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Remarks on Homogeneous Complex Manifolds
Satisfying Levi Conditions

ArLAN HUCKLEBERRY

Dedicated to the memory of Professor Aldo Andreotti
on the 30th anniversary of his death.

Abstract. — Homogeneous complex manifolds satisfying various types of Levi conditions
are considered. Classical results which were of particular interest to Andreotti are
recalled. Convexity and concavity properties of flag domains are discussed in some
detail. A precise classification of pseudoconvex flag domains is given. It is shown that
flag domains which are in a certain sense generic are pseudoconcave.

1. — Introduction.

In the early 1960’s Andreotti devoted a great deal of his attention to com-
plex spaces satifying various types of Levi-conditions. Major works in this
direction include his description of the field of meromorphic functions on a
pseudoconcave complex space ([A]), showing that it is an algebraic function
field of transcendence degree at most the dimension of the space, and his
fundamental work with Grauert ([AGrl]) on finiteness and vanishing of coho-
mology on g-convex spaces. At the time the case of spaces possessing strictly
plurisubharmonic exhaustions, or, under further assumptions, exhaustions
having only a semipositive Levi-form, were well-understood. It was indeed
quite natural to initiate a study of manifolds which can be viewed as lying
between compact and Stein.

Coming from algebraic geometry Andreotti was interested in the examples of
such manifolds which are obtained by removing high codimensional subvarieties
from (compact) projective algebraic manifolds. If Z is compact and E is the
subvariety which is removed, then the set of algebraic cycles contained in
X:=Z\E, an open set in the Chow variety of X, is of basic importance.
Transferring cohomology from the pseudoconcave, g-pseudoconvex space X to
the level of functions on its cycle space was the topic of his basie joint works with
Norguet ([AN1, AN2]). In § 3 of this note we underline another setting, that of
flag domains, where cycle spaces, pseudoconcavity and g-convexity go hand-in-
hand. Our research in this area (see, e.g., [FHW]) strongly relies on Barlet’s
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methods for constructing and dealing with cycle spaces (see, e.g., [Ba]), and there
is no doubt that Andreotti’s viewpoints on this subject were among the inspiring
factors for Barlet’s early works.

Andreotti was well-acquainted with the method of discrete group quo-
tients for constructing projective or quasi-projective varieties and was par-
ticularly interested in such quotients which arise in moduli problems. In a
jewel which is perhaps only known to specialists ([AGr2]) he and Grauert
introduced the notion of a pseudoconcave discrete group action which is the
appropriate translation to the level of D of the notion that the discrete group
quotient D/I" is pseudoconcave. As an example they showed that the quotient
of the Siegel upper half-plane by the modular group is pseudoconcave and as
a consequence that interesting spaces of automorphic forms are finite-di-
mensional. Borel, who took this result to its appropriate level of generality
([Bo)), once enthusiastically recalled to us how struck he was with the beauty
of this simple idea.

Of course it was clear to Andreotti that the notions of pseudoconcavity
and/or mixed Levi-conditions are of basic importance, and that one should
employ these as Leitfaden for discovering and analyzing interesting new
classes of manifolds. He also knew that it makes sense to involve symmetry at
least in the initial stages of such considerations. Thus it should come as no
surprise that at the end of his Stanford course on several complex variables,
which covered most of the topics mentioned above, he asked the student who
was responsible for the notes to look for new classes of pseudoconcave
manifolds. Typically he suggested an extremely simple starting point: com-
plex Lie groups.

The present note is organized as follows. In § 2.1 we discuss the case of
Lie groups. It turns out that one easily sees that the only such manifolds
which are pseudoconcave are compact tori. However, this result is not as
negative as first meets the eye, because in the process of considering can-
didates for pseudoconcave Lie groups one meets Levi-degenerate, pseudo-
convex manifolds where first examples of interesting, number-theoretic gui-
ded foliations play a role. We continue the discussion of analogous pseudo-
convexity phenomena for nilmanifolds in § 2.2 and flag domains in § 2.3. In
Theorem 2.15 we show in particular that the Remmert reduction of pseudo-
convex flag domain is a precisely defined homogeneous bundle over a
Hermitian symmetric space.

Our work in §3 is devoted to a study of pseudoconcave flag domains. We
suspect that virtually all flag domains which are not pseudoconvex are in fact
pseudoconcave, but at the present time we are only able to prove this for flag
domains which are in a certain sense generic (§ 3.2). These include period do-
mains for moduli problems, e.g., for marked K3-surfaces, which were certainly of
interest to Andreotti.
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2. — Pseudoconvexity.

As mentioned above, our original starting point was to determine if there are
interesting pseudoconcave complex Lie groups. In the first section here we
pursue this as a guideline, but in fact end up showing that Lie groups are more
interesting from the point of view of pseudoconvexity. In the following paragraph
we prove analogous results for homogeneous nilmanifolds. The final section is
devoted to a detailed description of pseudoconvex flag domains. The results on
complex Lie groups are classical, but the proofs given here underline the im-
portance of Levi-foliations, a theme that is of recent interest and which also plays
arole in our discussion of nilmanifolds. Although new, the results on nilmanifolds
only require implementation of classically known information, in particular a
basic fact due to Loeb ([L]) concerning the relation of geodesic convexity and
Levi-pseuodoconvexity in a Lie group setting. Our characterization of pseudo-
convex flag domains utilizes the notion of cycle connectivity which is the flag
domain analog of the condition of rationally connected in algebraic geometry.

Before going further let us recall that by definition a (connected) pseudo-
concave complex manifold X contains a relatively compact open set Z so that for
every point p € cl(Z) there is a holomorphic mapping v : 4 — cl(Z) of the unit
disk 4 in the complex plane with w(0) = p and w(bd(A)) C Z. The following is the
first basic property of these manifolds.

PROPOSITION 2.1. — Pseudoconcave manifolds possess only constant holo-
morphic functions.

Proor. — Letf € O(X) and note that the restriction of | f| to cl(Z) takes on its
maximum at some point p. Since p is contained in a holomorphic disk w(4) whose
boundary lies in Z, the maximum principle implies that f is constant on that disk
and therefore takes on its maximum at a point of the open set Z. Another appli-
cation of the maximum principle implies that f is constant on X. O

2.1 — Complex Lie groups.

If G is a connected complex Lie group with O(G) = C, then there is no
nonconstant holomorphic homomorphism G — GL~(V) to the general linear
group of a complex vector space. This is due to the fact that GL(V) is an open
subset of End(V) =V ® V* which is itself a complex vector space and is in
particular holomorphically separable. Let g denote the Lie algebra of G and
recall that the adjoint representation Ad : G — GL(g) is exactly such a map.
Since in general the kernel of this map is the center of G, we have the following
first remark.
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PROPOSITION 2.2. — A connected complex Lie group G with O(Gy) =2 C 1s
Abelian.

In particular, if G is pseudoconcave, then it is Abelian.

2.1.1 — Background on Abelian Lie groups.

Let us investigate the case of a complex Abelian Lie group more closely.
Recall that the exponential map exp : ¢ — G of a (connected) Abelian Lie group
is a surjective homomorphism from the additive group (g, +). In the case of a
complex Lie group the exponential map is holomorphic and therefore such
groups are of the form V /I", where I is a discrete additive subgroup of a complex
vector space V.

If O(G) = C, then I must be rather large. A key object for understanding its
size and position with respect to the linear complex structure of V is the real
subspace Spang (") =: V.

Every connected (not necessicarily complex) Lie group G possesses a
compact subgroup K having the property that G/K is diffeomorphic to a
vector space. One shows that such groups are maximal compact subgroups
and that any two are conjugate. If G =V/I" is Abelian, then the torus
Vr/I' === K is compact and G/K is diffeomorphic to any (real) subspace of V
which is complementary to V. Thus K is the unique maximal compact sub-
group of G.

Observe that if U, is a complex subspace of V' which is complementary to
Uy := Vi +1Vr, then G is holomorphically isomorphie to U;/I" x Us. Thus it is
enough to consider the situation where I” generates V as a complex vector space,
i.e., where Span.(I") = V.

Define the additive complex subgroup W, of V to be the maximal complex
subgroup in V, in other words W, = V- N1V, and regard the W -orbits in G as
foliating the torus K. As abstract complex manifolds the leaves of this foliation
are all equivalent to the orbit of the identity which is the subgroup W,/ (W N I').
The closure of this orbit is a subtorus Kj, and we may split K as a product
K = K; x K; of two subtori where Kj is a totally real subgroup of G. Let {; be the
uniquely defined subspaces of V so that K; =f;/I" and define V; :={; 4 if;,
J=1,2. Assuming that I" generates V as a complex vector space, it therefore
follows that G =V /I' =V, /(VinNT) x Vo/(Von ).

Let us summarize the above discussion in the proof of the following decom-
position theorem of Remmert-Morimoto (see [K, M]).

THEOREM 2.3. — A connected Abelian complex Lie group G =V /I s the
direct product G = G1 x Ge x Gs, where G3 = (C",+), Gs = (C*™,) and
oG) = C.
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ProoF. — The complex group G5 arises (noncanonically) as the complement
of the canonically defined complex subspace U; = Vi + iVr. The factor Uy /T is
canonically embedded in G and it contains the canonically defined complex
subgroup Gi =Vi/(ViNTI). The noncanonical splitting K = K; x K of the
maximal compact subgroup defines the complementary complex subgroup
Gs =V /(VonT). Since K is totally real, Go = (C*)™.

Finally, recall that Kj is foliated by the dense orbits of the complex subgroup
Wr. If f € O(Gy), then we consider its restriction to Ky which is compact so that
the restriction of | f| takes on its maximum at some point p € Kj. Since the orbit
map W — G, w — w(p), is holomorphic, the pullback of f to W is holomorphic
and thus the maximum principle implies that this pull-back is constant.
Consequently, f is constant on the (dense!) Wr-orbit of p and is therefore con-
stant on the torus K;. But K; =f;/(fy N I") and V; = f; + f;. Hence, it follows
from the identity principle that the pullback of f to V; is constant and conse-
quently f is constant on V1 /(Vi N 1T =: G;. d

2.1.2 — Cousin groups.

Restricting to the Abelian case and regarding C" and (C*)™ as being well-
understood, in the notation of the above decomposition theorem it is reasonable
to further restrict to the case where G = G1. Of course the case where G is
compact has a long history, but it was first in the early 20th century that Cousin
called attention to interesting complex analytic phenomena in the noncompact
case (see [C]). Thus if O(G) = C, we refer to G as being a Cousin group.

Let us now turn to the matter of pseudoconcavity/pseudoconvexity of Cousin
groups. Recalling the notation above, in this situationG = V/I"and V = V + iV
where Vi = Spang (). The maximal complex subgroup Wy = Vi N iV has dense
orbits in the maximal compact subgroup K = V/I". Let C be a complementary
subspace of V- such that Vi = W, @ C. Note that C is totally real and that V'
decomposes as a complex vector space as

V=WraeCail).

Let 5 be an exhaustion of C which is defined as the norm-squared function of some
(positive-definite) inner-product. If we regard # as being defined on V, then its full
Levi-form 100y is positive-semidefinite with degeneracy W-.

Now define p : G — R=" by pulling back # by the linear projection to iC. Its
properties are summarized as follows.

ProPOSITION 2.4. — A noncompact Cousin group G =V /I" possess a plur-
isubharmonic exhaustion p: G — R=" which is invariant by the maximal
compact subgroup K = Vi /I'. For every p € G the degeneracy of the Levi-form
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of p at p is the tangent space to the orbit Wr.p of the maximal complex subgroup
Wr = Vi NiVr which is dense in K.p.

In particular, noncompact Cousin groups are pseudoconvex in a very strong
sense and the following is therefore immediate.

PROPOSITION 2.5. — Pseudoconcave complex Lie groups are compact com-
plex tort.

ProOF. — Let G be a pseudoconcave Lie group and assume that it is non-
compact with a relatively compact open subset Z defining its pseudoconcavity.
For r > 0 define B, := {p<r}, where p is the exhaustion function defined above,
and let 7y :=inf{r: B, D Z}. Thus cl(%) C cl(B,,) and there exists p € bd(%)
which is also contained in the level surface M,, := {p = 7o}. Let y : 4 — cl(Z) be
the holomorphie disk at p which is guaranteed by the pseudoconcavity and note
that p:= w*(p) is plurisubharmonic on 4 with p(0) = ;. Since p<ry on all
boundary points of 4, this violates the maximum principle. O

Before concluding this paragraph we should make a number of remarks on
the history of this subject, particularly focused on Andreotti’s involvement.
First, the proof of Proposition 2.5 in ([AH]) differs somewhat from the one above:
If G = V/I' is a noncompact Cousin group, then (in the words of Andreotti) we
can mtroduce a small earthquake and move I” to a nearby group /', so that the
resulting variety G, = V /I, is still pseudoconcave, but O(G) 2 C. It should be
noted that it can be arranged that such an earthquake produces a holomorphi-
cally convex manifold so that the Levi-problem has a positive answer for a dense
set of discrete groups.

Andreotti was interested in the fields of meromorphic functions of Cousin
groups, in particular in relation to their projective algebraic equivariant compacti-
fications (quasi-abelian varieties) and the role of @-functions (see [AGh]). Itis should
be mentioned that @-theory is in general not adequate for describing the mer-
omorphic functions on a (noncompact) Cousin group. On the other hand, since the
time of Cousin there have been a number of interesting developments (see [AK]).

Due to our focusing on topics of particular interest to Andreotti, we have
covered only a very small part of the interesting early results involving Lie
theoretic considerations in complex analysis. In closing this paragraph we would,
however, like to note one further result which underlines the fact that the de-
composition of Theorem 2.3 can be viewed in a much more general context (see
[MM] and [M]).

THEOREM 2.6. — Let G be a connected complex Lie group equipped with the
holomorphic equivalence relation x ~ y if and only iff(x) = f(y) for all f € O(G).
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Then the quotient G — G/~ is given as a holomorphic group fibration G — G/C
where the fiber C is a closed, central Cousin subgroup of G and the base is a Stein
Lie group.

2.2 — Nilmanifolds.

Here we carry through virtually the same line of discussion for nilmanifolds
as that above for Abelian groups. By definition a complex nilmanifold X is
homogeneous under the holomorphic action of a connected complex nilpotent Lie
group, i.e., X = G/H, where G is a connected complex nilpotent group and H is a
closed complex subgroup. We may assume that the G-action on X is almost ef-
fective in the sense that there are no positive-dimensional normal subgroups of G
which are contained in H. In other words, the subgroup of elements in G which
fix every point of X is at most discrete.

One of the first steps toward understanding any complex homogeneous space
G/H is to consider the normalizer fibration G/H — G/N where N is the nor-
malizer in G of the connected component H. If we consider the action of G on g
by the adjoint representation and regard {) as a point in the Grassmannian Gry(g)
where k = dimc ), then the base G/N is the orbit of that point. In particular, the
base of the normalizer fibration is an orbit via a G-representation in the pro-
jective space P(AF g).

A connected solvable Lie group G acting via a linear representation of a vector
space V stabilizes a full flag 0 c V; C ... C V,,,_1 C V. of subspaces (Lie’s Flag
Theorem). Thus, for example, a G-orbit in the associated projective space IP(V) ei-
ther lies in the affine space P(V) \ P(V,,_1) or is contained in the smaller projective
space P(V,,_1). Repeating this until reaching the point where the orbit in question is
not contained in some P(V,) of the flag, we have the following first remark.

PRrOPOSITION 2.7. — Orbits of a connected complex solvable group acting as a
group of holomorphic transformations on a projective space P(V') are holomor-
phically separable. In particular, if X = G/H is a homogeneous manifold
under the holomorphic action of a complex solvable Lie group and O(X) = C,
then, assuming that the G-action is almost effective, it follows that H is discrete.

Thus as in the case of an Abelian group, if we are guided by investigating the
possibility of a nilmanifold X being pseudoconcave, we may assume that it is of
the form G/I" where I is discrete. So let us now restrict our considerations to
such manifolds.

If X = G/I is a nilmanifold with discrete isotropy and, without loss of gen-
erality, G is simply-connected, then exp : ¢ — G is a biholomorphic (in fact al-
gebraic) map. In analogy to the Abelian case, realizing I" as a discrete subset of g,
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it spans a (real) Lie subalgebra g, such that the associated group G contains I
with Gr/I" compact (Theorem of Malcev-Matsushima).

Continuing with the analogy to the Abelian case we consider the complex Lie
algebra g, := g, + iq, and the associated complex subgroup Gr. As a quotient
of simply-connected complex nilpotent groups G/Gr is biholomorphically
equivalent to some C”. The bundle G/I" — G/ Gris holomorphically trivial and
therefore there is no loss of generality to assume that G = G r, i.e., that the Lie
algebra level I" generates g.

The key subalgebra for complex analytic considerations is mt = g, Nig. Itis
an ideal in g! Of course, just as in the Abelian case, the action of the associated
group M on G/I can be wild. However, if we replace G by N := G/M and G by
Ny := Gr/M,then Ny is areal form of N. In this situation in the Abelian case we
identified the analog of N/Ng with ¢C and lifted to N an exhaustion which is
defined on iC by a positive-definite inner product. In that case straightforward
computations show that the lifted exhaustion has the expected plur-
isubharmonicity. In the nilpotent case at hand we must apply Loeb’s Theorem
([L]) which states that since the adjoint representation of Ny has purely ima-
ginary spectrum (the eigenvalues are all zero!), it follows that there is a smooth
exhaustion 7 of N/N which lifts to a strictly plursubharmonic function on N.

Let us now review the situation discussed above where X = G/I', G = G and
M is the normal closed complex subgroup of G defined by the ideal nt. Here we
have the fibration

X=G/I - G/Gr =N/Ng

and we pull back the exhaustion guaranteed by Loeb’s theorem to an exhaustion
p of X which we view as a G -invariant function on G. Since this is defined on G
by lifting a strictly plurisubharmonic function from N = G/M, it is plur-
isubharmonic on  and therefore p is a plurisubharmonic exhaustion of X. Hence
we have the following result.

PropoSITION 2.8. — If G = G r, then a smooth exhaustion p : X — R=" guar-
anteed by Loeb’s theorem 1is plurisubharmonic with Levi-degeneracy deter-
mined by the ideal m. In particular, X = G/I is pseudoconvex.

Several remarks are now in order. First, we arrived at the the situation where
G = G by splitting off a factor of C" from an arbitrary nilmanifold of the type
G/I'. In fact one doesn’t need the assumption of discrete isotropy for such a
splitting, i.e., every complex nilmanifold is a product of C" and a nilmanifold of
the form G/I" with G = G ([LOR]). Thus we have the following

ZUsATZ. — Every complex nilmanifold possesses a smooth plurisubharmonic
exhaustion.
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It should also be underlined that due to the nonabelian nature of the situation,
the Levi-foliations defined by p should be much more interesting that those in
the Abelian case.

Now recall that we originally were investigating the possibilty of complex
homogeneous spaces being pseudoconcave but ended up with a general pseu-
doconvexity result. Thus with exactly the same proof as that for Proposition 2.5
we have the following remark.

ProPOSITION 2.9. — Pseudoconcave nilmanifolds are compact.

Finally, e.g. in the case of discrete isotropy, X is Stein if and only if G is
totally real ((GH]). Furthermore, in analogy to Theorem 2.6, as in the case of Lie
groups a general complex homogeneous manifold G/H has a canonically defined
holomorphic reduction X = G/H — G/I = X/~. In the nilpotent case the fiber
possesses only the constant holomorphic functions and the base is Stein ((GH]).
This is far from being true in the general situation.

2.3 — Flag domains.

2.3.1 — Background.

Recall that the radical R of a connected Lie group G is defined to be the
maximal connected solvable normal subgroup of G. If R is trivial, i.e., consists
only of the identity, then G is said to be semisimple. A fundamental difference
between solvable and semisimple groups is that most semisimple groups possess
intrinsic algebraic structure whereas solvable groups do not. In general a Lie
group G is a product R - S of its radical and a maximal semisimple subgroup S. In
fact, S is unique up to conjugation. The intersection R NS is a discrete central
subgroup of G and if, for example, G is simply-connected, then this is a semidirect
product G = Rx S.

Above we commented on certain aspects of the solvable case, i.e., where the
complex Lie group G agrees with its radical. If G is semisimple, H is a complex
closed subgroup and X = G/H, then the assumption of existence of meromorphic
or plurisubharmonic functions on X or even that X is Kéhler is very restrictive.
In most cases this forces H to be an algebraic subgroup of G ([Be, BeO]). For
example it is known that X is Stein if and only if H is reductive. In the other
extreme of Levi conditions, even under the further condition that H is algebraic
there is no known characterization of X = G/H being pseudoconcave.

The situation changes dramatically if G is allowed to be a real semisimple
group. In that setting the first basic examples arise as flag domains. Here we
describe the flag domains which possess plurisubharmonic exhaustions and in
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the following section we discuss flag domains with Levi conditions in the opposite
direction, e.g., pseudoconcavity. Let us begin with a sketch of some background
information. The first basic results on flag domains can be found in ((W]). A
systematic treatment, which in particular gives the details of the results needed
here, is presented in (FHW]).

Let us begin with a real Lie group Gy and consider an action Gy x X — X by
holomorphie transformations on a complex manifold. If this action is transitive,
then we refer to X as being Gy-homogeneous. In that case we may as usual
identify X with Gy/H( where H) is the isotropy group at a base point. However,
unlike the case where X = G/H is the homogeneous space under the holo-
morphic action of a complex Lie group, the complex structure of X is not
transparently encoded in the Lie group structure.

At the level of vector fields the situation is slightly better, because the
complexified Lie algebra, g := g, + g, is represented as an algebra of holo-
morphic (1, 0)-vector fields on X. In other words, the complexified Lie group G
acts locally and holomorphically on X. To put this in perspective consider the
example of the standard Gy = SU(1, 1)-action on P1(C) and let X be one of its two
open orbits (both are disks!). Here, as in the general case, the complexification
G = SLy(C) acts locally on X and in addition has the advantage of acting globally
on IP;. One regards the holomorphic G-manifold IP; as the globalization of the
local G-manifold X.

There is a beautiful theory of globalization of local actions due to Palais which
was adapted to our complex analytic setting by Heinzner and Iannuzzi (see [HI]).
However, even when X is Gy-homogeneous it is difficult to know whether or not it
is embedded in a G-globalization. On the other hand, as reflected by the example
of the unit disk in 1P, the case where a globalization is implicitly given is already
quite interesting. The case of flag domains is one such situation.

In order to discuss flag domains we restrict to the case where Gy is semi-
simple. Due to standard splitting theorems it is usually enough to assume, as we
do here, that it is even simple. For our purposes it is also enough to consider the
situation where it is embedded in its complexification G. We let G x Z — Z be a
holomorphic G-action on a complex manifold and consider the induced Gy-action.
A case of fundamental interest, e.g., for studying the representation theory of
Gy, is that where Z is assumed to be a compact, G-homogeneous projective
manifold. Choosing a base point we write Z = G/Q.

Whereas much is known about flag manifolds Z = G/Q of the above form,
restricting to the Gy-action adds significant complications which lead to new
phenomena which are not yet understood. The following first key step is, how-
ever, proved by classical combinatorial arguments (see [W]).

PRrOPOSITION 2.10. — The real form Gy has only finitely many orbits on the
flag manifold Z.
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In particular, Gy has open orbits in Z. We refer to such as a flag domain and,
if there is no confusion, will always denote it by D. One purpose of this paper is to
give evidence for the following (perhaps naive) conjecture.

Flag domains are either pseudoconvex or pseudoconcave.

By pseudoconvex we mean that there exists an exhaustion p : D — R=° which
is plurisubharmonic outside of a compact set. Pseudoconcavity is understood in
the usual sense of Andreotti (see § 1). Below we give a detailed description of the
pseudoconvex flag domains. After doing so, we devote the remainder of the paper
to describing a large class of pseudoconcave flag domains and to giving some
indication of the validity of the conjecture.

2.3.2 — Background on cycle spaces.

Our discussion of pseudoconvex flag domains D makes strong use of the
cycles in D which are defined by the actions of Gy and G. Here we begin by
introducing minimal background on this subject, referring the reader to
([FHW]) for detailed proofs.

Let K, be a maximal compact subgroup of G. Any two such are Gy-conjugate
and as a result for our purposes the choice is not relevant. A basic fact, which is
just the tip of the iceberg of Matsuki duality, is that there is a unique Ky-orbit in
D which is a complex submanifold. Let us refer to it as the base cycle Cy, re-
garded as either a submanifold or a point in the cycle space of D. In the sense of
dimension Cj is the minimal Ky-orbit in D. If K denotes the complexification of K
which is realized as a subgroup of G, then Cj is also a K-orbit. It can be char-
acterized as the only K-orbit of a point in D which is contained in D.

Here not much information is needed about the cycle spaces at hand. However,
let us introduce some convenient notation which will also be of use in the next
section. For this let ¢ := dimCy and let C,(D) be the space of g-dimensional cycles
in D. Recall that such a cycle is a linear combination C = ;X7 + ... + 73X, where
the X; are irreducible g-dimensional subvarieties and the coefficients n; are positive
integers. In a natural way C,(D) is a complex space which can be regarded as an
open subset of the cycle space C,(Z). Our view of these cycle spaces is that of ([Bal]).
The reader is also referred to Chapter 8 of [FHW] for a minimal presentation.

In our particular case C,(Z) is smooth at Cy (see Part IV of [FHW]) and thus it
makes sense to speak of the irreducible component of C,(D) at Cy. We simplify the
notation by replacing C,(D) by this irreducible component. Since the algebraic group
G is acting algebraically on Z, it acts algebraically on the associated cycle spaces
Cy(Z). The group-theoretical cycle space Mp which, for example, is of basic interest
inrepresentation theory is defined as the connected component of the intersection of
the orbit G.Cy with Cy(D). It is in fact a closed submanifold of C,(D) ((HoH]).
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2.3.3 — Cycle connectivity.

We say that two points @,y € D are connected by cycles if there are cycles
Ci,...,Cy, € Mp so that the union C; U...UC,, is connected with x € C; and
y € Cy,. The relation defined by « ~ y if and only if « and y are connected by
cycles is an equivalence relation. Since Mp is Gy-invariant, it is by definition Gy-
invariant. Thus, if we choose a base point 2y in D and identify D with Gy/H
where H) is the Gy-isotropy at z(, then the quotient D — D/~ defined by the
equivalence relation is given by a homogeneous fibration Go/Hy — Go/Iy where
Iy is the stabilizer of the equivalence class [z¢].

By definition the equivalence classs [z¢] = Io/Hy =: F' is a closed real sub-
manifold of D. Note that if Q2 is a relatively compact open neighborhood of zy in F',
then there is an open neighborhood U of the identity of the isotropy group G,
which maps U into F'. Since G, has only finitely many orbits in Z and since G, is
complex, this imples that F' contains an open dense subset which is a complex
submanifold of D. But I, acts transitively and holomorphically on ' and there-
fore F' is a complex submanifold of D. The stabilizer in g of F, i.e., the stabilizer of
F under the local G-action, is a complex Lie subalgebra q which contains the
algebra q of the G-isotropy subgroup at zy. Consequently, there exists a globally
defined complex subgroup @ so that the fiber F" at the base point of D — D/~ is
an open /y-orbit in the (compact) fiber of G/Q — G/Q at the base point.

PROPOSITION 2.11. — The cycle connectivity reduction D — D/~ = = Dofaflag
domain is given by the restriction of a canonically defined G- equwcm(mt map
Z=G/Q — G/Q Z. Itisa holomorphic map onto a Go-flag domain D in Z.In
particular, the fibers of D — D/~ are themselves connected complex manifolds.

ProoF. — Except for one point the proofis given above: We must show that the
intersection of the fibers of the G-equivariant map Z — Z with D are connected.
But this follows immediately from the fact that Dis simply-connected (see [W] or
[FHW]). d

Since the base cycle Cy is a K—orblt and in particular k(zg) ~ zy, we know that
K stabilizes [z¢]. In other words, K C Q and it follows that the base cycle C(] inD
is just a single point. Since it is known that this can only happen when Disa Go-
Hermitian symmetric space of noncompact type embedded in its compact dual Z
(IW1]). Let us note this for future reference.

ProPOSITION 2.12. — Either D = Go/Hy is cycle connected, i.e., any two
points are connected by a chain of cycles in Mp or the cycle connectivity
equivalence reduction D — D is such that D Go/ K, s a Hermitian sym-
metric space embedded in its compact dual Z and the neutral fiber Ky/Hy = Cj
1s the base cycle itself.
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Proor. — We know that K fixes the base point in D and by general theory
the isotropy group of a Gy-symmetric space is exactly a maximal compact
subgroup of Gy. O

As a consequence we see that if D is not cycle connected, then any two cycles
either agree or are disjoint. In other words, in that case the fibers of the re-
duction D — D/~ are cycles and the cycle space Mp is the Hermitian symmetric
space D.

2.34 — Pseudoconvex flag domains.

Let us say that a complex manifold X is pseudoconvex if it possesses a con-
tinuous proper exhaustion function p : X — R=" which is plurisubharmonic on
the complement X \ S of a compact set S. It should be underlined that, even if p is
smooth, we are only assuming the semi-positivity of its Levi-form.

Given the preparation in the previous paragraph, it is now a simple matter to
characterize pseudoconvex flag domains. For this the following is the main re-
mark.

LEMMA 2.13. — Cycle connected flag domains possess only constant plur-
isubharmonic functions.

ProoF. — Let D be a pseudoconvex flag domain and consider a plur-
isubharmonic function p on D. Given two points «x,y € D, connect them with a
chain (1, ..., C,, of cycles. Since p|C; is constant for every ¢, it is immediate that
plx) = p(y). O

ProPoSITION 2.14. — Cycle connected flag domains are not pseudoconver.

ProoF. — Given a cycle connected flag domain D, assume to the contrary that
it is pseudoconvex. Let p : D — R=" be an exhaustion which is plurisubharmonic
on D\ S. Define #y = min(p|S) and define p to be the maximum of p and the
constant function 7y + 1. Then, contrary to the above Lemma, p is a nonconstant
plurisubharmonie function on D. O

It follows that pseudoconvex flag domains have cycle reductionz : D — Dtoa
Hermitian symmetric space D. The unique cycle through a given point z € D is
the n-fiber 7~ (n(p)) through that point. Since D is a contractible Stein manifold,
the bundle 7 : D — D is trivial and D can be (noncanonically) realized as the
product Cy x D.1In summary we have the following characterization of pseudo-
convex flag domains.
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THEOREM 2.15. — For a flag domain D the following are equivalent.

(1) D is pseudoconvex

2) D is holomorphically convex with Remmert reduction D — D toa
Hermitian symmetric space.

3) D is not cycle connected with cycle reduction agreeing with its Remmert
reduction.

(4) D possesses a nonconstant plurisubharmonic function.

It should be underlined that domains fulfilling any one of the above conditions
are of the form D = Gy/Ly where L is a compact subgroup of the group Gy
which is of Hermitian type. As a result one can also describe such domains via
root-theoretic data (see [W, FHW]).

3. — Pseudoconcave flag domains.

Above we began our study of flag domains from the point of view of Levi-
geometry by showing that pseudoconvex flag domains are of a very special
nature ( Theorem 2.3.4). As a Leitfaden for further investigations we conjecture
that if a flag domain is not pseudoconvex, then it is pseudoconcave. Here we
begin with a brief exposition of constructions of two natural exhaustions of flag
domains whose Levi-curvature is at least in principle computable. Then, using
the exhaustion constructed using cycle geometry, we describe a rather large
class of flag domains which are pseudoconcave. We underline that further in-
formation concerning properties of these exhaustions in a general setting would
certainly be of interest.

3.1 — Exhaustions.

Here we discuss two natural methods for constructing Ky-invariant exhaus-
tions of flag domains. From the point of view of Levi-geomtry both have their
advantages and disadvantages. The first was introduced by Schmid for a flag
domain D which is a Gy-orbit in Z = G /B where B is a Borel subgroup of G ([S]).
This was generalized to measureable flag domains in ([SW], see also § 4.6 in
[FHW]). This type of exhaustion has the advantage that it is smooth and clearly
g-convex in the sense of ([AGrl]). However, determining the concavity proper-
ties requires root calculations which vary from case to case and which could be
rather subtle.

Exhaustions of a second type were recently constructed in (HW]). These are
canonically related to a given irreducible G-representation and the Levi-geo-
metry of Mp. They have the disadvantage of only being continuous, but they are
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g-convex in a very strong sense and, as shown in the sequel, their concavity
properties (which are related to cycle geometry) are more transparent than
those of the exhaustions of the first type.

3.1.1 — Schmid-Wolf exhaustions.

As above D denotes a flag domain which is a Go-orbit in a flag manifold
Z = G /Q. The first observation relevant for the construction of the Schmid-Wolf
exhaustion is the fact that the anticanonical bundle K~ — Z is very ample.
Assuming that we have chosen G to be simply-connected, this is a G-bundle
G x, Cwhere y : Q — C"is an explicitly computable character. Recall that if % is
a Hermitian bundle metric (unitary structure) on a line bundle L — X on a
complex manifold with associated norm-squared function || - ||, then the Chern
form ¢/(L) is the negative of the Levi-form ddlog(]| - |*) of the exhaustion
log(]| - ||2) of the bundle space.

In the case at hand, having fixed a Cartan involution 8 on g, which defines the
Lie algebra f; of the maximal compact subgroup Ky, we extend 0 to a holomorphic
involution of g and define the antiholomorphic involution ¢ := 70, where 7 is the
antiholomorphic involution which defines the real form g, on g. The Lie group G,
corresponding to g, := Fix(o¢) is the maximal compact subgroup of G which is
canonically associated to the real form G, with the choice of maximal compact
subgroup K.

If L — Z is any nontrivial G-bundle on Z = G/Q, then G has exactly two
orbits in the bundle space L, the 0-section, which corresponds to the fixed
point of @ in the neutral fiber, and its complement. In this complement all
G,-orbits are real hypersurfaces and G, acts transitively on the 0-section as
well. Define V,, := G, N @ so that Z = G/Q =G, /V,. Writing L as a G,-bundle,
L =G, x, C, we note that, since the restriction of y to V, is nontrivial and
there is a unique S'-invariant unitary structure on C normalized at 1 € C,
there is an essentially unique G,-invariant unitary structure on L. The level
surfaces of the associated norm-squared function are exactly the G,-orbits in L.
If, as in the case L = K1, the bundle L is ample, then Chern form is positive-
definite or, equivalently, from the point of view of the 0-section the G,-hy-
persurface orbits are strongly pseudoconcave.

Let us now consider the restriction of the anticanonical bundle K~! to a flag

~

domain D. It is a Gg-homogeneous bundle Gy = C. Here 7 is a C*-valued

character from the Gy-isotropy Vo = Gy N Q. One is of course interested in the
situation where 7 is S'-valued so that, as in the case of the G,-bundle on Z, the
anticanonical bundle on D would possess a Gy-invariant unitary structure. The
condition for this is called measurable (W], see also § 4.5 in [FHW]).

There are a number of equivalent conditions for D to be measurable ((W]).
Here are those of a less technical nature:
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(1) D possesses a Gy-invariant pseudokéhlerian metric.

(2) D posseses a Gy-invariant volume form.

(3) The isotropy group Vj is reductive in the sense that its complexification V
is a complex reductive subgroup of G.

(4) The isotropy group Vy is the centralizer of a compact subtorus
To C G, NVy so that D is realized as a coadjoint orbit. The symplectic
form induced from this realization is the invariant form defined by the
pseudokihlerian metric.

One can show that if one flag domain in Z is measurable, then all others flag
domains in Z are also measurable. Thus measurable is a property of the Gy-action
on the flag manfold Z. For example, flag manifolds Z = G/B are measurable for
any real form. Furthermore, every flag manifold Z is measurable if Gy is of
Hermitian type. On the other hand it is seldom the case that a flag manifold Z is
measurable for Gy = SL,,(R).

Now if Z is measurable and D is a flag domain in Z, then we have two
Hermitian norm-squared functions on its anticanonical bundle, the restriction
|- |I? of the G, -invariant norm on the full anticanonical bundle of Z and the Gy-
invariant function || - ||§ coming from the coadjoint symplectic form or from the
the pseudokéhlerian metric. The characters which define these norms are ac-
tually defined on the same torus 7Ty which splits off of both isotropy groups and
on that torus they are the same. Thus the ratio

2
- llo

-2
is a well-defined function on the base D and one can show that p := log(R) is an
exhaustion function of D. We refer to this as the Schmid-Wolf exhaustion of D
(see [S, SW]). Note that since h,, is Gy-invariant and &y is Go-invariant, p is in-
variant with respect to the maximal compact subgroup Ky = G,, N Cy.

The Levi-form of p is the difference c’f“ — c’l“’. A direct calculation with roots
shows that c’f’“ is of signature (g, n — q) where ¢ is the dimension of the cycle Cy
and n = dim(D). Since ci”” > 0, the exhaustion p is g-complete in the sense of
Andreotti and Grauert, i.e., at every point of D the Levi-form of p has at least
n — q positive. Let us note this result.

THEOREM 3.1. — The Schmid-Wolf exhaustion of a measurable flag domain D
18 q-complete in the sense of Andreotti and Grauert.

The Schmid-Wolf exhaustions have the advantage that one can directly apply
the Andreotti-Grauert vanishing theorem for higher cohomology groups. One
disadvantage is that without further root-theoretic computation one does not
know the degree of concavity. Furthermore, one only knows the existence of
these exhaustions on measurable domains.
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3.1.2 — Exhaustions via Schubert slices.

Here we explain the construction of ((HW]) which uses cycle space geometry
to produce an exhaustion pp, : D — R=" of any given flag domain. It has the
disadvantage of only being continuous, but it is g-pseodoconvex in a strong sense.
Its concavity properties are closely related to the cycle geometry of D.

The construction of pp requires basic information concerning Schubert slices.
We sketch this here and refer the reader to § 9 of (FHWT]) for details. In order to
define a Schubert slice we must recall that Gy possesses an Iwasawa-decom-
position Gy = KyAyNy. Here K; is a maximal compact subgroup as above, A is
an Abelian subgroup noncompact type, Ny is a certain nilpotent subgroup de-
fined by root-theory and which is normalized by A,. Writing K, A and N for the
complexifications of these subgroups which are subgroups of G, we note the
fundamental fact that the set KAN is a proper Zariski open subset of G.

Now if Cy := Ky.7¢ is a base cycle, then every orbit of A¢Ny in D must have
nonempty intersection with Cy. The following is basic for our discussion (see § 7.3
in [FHW] for details).

THEOREM 3.2. — The set I of points z € Cy which are such that the orbit AgNy.z
1s of minimal dimension under all AgNy-orbits in D is finite. For every z € I the
orbit X := AgNy.z has the following properties:

(1) 2 is closed in D and open in AN .z which is a Schubert cell in Z.
(2) The intersection of X with every cycle C € Mp consists of exactly one
point and C is transversal to X at that point.

For obvious reasons we refer to the orbits 2 as Schubert slices. We should
note that the Schubert cells in the above statement are meant to be the orbits
of Borel groups B which contain an Iwasawa-factor AN. These are very
special Borel groups, being those whose fixed point is in the (unique) closed
Gy-orbit in Z.

If ry : ¥ — R="is a strictly plurisubharmonic function on 2, then we define a
plurisubharmonie function py. : Mp — R=? by p5(C) := rx(o¢), where o is the
unique point of intersection of C and X. After checking that p, is a plur-
isubharmonic function on Mp one might hope that if 2 is Stein and ry is an
exhaustion, then py might be a plurisubharmonic exhaustion of Mp. Simple
examples, e.g., the one interesting flag domain defined by the SU(2, 1)-action on
the 3-dimensional manifold of full flags in C?, show that in general X is not Stein.
Furthermore, even if 7y is an exhaustion, p,, may not be an exhaustion.

The difficulties mentioned above can be remedied by simultaneously con-
sidering a number of Schubert slices. To do this we start with strictly plur-
isubharmonic functions »y which arise in a natural way, in this case associated to
an irreducible representation of G. For this we recall that if L — Z is a G-line
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bundle, then the G-representation on I'(Z, L) is irreducible. Conversely, every
irreducible holomorphic representation of G occurs in this way.

Now recall that a given 2 =A(Ny.2 is open in the Schubert cell
Og := B.z =2 C" % which closes up to the Schubert variety S. Given an of an
ample bundle L — Z, we let V be the space of sections of L|S which are defined
as restrictions of sections of L on Z. Let s € V be a B-eigenvector which is not
identically zero. It follows that s vanishes exactly on S\ Oy (see, e.g., [FHW],
§7.4C) and if we equip L with the canonically defined G, -invariant norm-squared
function | - || then the restriction of ry :=s*(log(| - |*) is a strictly plur-
isubharmonic exhaustion of the Schubert cell Og. The associated function py on
the cycle space is plurisubharmonie, but normally not an exhaustion. Thus we
define p,,, to be the supremum of the py as X ranges over all possible Schubert
slices for a fixed Iwasawa component AoN¢ and over all Iwasawa decompositions.
Since this is a compact family of Schubert slices, it can be shown that p,, is a
continuous plurisubharmonic function. Using our analysis of the boundary be-
havior of the Schubert slices (see, e.g., § 9.2 in [FHW]), one proves the following
first result.

PROPOSITION 3.3. — The function p,,, = sups(py) associated to an irreduci-
ble representation of G on the space of sections of an ample bundle on Z is a
continuous plurisubharmonic Ky-invariant exhaustion of the cycle space Mp.

The procedure for transferring p,,, back to the domain D is quite natural.
For this we let X :={(2,C) € D x Mp :z € C} and denote by u: X — D and
v: X — Mp the canonical projections. Note that the fiber x~1(p) = F), can be
identified with the set of cycles in D which contain the point p. Now define
Px = P, © v and let

pp(p) = infF (px).
The following can be proved by tracing through the construction of p, (HW]).

PROPOSITION 3.4. — The function pp, : D — R="is a continuous Ky-invariant
exhaustion of D which is q-pseudoconvex in the following sense: For every r <0
and every z i the boundary of the sublevel set {p,<r} there exists a neighbor-
hood U = U(z) and a smooth function h on U such that h(z) =1, h < pp|U and
the Levi-form L(h) restricted to the complex tangent space of {h = r} at z has an
(n — @)-dimensional positive eigenspace.

It would be useful if either p;, could be smoothed to an exhaustion which is ¢-
pseudoconvex in the sense of Andreotti-Grauert or if the finiteness/vanishing
theorems of Andreotti-Grauert could be proved under the assumption of a con-
tinuous exhaustion with the above pseudoconvexity property.
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3.1.3 — Flag domains are q-pseudoflat.

In ((NH]) we introduced the notion of g-pseudoflatness as a weakening of both
q-Leviflatness and g-pseudoconcavity (See [HSt] for elementary complex analytic
properties of such manifolds.). By definition a q-pseudoflat (connected) complex
manifold X is required to contain a relatively compact open set Z such that every
point p of its closure cl(Z) is contained in a g-dimensional (locally defined) analytic
set A, which itself is contained in cl(%Z). Examples on the pseudoconvex side which
possess exhaustions by plurisubharmonic functions whose level sets are foliated
by g-dimensional leaves are given by the Lie groups in (2.1), the nilmanifolds in
(2.2) and the flag domains in (2.3.4). In the flag domain case the number q is the
dimension of the base cycle Cy. An optimal dichotomy might be that a flag domain
is either g-Leviflat as in Theorem 2.15 or g-pseudoconcave. We have stated a
weakened version of this conjecture in (2.3.1) and prove the pseudoconcavity
(without any particular degree q) of certain flag domains in (3.2). Here we note the
following general result on g-pseudoflatness. Its proof follows by direct inspection
of the definition of an exhaustion defined by the Schubert-slice method.

PROPOSITION 3.5. — Let p;, : D — R=? be an exhaustion of a flag domain D
which is defined by the Schubert-slice method and D, = {pp<r} be a sublevel
set. Then every p € bd(D,) is contained in a cycle C € Mp which itself is
contained i cl(D,). In particular, D is g-pseudoflat.

Proor. — If pp(p) = 7, then by definition there exists a cycle ), € Mp with
p € C, such that

px(p,C) =7 =min{px(p,C): C € Fp}.
Now consider another point p € C and note that, since C € F, and
px(p; C) = px(p,C) = pp, (O),
it follows that pp(p) < pp(p) = r, ie., C C cl(D,). O

3.2 — Pseudoconcavity via cycles.

Here we prove that D is pseudoconcave if it is cycle connected in a certain
strong sense which we refer to as generically 1-connected. To define this notion
first note that for p an arbitrary point in D and C an arbitrary cycle in G.Cj the
set of cycles in G.Cy which contain p is just the orbit G,.C of the G-isotropy group
at C. We therefore say that D is generically 1-connected if C has nonempty in-
tersection with the open Gp-orbit in Z. One checks that this notion does not
depend on the choice of p or C.
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Throughout this paragraph we assume that D is generically 1-connected.
Under this assumption we will show that D is pseudoconcave in the sense of
Andreotti, i.e., that D contains a relatively compact open subset int(XC) such that
for every point of its closure K there is a 1-dimensional holomorphie disk 4 with p
at its center such that bd(4) is contained in int(/C). In fact the construection is such
that every p € K is contained in a cycle C in Mp which is itself contained in X.
This cycle has the further property that C Nint(XC) # @. Hence, in a certain sense
one may regard D as being q-pseudoconcave. At the present time, however, we
are not able to replace C with a q-dimensional polydisk.

The compact set K is constructed as follows. For py an arbitrary point in Cy let
U Dbe a relatively compact open neighborhood of the identity in the isotropy
subgroup Gy,. Choose U to be sufficiently small so that

Kp, := {u(p);p € Co, u € cl(U)}

is contained in D and let

K= kK.
keKy

PROPOSITION 3.6. — The Ky-invariant set KC is a compact subset of D which is
the closure of its interior int(K). The base cycle Cy is contained in int(KC) and
every point of K is contained in a cycle C which is contained in K and which has
nonempty intersection with Cj.

Proor. — Since K = {ku(p);k € Ko,u € cl(U),p € Cyp} and Ky, cl(U) and Cy
are compact, it is immediate that K is compact. If z = ku(p) € K, then we let {p, }
be a sequence in Cy which is contained in in the open orbit of G, and which con-
verges to p. It follows that z,, := ku(p,,) is in the interior of K and z,, — z. Thus K
is the closure of its interior int(K). By definition every point of the intersection of
Co with the open Gy, -orbit is in int(KC). Thus, since Kj acts transitively on Cy, it
follows that Cy C int(K). Finally, every point z € K is of the form z = kukk(p,),
where p; € Cy. Thus z € kuk—1(Cp) := C C K. Since kuk! fixes k(py), it follows
that C N Cy # . O

In order to replace the supporting cycles with q-dimensional polydisks, the
construction of X may have to be refined. However, without further refinements we
are able to construct 1-dimensional supporting disks at each boundary point of /.

THEOREM 3.7. — Generically 1-connected flag domains are pseudoconcave.

PROOF. — Let z € bd(K), choose C = gCog~* € Mp to be contained in K with
z€ Cand CNCy#Q, and let 2y be in this intersection. Choose a 1-parameter
unipotent subgroup of gKg~! whose orbit of z; has nonempty intersection with the



REMARKS ON HOMOGENEOUS COMPLEX MANIFOLDS SATISFYING LEVI CONDITIONS 21

open orbit of the isotropy subgroup of gKg~! at z; and define Y to be the closure of
this orbit. After an injective normalization, Y is just a copy of P;. Replacing Y by
h(Y) where & is in the gKg~!-isotropy group at zj, i.e., by conjugating the 1-
parameter subgroup by %, we may assume that Y contains points y, which are
arbitrarily near z¢. Choose ¥ in int(X) and define 4 to be the complement in Y of
the closure of a disk about ¥, which is likewise in int(/C). O

Our feeling is that most flag domains are 1-connected and that the do-
mains which are not 1-connected can be classified by elementary root com-
putations. The argument in the proof of the following remark gives some
indication of this.

ProposiTION 3.8. — Every flag domain of SL,(R) is 1-connected.

Proor. — Let zy € Cy be the base point and assume that it cannot be con-
nected to some point z € D by a cycle. It follows that Cy has empty intersection
with the open Q-orbit. In particular, it has empty intersection with the open
orbit of every Borel subgroup B contained in . Thus Cj is contained in an
irreducible B-invariant complex hypersurface H in Z. Given such a hy-
persurface there is a maximal parabolic subgroup € containing @ such that H
is the preimage of the unique B-invariant hypersurface HinZ := G/ (A;) by the
projection G/Q — G/Q

We may assume that the unipotent radical U := RM(Q) is contained in B
and note that it is Abelian and acts freely and transitively on the open B-
orbit in Z. Thus it acts with 1-dimensional ineffectivity on H. By con-
struction the base cycle Co is contained in H. Thus the stabilizer of CO in G
acts on Cy with nontrivial ineffectivity. On the other hand K = SO,(C) is a
simple Lie group and consequently this stabilizer contains K as a proper

subgroup. R
As aresult the domain D = G2 is of Hermitian holomorphic type (see § 5in
[FHW]) and in particular Gy is of Hermitian type, a contradiction. O

The reader will note that, except for the fact that we use the simplicity of K,
the discussion in the above proof is completely general. However, even in the
case where K is not simple, we would expect that it still would be possible to
reduce to the Hermitian holomorphic case. A concrete example of this is the
action of Gy = SO(3,19) on the 20-dimensional quadric Z = G/Q which is also
1-connected. The flag domain D of positive lines in Z is the moduli space of
marked K3-surfaces, an example of interest to Andreotti. It also should be
mentioned that if stronger conditions are imposed, then fine classification
results can be proved. For example, for the case of strong pseudocavity see
([HS1, HS2]).
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