; —2R
Lp.g= xdls q

D,T, —2T,
x R,S g?

& »CD!/g = T 9,
s

so again (8.6) descends to a conformal metric of split (iff 1 — R;Ts > 0 and
R.T; +# 0) or Lorentzian signature (if 1 — R;Ts<0) on J/H*. If R;Ts # 0 and
R,T; # 4, these two conformal classes coincide on 7/H™" as we explained before.

This finishes the proofs of the Theorem and the Proposition. d

REMARK 8.4. — In the proof we did not show that, contrary to the (1,2, 3) para-
CR forms (7.22) which satisfy (7.32), we can force the (3,2, 1) para-CR forms (8.3)
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to satisfy their torsionless counterpart, i.e. the first four of equations (7.13). But
this is very easy: one first makes the normalizations %y, = u12 = U1 = Uge = 0
and all the other ones from Theorems 7.5 and 7.6, and after achieving (7.32) uses a
transformation, which is an identity on the obtained (0, 6%,6%, 0% and changes the
obtained Q. and Q3 according to:

(8.8) Qs — Qf = Q3 — t1,0°, Qs — Q= Qp — 13,0",

where t123 and t213 are torsions given by (7.33). Since the obtained 0" and 67 are
linear combinations of l;, Iz and I3 only (because fi3 = fo3 = 0 is the chosen
normalization (7.29)!), then transformation (8.8) is an allowed (3,2, 1)-para-CR
transformation (%) for the type (3,2,1) para-CR forms (0%, 0%, 03,0, s, Q5). But
this transformation absorbs the torsion terms in (7.32) and makes the forms
0", 0%, 0%,0*, 2, Q%) to satisfy the torsionless part of equations (7.13). This
means that the type (3,2,1) para-CR structures originating from the system
Zow =R & 2y, =T with D’T = DiR, J1=J2=0, R,T, # 1, contrary to the
corresponding (1,2,3) para-CR structures, define quite a general conformal
geometry on the solution space, and that their invariants can be described in
terms of the curvature of the Cartan normal conformal connection associated
with this conformal geometry. This observation, and an equivalent statement of
Theorem 8.2 and Proposition 8.3, in a slightly different language, was first made
by E.T. Newman and his collaborators [6]. According to Newman [6], using all
the type (3,2,1) para-CR structures coming from the system z,, = R & 2y, =T
satisfying J; = J2 = 0, one can obtain all the conformal classes of the Lorentzian
4-metrics. This statement is not clear to us, and requires further justification.
For example, similarly to the attempts in [18], we were unable to calculate the
Weyl tensor of the metrics (8.5) and (8.6). This was mainly because of the huge
length of the intermediate expressions encountered during the calculations of
the the Cartan normal conformal connection. Thus we were unable to see if it is
general enough to cover all the conformal Lorentzian/split signature 4-metrics.
Finding the conformally Einstein or Bach conditions for these metrics in terms
of the defining functions R and T would be very interesting, and would complete
the Newman programme.

Although, we were unable to calculate the full Weyl tensor of the metric (8.6),
we succeded in calculating two of its components. These components must vanish
if we want the metric (8.5) to be conformally flat. Thus vanishing of these com-
ponents is a conformal property, and in turn, is a contact invariant property of
the equations z,,, = R & z,,, = T satisfying DT = Dzle &Ji=J,=0.Itisalsoa

() Note however that this is not a type (1,2,3) para-CR transformation, and that if
only such transformations are considered one can not absorb the torsion terms in (7.32).
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para-CR tnvariant property of the corresponding type (3,2, 1) para-CR struc-
ture. Defining the forms (wy, we, w3, w4) by (w1, we, w3, w4) = (v1, ve, 4, @), so that
the metric (8.6) can be written as:

g = 2womy + Tsw% — 2w w2 + stg,

we calculated the components C%,, and C%;, of the Weyl tensor of this metric
to be:

ot 2R — RiT) + 3Ry (B T);
424 — 4
41 — R,Ty)

Cg o 2T§55(1 B RsTs) + 3T55(R5T5)s
) 414 — 4 .
41 — RsT)

This proves the following theorem.

THEOREM 8.5. — For the system of PDE's 2., = R(x,Y,2, 24,2y, %ey) & 2y =
T(,y,2, 22,2y, 2y) Satisfying DT = DR and the metricity conditions

Jl = 0, & Jz = 0,
each of the conditions
Kl = ZRsss(l - RsTs) + 3Rss(RsTs)s = 0» KZ = 2Tsss(1 - RsTs) + 3T&8(RST6)5 = 07

1s tnvariant with respect to contact transformations of the variables.

The new invariants K; and K, from the above Theorem justify the title of this
section: although we were unable to define the invariants of the type (3,2,1)
para-CR structures in full generality, we discussed a class of such structures
whose invariants are just the conformal invariants of certain 4-metrics. In the
next section we provide an example of the system z,, = R & z,, = T satisfying
J1 = J2 = 0, whose corresponding conformal 4-metrics are quite interesting.

8.3 — An example of (3,2,1) para-CR structures with nontrivial conformally
Einstein metrics.

Given a pair of PDEs 2., = R & 2,,, = T it is not easy to find the most general
solution of the integrability conditions D2T = D;R and the metricity conditions
J1 = J2 = 0. But particular examples of functions R and T satisfying both sets of
conditions can be given. The simplest of them, but as we will see, still nontrivial,
is given in the following proposition.

ProOPOSITION 8.6. — Let the functions R = R(x,y,z,p,q,s) and T =
T, y,2,p,q,s) be functions of variadble s alone,

R =1(s) & T = ts),
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and assume that their derivatives v and t' satisfy
1+t #0.

Then such R and T satisfy simultaneously equations DT :DiR and
Ji=J=0.

Proor. — Applying the operators D, and D, from definitions (7.17) on func-
tions R = r(s) and T = t(s), we obtain

D.R=+D,R, D,R=+'D,T, D)=tD,R & D,T=tD,T.

These are linear equations for functions DR, D, R, D,T and D,T. Hence, by an
elementary argument, they have a unique solution

D.R=0, DR=0, D,I=0, D,T=0,

when 1 — 7't # 0. Thus, with our assumptions, the operators D, and D,, when
acting on differentiable functions f = f(s) of only variable s, are identically
vanishing. This, in particular, means that D27 =0 = DZR Looking at the
definitions of J; and J», in which each term 1nv01ves at least one derivative of
R or T with respect to p, g and D, or D,, we see that J; and J are identically
zero as well. O

Now, having a solution R = #(s), T' = t(s) to the integrability and the metricity
conditions, we apply the theory from Section 8.2, and calculate the conformal
metric on the solution space of the system

Raw = T(Zay) & Ryy = Uuy).

Modulo a conformal factor the explicit formula for the metric g as in (8.5) reads:

=21 —7t) (dz— pde — qdy)ds + ¢ (dp — rda — sdy)?

8.9
®.9) — 2 (dp — rdx — sdy)(dq — sdx — tdy) + ' (dgq — sda — tdy)?,

where x,%,2,p,q,s are coordinates on J, r =1(s), and ¢t =1{(s), ' =dr/ds,
t' = dt/ds. We know from the previous section that although this bilinear form is
manifestly defined on 7, it transforms conformally when Lie dragged along
D, = 0, +p0, + 10y + 59, and D, = 9, + q0, + s0, +tJ,;, and descends to a
conformal metric on the 4-dimensional solution space J/H*. It has split sig-
nature iff 1 — ¢’ > 0 and Lorentzian signature iff 1 — +'t’ <0.

The conformal invariants of this metric are para-CR invariants of the (3,2,1)
para-CR structure [l1,ls,l3,m1,mg,n] with l; =dz — pde —qdy, lo =dp—
rdx — sdy, l3 = dg — sdx — tdy, n = ds, m; = dx, me = dy. These conformal
invariants are given in terms of the Cartan normal conformal connection for the
class [gol. It is described by the following theorem
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THEOREM 8.7. — Consider a metric g = e*'go, wheve h = h(s) is an arbitrary
smooth function and gy is as in (8.9). Let (w1, we, wg, w4, w5, wg) be a coframe on
J defined by w; =dq — sde —tdy, wg =ds, w3 =dz —pda — qdy, wy =dp —
rda — sdy, ws = da, wg = dy, so that the metric is

(8.10) g =201 — ) wews + v} — 20104 + T}).

Then the curvature of the Cartan normal conformal connection for g, when
written on J, reads:

0 0 0 0 0 0
0 0 Zs 0 0 0
0 0 0 0 0 0
0 0 %(er’—th’) 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 %(erbzlt/) 0 0 0
0 0 0 0 0 0
+ 0 Zhv't — 27y — Zor"® 0 0 Zor' + It . 1 Az,
21 —r't)) 2(1 — r't))
0 0 —Z 0 0 0
0 0 0 0 0 0

where

200t — 1r® — 3t
41 — rt')?

5, 207 = Dt — 3t"(t'r)

Z :
' ? 41 — Pty

In particular the metric g is conformally flat iff Z1 = Zs = 0, i.e. iff the functions
r and t satisfy the system of third order ODE's:

2(1 —»'t) 201 —7't)
In general the metric g is of (conformal) Petrov type N & N' in the split sig-
nature case, and of Petrov type N & N in the Lorentzian case.

The proof of this theorem consists in a straightforward, but lengthy calcu-
lation, which we made using Mathematica. We omit it here. With the use of
Mathematica we also were able to check that the following theorem is true:
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THEOREM 8.8. — For every choice of sufficiently smooth functions r = r(s)
and t = t(s) there exists a function h = h(s) such that the metric (8.10) is Ricci
flat. The function h in which the metric g = e*'qy is Ricci flat is a solution to the

2nd order ODE:
(t'?"/), h, 2(r‘3)t’+t<3)1"’)(1—¢’t’)+2r”t” +47‘/t/’i"”t//+ 3tl21””2 _’_37./2’51/2
Tt " S(L— 7 '

Thus, among the type (3,2,1) para-CR structures originating from PDEs
Zee =R & 2y, =T we found conformally Ricci flat but conformally non-flat
metrics. It further follows that these metrics, in addition to being conformally
Ricei flat and of type N & N’, have reduced holonomy. This is because they have
a covariantly constant null direction, which is alligned with the vector field 0,.
In the Lorentzian case, i.e. when 1—1't' <0, they are known in General
Relativity theory as pp-waves (see e.g. [13] for a definition and [12] for a dis-
cussion of their conformal properties).

It would be very interesting to find type (3,2, 1) para-CR structures defined
by 2w = R & 2, = T, which define conformally Einstein metrics (8.5)-(8.6) other
than pp-waves or their split signature counterparts discussed here.

W= h/Z _
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