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Bollettino U. M. 1.
(9) IIT (2010), 179-206

Anomalous Behaviour of the Correction to the Central Limit
Theorem for a Model of Random Walk in Random Media

L. D1 PERSIO

Abstract. — We give a result concerning the correction to the Central Limit Theorem for a
Random Walk on the lattice 72 which interacts with a random environment under a
small randomness condition. Our main theorem close a gap which dates back to
seminal works by Boldrighini, Minlos and Pellegrinotti, see [3], [8] and [9].
Asymptotic behaviour of the corrections to the average and the covariance matrix in
dimension v = 1,2 are also presented.

1. — Introduction.

1.1 — General overview.

In the present paper we consider a particle moving in a v-dimensional infinite
lattice which evolves stochastically in discrete time ¢ as stated in [3, 8, 9].

The environment is described by a random field & = {&(x) 1w € 7', t € 77},
i.e. ¢is the result of independent copies of the same random variable taking value
in some finite set .7

The one step transition probability from a site « at time ¢ > 0 to a site y at
time ¢ + 1 for a given realization of the environment ¢ is as follows

PXp =y | X = 2,0 = Poly — @) + ec(y — ;) ,

hence it is a sum of two terms, namely a free homogeneous random walk Py( -)
and a random perturbation c(-;-), while the parameter ¢ controls coupling in-
tensity between them.

A finite range assumption on Py( - ) and c(-; -) is made. Under further standard
technical conditions results in [3, 8, 9] include the Central Limit Theorem (CLT)
for the displacement X; — X, almost everywhere in the realization of the en-
vironment and in any dimension.

Moreover in [8] is proved that the time behaviour of the corrections to the
CLT for the Random Walk (RW) X; in dimension v > 3, depends on the en-
vironment and the traditional expansion in inverse powers of T* is reduced to
only a finite number of terms, more precisely it holds up to the term of order 7%,

v-1
2

where k < { ] is the largest integer smaller than g



180 L. DI PERSIO

Analogous conclusions are shown in [8] for the cumulants of the first and
second order in dimendion v > 3. In [12] is proved that in dimension v = 1 the
correction to the CLT is an environment-depending term of order T~ which, if
normalized, tends to a random Gaussian variable as T — cc.

In this work we give the correct term of normalization in dimension v = 2,

| T
which is a proving that the correction to the CLT tends to a limiting

centered Gaussian variable for which we are able to write the dispersion by an
explicit integral expression.

Moreover we prove that the corrections to the average and to the covariance
matrix in dimension v = 1,2 have similar anomalous behaviour.

It is important to note that in [10] the almost sure validity of the CLT for the
quenched model is proved without assuming a small stochasticity condition, but
only that an obvious non-degeneracy condition is fulfilled. The proof is based on
the analysis of a suitable generating function, which allows to estimate L? norms
by contour integrals. Similar arguments are used in [11] to prove the CLT when
the RW starts out at a fixed point of the lattice 7" both in the quenched case and
for the annealed model. Nevertheless results about the asymptotic behaviour for
the corrections seems to require the small randomness assumption.

We would also like to mention further selected recent works related to the
subject of RW in random media.

In [6, 7] asymptotic decay of correlations for RW in interaction with a random
environment independent in space and with a Markov evolution in time are given.

In [5]is considered the case of a particle moving accordingly to a jump Markov
process and interacting with an evolving random environment represented by a
stationary Glauber type dynamics in the continuum. Under some assumptions on
the Glauber dynamic and on the coupling between particle and environment, the
authors give the large time asymptotics for the particle position distribution.

In [4] numerical results about some models of 1—dimensional RW in fluctu-
ating random environment are given.

In [13, 14, 15] the author consider a RW in a stationary random medium, de-
fined by an ergodic dynamical system, in the case when the possible jumps are
{-=L,...,—1,0,+1} for some fixed integer L. A recurrence criterion expressed
in terms of the sign of the maximal Liyapounov exponent is given together with the
existence of the absolutely continuous invariant measure for the Markov chain and
,in the transient cases, the presence of a nonzero drift. Study of the validity of the
CLT in the transient cases is made using the notion of harmonic coordinates in-
troduced by Kozlov. Previous results are considered in the context of a random
medium defined by an irrational rotation on the circle and their realization in
terms of regularity and Diophantine approximation are given. In the case of
1—dimensional RW with bounded steps in a stationary and ergodic random
medium the author show that the algebraic structure of the RW is given by geo-



ANOMALOUS BEHAVIOUR OF THE CORRECTION TO THE CENTRAL ETC. 181

metrical invariants related to the description of a space of harmonic functions and
prove a recurrence criterion similar to Key’s Theorem. In the same context it is
also shown the validity of the Law of Large Numbers. Moreover a fine analysis of
the geometrical properties of the central left and right Lyapunov eigenvectors of
the random matrix naturally associated with the random walk is provided.

In [17] a quenched CLT for random walks with bounded increments in a
randomly evolving environment on 7' is proved provided that the transition
probabilities of the walk weakly depend on the environment. Moreover the
evolution of the environment is assumed to be Markovian with strong spatial and
temporal mixing properties.

In [1] author proves that, in the nearest-neighbour case, when the averaged
random walk is symmetric, the almost sure CLT holds for an arbitrary level of
randomness.

We would also like to cite [20] were the author gives an almost complete
review of various model of RW in random media together with available results
and techniques.

1.2 — Plan of the work.

In Section 2 we will describe the model and state the main results which will
be proved in Section 3 using Cluster Expansion’s techniques. Some details of the
proofs will be shifted to the Appendix A.

2. — Definitions and main results.

We denote by X; € 2", with t € Z, the position of a particle which is moving in
a v-dimensional infinite lattice. Time is discrete and the particle’s probability to
jump from one site to another depends on the state of environment.

More precisely we put independent copies of the same discrete random
variable on each site of the grid, this variable takes values in a finite set
" ={sy,...,s,} with a non degenerate probability 7. We will define Q = R
as the set of all possible configurations of the environment equipped with the
natural product measure I = 7% .

In the following (-, -) and E( - ) indicate expectations w.r.t. the distribution 77
(or w.r.t. the measure = for a single point (x,t) € 7”1y and over the trajectories
{X}} respectively.

Once a configuration & € Q of the environment is fixed and for ¢ € [0, 1), we
define one step transition probabilities as follows

(2.1) PXip1 =y | Xi = 2,8 = Poly — @) + ec(y — x; &()).
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hence they are defined as a sum made of a homogeneous random walk Py(u) plus
a random term c(u; s) which, with no loss of generality, is supposed to have zero
average (i.e. {c(u;-)) = 0) and to be such that > c(u;s) =0.

Further assumptions are the following uez?

(1) 0< Py(u) + ec(u,s)<1

) 3D >1:Po(u) = c(u,s) =0 Yuec 7% :|ul,>D,Vse.s

(3) The characteristic function associated to Py

Pod) =Y Po(w)e' ™™, j=(dy,....h) €T

uez’
where 7" is the usual v—dimensional torus, satisfies
(Ba) | po(d) | <1, VA#£0

As a consequence of (2) and (3a) we also have that the quadratic term which
appears in the following Taylor expansion

S 4 1Y .
lnpo(A) = Zzbk;{k — é Z Cij/li/tj + ey
=1 ij=1

around / = 0, is strictly positive for / # 0.
We want to prove that, in dimension v = 2, an anomalous correction to the
CLT for the displacement X; — X, appears.
For a given v > 1, let us define with Pg the convolution of T' copies of Py, the
quantity
Qr(x | &) = PXy = | Xo = 0;¢) — P{ (),

and let us also define b = (by,...,b,) and C = (¢;)
theorem holds

PR then the following

THEOREM 2.1. — If v=2 and ¢ €[0,1) is small enough, then for every
function f € 21" (R?) the sequence of functionals

. T b
22) On(f &= \/mgzwx | f)f(xﬁ )

tends in distribution, for T — oo and some constants ¢y, My;(i,7 =1,2), to a
centered Gaussian variable with dispersion

2
>y ( J e, v)ﬁ(v)dv> ( [ K, v)f,-(v)dv> ,
=1

which depends only on the position reached by the particle at the final time and

2.3)

o | St
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where
VO o
(2.4) Ke(s,9) =—-e¢" | fi=—
27ns i

with A = {a;} = {c;} ', so that A defines, for all v € R the quadratic form
2
AW) = Y ;.

=1

The same techniques used to prove previous result allow us to investigate
time asymptotics for the correction to the average and to the covariance matrix
in dimension v =1,2. Let us define for 4,5 =1,...,v and v = 1,2 the average
vector components and the covariance matrix elements respectively as follows

£ = E(Xy); | Xo = 0,8) — bT
7D = L((Xr - bT)(Xy — bT); | Xo = 0,¢) — ¢

where b = (by, ..., b,) represents the drif term, then the following results hold

THEOREM 2.2. — Forv =1, ¢ € [0,1) small enough and setting St = ((F;”(T))2>%,
the sequence
)
St
converges in distribution, for T — oo, to a standard Gaussian variable.
Moreover we have Sy =< TH.

THEOREM 2.3. — Forv =2, ¢ € [0,1) small enough and setting St = ((F;”(T))zﬁ,
the sequence
)
St

converges in distribution, for T — oo, to a centered Gaussian variable with
covariance matric

2= {by} = {{bi(-)b;(-))}
where b;(-) = Y wic(u; ). Moreover S < (InT)%,

uez?
THEOREM 2.4. — Forv=1, ¢€[0,1) small enough and setting S’T = <(Z"(T))2> %,
the sequence
7@
Sy
converges m distribution, for T — oo, to a standard Gaussian variable. Moreover
ST = T‘_i
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THEOFEM 25— For v=2, ¢€[0,1) small enough and setting S’EjT) =
((%E}.T))z> 2 the sequence
; «T)
7 )
QD)
Sij

converges in distribution, for T — oo, to a standard Gaussian variable.
Moreover S%T) = Tk

We would like to mention that results in Theorems 2.2, 2.3, 2.4 and 2.5 are also
proved in [2] with different techniques, namely using a CLT result for martin-
gale differences contained in [16], Sec. 9.3, Th.1.

3. — Proofs.

Our model is characterized by a space-time invariance so there is no loss of
generality in assuming that the random walk always starts at the origin at time¢ = 0.
We can rewrite (2) as

Qrix | =Y > PiyoM.(tz —t1,y2 — y1; &ty )

0<ti<t,<T—1 yy yoez?

x BB — a3 &, (y2))
where
W)= ew; 9Py g —w)

ue/Z?

n—1
M.ty 0= Y, PIMR©), Mp© =[] 771G & @),
=0

B(0,0)H(tﬁy)
and &y, is the shifted environment, i.e.
S, D=4z —y).

Sums in the definition of M. (¢, y; &) run over all subsets B = {(t1,41), . - -, (tn, Yn)}
from (0,0) to (¢, y).

Quantities 7; and positions z; are defined as t; =t;,1 — t;, 2; = Yiy1 — ¥ re-
spectively, besides we assume Pg(y) = 6,0 and M.(0,y; &) = edyo.

Setting b(s) = >~ uc(u;s) and indicating with .7 (x) the Hessian matrix of

ueZ?
the function f evaluated at a certain point « € R?, we have that for all y € R®

there exists { € R? with || l. <D such that

S cwss)f (%) = % (D(S)Vf (%)) + (),

ue7Z?
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where
(Y, 9) = 55 Z c(u; )7 ¢(0) - (u, w).

uez?

In the following we will work only with function f € C>*"(R?) with a norm
defined by

L= Nl + 1V oo + 1 oo s

where
o)
1) = ma [ L o[ Lo}
xeR
.
I = max{ |22 s = 1.2
We have
@ (rr(y; ) =0, ¥y € R
const || ]/f loo

@) |rr(y;s) < =20, V(y,s) € REx .7

Let be

Srlt )= b s)f(yj;) o) ZPt 't )Vf< T)

(3.1) <
SO c(u;s)f(y Ut z) O f< >]
2e7? uez?

then o7(t, y; s) has zero average and V(s,y) € .9 x Rz, it satisfies

Z Pgl(z){ Z c(u; s) f(?/\;%z)

2e7? ue7?

y+z\ u - (u,u)
() e

()

> P @y +2,9)| <

ze7?

|o7(t,y;8)| =

const || s |l

7 —0.

Proof of our main theorem, i.e. Th. (2.1), will be split into several results
stated as lemmas and propositions. We will use throughout what follows the
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notation const in order to denote different constants which may or may not
depend on the coupling parameter ¢, besides we will use the lower case ¢ as well
as the capital T to indicate the (discrete) time variable.

ProOF (of Th. 2.1). — If we define the vector M;(t,y | &) = M.(t,y | b(&(y)),
then we have

PRrROPOSITION 3.1. — For i = 1,2 and ¢ € [0,1) small enough there exists a
positive constant such that

2 const - &
Z{(omeri)') <5

PrOOF. — By definition of c(u;s) the contribution given by two subsets of
points which do not coincide in space and time is equal to zero, then setting

b; = max | (b(s)); | fori=1,2
se.”

we have
) 2
Z<<(Mu(tv?/ | ))L) > = Z<< Z g|BME(.)(b(.))i> >
yez? yez? \ \B:0,00—.y)
(3.3) ; Y
@YY Y Y [ )
yez? n=1 frtettn=t py,...0, =1
minfty,....tn } >0
Since
(3.4) fe’cwdy =ft56’”x2dac < comst - 2,
R’ R’
by appendix A of [8], we have
e’“w const
max Y (b)) <Y A—u <,
se. y;zz y;zz t+1)>° 12

then the quantity on the second line of (3.3) is bounded by

¢ % G
e ti
(eb;)? g E & E E H A—
72 n=1 ftttn=t py, 2y =1 (ti + 1)3
yes minfty,..tn}>0

t

2 ) const
SN 2 a0
i=1\"

n=1 ty+ttn=t
min{ty.....tn } >0
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Iterating the following inequality

Til 1 _ K@)
—t (T—t)' =~ T’

which is valid for all @ > 1 and some constant K(a) > 0, by the small randomness
condition, i.e. e<1, we can sum over % to obtain the result.

Let be
1 x—bT
OP O =—= Pl y)My(tz, y2 — VP —y2) - V ( >
flé \/T:1+t2+zt3::r—l o WMtz y2 — y1 | S,y P y2) - Vf Nid
x.ylAyze/,z
assuming

PG 10=1rp r OV,

then for the sequence of functionals ol f ] & defined in (2.2) we have

LemMA 3.1. — For ¢ € [0,1) small enough
. R 2\ 7
((enr19-20¢19)) =0

ProoOF. — By the definition of d7(t, y; s) in (3.1), we have that the difference
between functionals

Cr(f 1) =P,
can be written as
T\
<ln T) D> D> PR@oMltey — | &uy)or(T —ty —BT: &) -
t=0 t1+t2=t " yeéz
By L?(IT)-orthogonality of the terms
M. (ta,y — Y1 | Ly )0 (T =,y — BT ()

and using (3.2) we find

((ents19-20 1))

const || 7 |2 T2
%Z Z Z (PG () (M2, 92 | ) -

=0 ti+ta=t 4, 472

(3.5)

Using again the inequality (3.4) and Prop. (3.1) we have that the right-hand side of



188 L. DI PERSIO

(3.5) is bounded by
const || 7, |2 =2 const - & _ const || Zy 12, TZ: 1
ThnT =0 4 (G + D2 + 12~ TinT - t’
as
1 1 const
3 S ;
no it Lt +1) t
and
T
Zl =<logT,
't
then
T
1 const I ]/f 2.
U ; 7= =0,

In order to specify the constants
Wiy introduced in (2.3) let us denote by (b(&(y))); the i-th component of the
vector D for i = 1,2, then the following hold

PROPOSITION 3.2. — Fori,j = 1,2, if ¢ € [0, 1) is small enough, the sequence

T-1
(3.6) CPO =D (Mt 5, 9)(0E W), (bE WD),

t=0 yE%Q

converges for T — oo to a limiting functional ;; in L* as well as IT-a.s. in the
realization of the environment.

PROOF. — By Prop. (3.1) and using the L?(I)-orthogonality of the terms
M. (t,y; &), for T" > T we have

7"-1

. D, N2 const 11

t=T

and we can conclude the proof using the result contained in the appendix A
of [9].

We will show later that the constants ¥t;;, which appear in (2.3), are exactly
the second moments of the limiting functionals C;;.

Let us define the following quantities

Ty =[T%,€ (0,1, T.=[n.,T], In.T=max{1,InT},
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and

_ T—t-1 ytz-— bT)
Hrp(t,y) = ZGZ;FPO (&)Vf <—\/T :

then the functional

T-Ty t,+T.

\/— Z Z Z Py )Mtz — t1,y2 — y1 | <y ) - Hrlto, y2)

L=t y,y,e7?

A E

is obtained removing those terms that are relative to large ¢, and large differ-
ences ts — t; and for Q"“(TD the following result holds

LEMMA 3.2. — For ¢ € [0,1) small enough we have
((e0s1)-28¢19)) =0,

Proor. — First, considering the large t; values, we define

1 T-1 T-1

CF1O=—— Y. > > PiyOMts —ty,y2—u1 | &ty g0) - Halla, y2) .
\/th:T—T1+l ta=t1 y,y,e7?

Proceeding as in the proof of lemma (3.1) we have

const 5 1 const 2 T=%
(@0 19F) < g | I IR Do =S 197 I
The contribution for large differences t; — t; can be rewritten as
_ T-T,  T-1
o(f1d=——— Z Z Z Pl y)Mylts — ti,y2 —y1 | Eay) - Hrta, y2) |

tl 0 to=t1+7T.+1 2/1?/2642

S0 we obtain

9 T-T. Tt

~ o _ comnst || Vf ||
(@) < T Z (tl +1) Z 7t + 1)2

const || Vf |I? const || Vr 1% r—o0
< _ 0.
Ztl

- -InT

*

LEMMA 3.3. — For ¢ € [0,1) small enough we have

~ 2
(GRS =TT Wy ( / Kc(l,v)ﬁ(v)dv> ( i Kc(l,v)ﬁ(v)dv> ,
=1
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where My = ((Cy(- ))2> and Sy are the same limiting functionals that appear
n Prop. 3.2, while K¢ is the heat kernel defined in (2.4).

ProoF. — Hypotheses on our model imply, see e.g. [18], that, around the point
A =0 in the v—dimensional torus, the Taylor expansion of the characteristic
function of Py is

. L , 1< .
lnpo(/l) = ZZ by — B Z Cij/li/bj + e
=1 ij=1

In the bidimensional case the Local Limit Theorem (LLT) implies

\/(_7 _1q(=bt 1
¢ _ FAEED
Po(x)_@nt)e i (1+O(\/i)> ’

then for all f € C*"(R?) we have

VCe HER y+z—bT
t
;(Po(z)_ 2nt 'f( VT >
Ve AP 1 y+z-—0bT const- || f ||
o) ()| <A

We want to control the error that occurs replacing sums with integrals, i.e. we
want to evaluate the asymptotic of the following Riemann sum

1o~ () (y—bT \/Zz—bt
tZe f<7\/7 + T—\/i>.

ze7?

z

. . t . .
If Q:(2) is the square centered in ¢ , with sides parallel to the cartesian

Vi
axes and of length ¢ 2, defining R = % we have
BD  [erer(re \ﬁ o)ty (v \ﬁ =
R? T tze‘/} T vt

Let be

Glx) = e AOf <R + \/; 9c> ,

then the integral over Q:(z) can be written as

(3.8) Az) EQ (f | {G(x) e (z ?/ibtﬂ de.
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Writing the second order Taylor expansion of G(x) in (3.8) at « = z_\/ibt, we have
that the term of zero order is cancelled by G (z—_\/ibt)

For the first order term we have
bt z — bt

vG x————|de=0
(ﬁ)%( 7)

by symmetry and the first term that survives is the second order one

L G z—bt z—bt
-4 Jo B )5
< max max PG (x)| const
T reQi(2)j k=12 8907agck 2

Now we recognize that

82G(90) t \/? _d) \/7 367%1)

Ox;0uxy, ]; T Vi ITH{ B+ T oxy,
t £\ oe ¢ \/? Pe Y

- \/; T (R * ﬁ 90) Ou; + (R * Ox;0uy,

and denoting by z; the point where the function Q;(z) reaches its maximum, we
have

PG (x) A AED
< const max e 1 = const e 1,
G| < oSt 11 maxs I£1

Since the sum

et

zE/2

is a bounded Riemann sum, hence the difference in (3.7) can be bounded as
follows

, E ) 1 b= £ z—bt
(3.9) |f]R2 A()f R+ﬁ>—zg;2@ (f)f<R+\/;7>

< const -

(P
— .
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Again by the LLT we have

.mmm=Z?P@W(

y—bt+z—b(T—t)>

ze7? VT
1A<z %1))
- - b(T - 1
o RVek v (PP REED) o)
= 2nt VT Tt
then by (3.9) we obtain
71_/4(; ;TLt)) B B
Z‘/_ - Vf<y bt +z—b(T t)>
ze7? \/T
VCe#4@ _ [y bt ¢ 1

_f T G R TA R dac+(’)<Tt>

by the change of variable v = x4/1 — % and setting:
bt
Hit.59) = [ Ke(1- o) wr (L 40 )ao
RR?
so that
" _ f af
we obtain
1

(3.10) Hytt.g) = Hy(t0.59) + 0 o)

where K is the 2-dimensional heat kernel

Ko(s,v) = {g e’%.

In é(TZ)( f1¢) the contribution for ¢; < T4 is given by

T: t1+T.

\/— Z Z Zpt YoMtz — t1,y2 — Y1 | Ey) - Hrltz,y2) |
=0 te=t1 Y1.¥2

and it can be neglected since

AGEIE

(@p(f ] O)7) < comst T T tl; 0 0,
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then by the approximation result (3.10) we are left with the time asymptotic of
the quantity

1 T-T1 t+T.
(8.11) ( ) ST ST @A (Matte—tr, v~ | Sy - Hite, 2, V).

=T1+1 te=t1 Y1.Y2

We can start taking into account the diagonal component of index (1,1). The
short range condition implies
. T*
JT
hence we can replace H(t2,y2,f1) with H 7(t1,y1,/1) and sum over (¢1,y1). Then,

using the definition of the functionals (S given in (3.6), the asymptotic of (3.11)
in the first spatial coordinate of H7, is the same as

T T-T,
(3.12) (Ener) §* Z(P%y»%( bt)

InT 5 VT

| H;’(t27y27f1) _H;’(tlayhfé) |§ CO%St( ”f Hoo + H v(f) ||oo )

where

() = (- ()

Taking the first order Taylor expansion of F; in the space variable, we can re-
write (3.12), for an appropriate point y* = y*(y), as

(3.13) sz Pi(y)) [Fl( )+%Fl<3,y*<y)>-(y—btﬂ :
InT T 5 S T VT

By the first inequality in Lemma A.1 of [8], we have:

t
T 2 (P y bt <SS P [y -t |

21 yez? 21 7 yez?

_ const Z ﬁxclon;tT;o)c 0,
VIlmT4 t In

then in (3.13) it is sufficient to control the behaviour of the first addendum, i.e. we
have to study the asymptotic of a quantity of the following type

T-1
(3.14) In(f) = ﬁ f <;> > ()’

yez?
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where f is a sufficiently smooth function in [0, 1]. First we will find the asymptotic for
71

(3.15) I =33 (Pyw)”.
t:() ye%z

Let us denote by py(4) the characteristic function of Py, then its centered version
is p(A) = e~ Dpy(2) and (3.15) can be rewritten as follows

ST 1- | i) BT
_ 7 |2t _
J(T) = E f|]0(ﬂ) [ dm(2) —7_[ TP dm(2) .

=0 r2
Splitting the above integral in two parts we have

1- | pQ) T

J(T) = PRI iy
O=]  ThmE™
1-[pA)E<d
a0 12T
J(T) = P gy,
Jo 1= p() |
1-[p(AE=d

The J'(T) term remains bounded for 7' — oo, hence its asymptotic in (3.14) is
equal to zero. In J (T) we perform the coordinate change 1— | (1) [>= u? and we
indicate its Jacobian by C(u) = >";7, cx(u), where c,(u) are homogeneous func-
tion of degree k, obtaining

, 1-(1—u2)®
J(T)sz(u)%

uz <o

du .

If we pass to polar coordinates (u1,u2) — (p, ) then previous Jacobian is equal to
Cp,0) = Z,@O p*e(0) and if k is odd then we have f cr(0)d = 0. Assuming
¢ = [ ¢,(0)dd, we obtain

0
J@) =G [ #7100 — A= P dp.
k>0 0

For k > 1 our sum gives a constant, hence we are left with ¢k = 0’-case in the limit

for T — oc. Let be p = L, we have

V2T
Eof41_(1_p2)2poEo sz_ﬂ} (1ﬁ)ZT dz
0 p 0 2T
V2T3 2
oW+ [
0

= o) + CZ—OlnT = J(T) = (1) —i—%ln T.
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Assuming J(0) = 0 quantity in (3.14) reads as follows
1 T-1 L t t—1
Ir(f) = nT lf(T)J(T) — ;(f(7> _f<T))J(t)1 .

J(T)Tﬂoc
() Iy

and by the asymptotic of J(7), it remains to control the quantity

- 71
—Co t+1 t
g2 (/) =1 (5) Jme+v.
for which we have

- T -7
0 t+1 t G N[t
T 2T 2 <f( T >_f<T))ln(t+D”_2TlnTtZ;f(T) (lnTHnT>
~ T-1 ~ T-1
B Co e t Co e
= " m7T [f (T)lnT] ~or f<T>

ST f f@ de + f fexiz =L (10 - )

Since

so that for the asymptotic of (3.14) we obtain

T—o0 CO

Ir(f) — 510,

which implies that in our case we have

2
f(© = Fi(0,0) = ( i Kc(l,v)ﬁ(v)dv> ,

fort=1,2.
We complete the proof evaluating the mixed terms by analogous arguments.
Using previous result we can conclude proof of Th. 2.1 showing the CLT for
the sequence of functionals (/'*ZT( f1O. Let be

t+T.
EDW 1 O=>" > PlydMtz —t1,y2 — 41 | Eayy) - Hrltz, y2) |
=ty y.e7?
then
A T-T
(3.16) Z A Z N9,

\/1_
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and since for t; <t; and #; — t; > T, the quantities £Vt | &) and ED(# | &) are
independent, we can apply the Bernstein method (see e.g. [19]). Let us define

T
e — (T (T =
0<o<y<l, r=[T"], s=[T"], ZT)= [T‘H—Ta] ,

the intervals I},
Ii=[k-D0r+s)kr+k-1s-1], k=1,...,. 2,
the corridors J;,
Jp=lkr+&-1s),kr+s)—1], k=1,...,.%(T),
and
R=[Zwr+s),T—-1],

which may be empty. If we consider the quantity

. 1
7z =—— P
Cr(f 18 \/h‘—Tteugzl:JkuR 19,

then the following result holds
LEMMA 3.4. — If ¢ €[0,1) is small enough then
(@3F197) = 0.

ProoOF. — The estimates given in the proof of lemma (3.2) imply

IV 112
t )

((E(T)(t \ -))2) < const

so that

2 e
<<ZE(T)(15 | -)) > < comst || Vf ||A Z -
t
ted t=kr+(k—1)s
k(r4s)—1 )]

2 -~
< comst || Vf |5 [ln (;W T k—1s

_ s-const | Vf 2.
- kr '

Summing over & from 1 to .77 we have that the numerator grows as the logarithm
of 72" and it can be bounded by In 7. Hence the behaviour of the numerator is

1 . .
compensated by the factor ™ which appears in QZT, see equation (3.16). So that
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the quantity which we are interested in, including the contribute due to summing
1
over the interval R, tends to zero at least as —— T
Lemma (3.4) jmplie§ that the limiting distrlbutlon of é’T is the same as that of
the difference 27 = Q"“(Tz) — (7, which can be written as a sum of independent
variables

ﬁ 1 X ) .
i lo=72=d Ao, A=Y 10.
vindi=

tel;

Hence to finish the proof of Th. (2.1) is enough to establish a Lyapunov condition
which is implied by a L*-estimate for functionals of the type

ADO=3 0| | weT.<T,
t=11
since the results holds, see e.g. [18], if we show

Z ()

(In T)2 Z ( ’m(@) =

By the definitions of »,s and .7, if I; = [t1,,72,] then

Tz

A& = Z Do,

t‘rl.
moreover 7y, = -1 +s)and Ty, =jr+(j—1)s — 1, so that
=t +Ti=r—j+1+T.<c-(r+7.,

while 71, = (j — 1)(r +s) >j-r. Hence by (5.1) with n =2 and using the
Lagrange Theorem, we obtain

1 ED S _Ce2 LD - TN? 7o
— — 0,
(In T)ZZ( 0 <1 Ty < <J'7”)

which concludes the proof of Theorem 2.1.

From now on we will work to prove our results about the behaviour of cu-
mulants in dimension v = 1,2, i.e. theorems (2.2), (2.3), (2.4), (2.5).
Let us define

T-1
DO =EXr |9-bT=> > My,t|Hb&®)),

=0 ye7}
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which can be also written as

S PiuoMt — tyz — 11, G )

0<t1<t2<T—1y; yoec7!

PROPOSITION 3.3. — In dimension v =1, for ¢ €[0,1) small enough, there
exists a constant depending on & such that

const - &
S Mty ] ) < ———
yEZl (t + 1)2

Proor. — Let be

b= max | b(s) |, K'(x) = max | B (x;s) |

using the orthogonality of Mpz*(¢), the inequalities of Lemma (A.1) in [8] and
iterating, for a > 1 and some constant K = K(a), the following estimate

’ﬂ

-1
(T —t)] ‘< K(@)T™*,

o~
Il
—

1

we can choose ¢ small enough such that

t
SMEEy ) <@y &Y Y HWW)

71 =1 fretn=t g 71 G=1
ye min{ty,....tn }>0 V1P €

(3.17)
const - &
<z e

T4}

where const = const(e).

PROPOSITION 3.4. — In dimension v =1, for ¢ € [0, 1) small enough, we have
(57)" = (D)) = VT

PrOOF. — By (3.17) and using the estimates for P(y) given in appendix A of
[8], we can write

<m<§jzli
=0

1
hihet 2t = U

besides, if B = {(y, )} is a certain set of points, by the LLT about Py we obtain

(Sr)? > constz Z (Pg(y))zx VT.

y [y— bt\>o(ts)
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Following proof given for Prop. 3.4, one can prove that in dimension v = 2 and
for ¢ € [0, 1) small enough, the following holds

Sy = (0¥ < In(D).

Moreover if we define T; = [T*], for § € (0,1), and T, = [log T, where we have
set log, T' = max{1,log 7'}, and consider the functional

T-T1 t1+T.

DO =3" 3" > PiadMits —tiy2 — v | o)

h=0 b=t yyy,cz?

which is obtained from #®(¢) removing those terms with large ¢; and large
ts — t1, then by the same arguments used proving Lemma 3.2 the following result
holds

PROPOSITION 3.5. — In dimension v =2, if ¢ € [0, 1) is small enough then

. 1
lim —
T—oo (S7)

. 1. .
Hence the proof of the Th. (2.2) is reduced to prove the CLT for S & (). Using
T

((#D©) - 2P©)") =0.

again the Bernstein method, we divide the axis of time in intervals I, and
corridors Jy. Let be

t+T.
ED@y | &) = Z Z PLy)M(ts — t1, 92 — 1 | Etr) 5

L=ty ype7?
and set
1 R
o= > EPel9.
teu” JUR

Lemma 3.4 implies

LEMMA 3.5. — In dimension v =2, if ¢ € [0,1) is small enough then

T—o0

(7)) = 0.

By Lemma (3.5) we deduce that the limit distribution of £ (&) is the same as
that of 27, = #' — 7, which can be written as a sum of independent variables

¥4 ) . A
=3 2@, 2 =30 9.
=1

J tel;

To prove the CLT for the quantity é'; it is sufficient to establish a Lyapunov
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condition. Therefore we need an L*-estimate for quantities of the type

ty
R
A8, =3 ED 9,

t=t;

this result is proved in [12] and it implies

PROPOSITION 3.6. — In dimension v = 1ife € [0, 1) is small enough then there
exists a positive constant depending on ¢, such that

(AD0)") < const - (Vi — Vi)

Proposition (3.6) implies

1 & const X 12 TInT 7
AP < . < const—— 30,
S (AON (g R D ey S ot

hence Th. 2.2 is proved.
Previous results make easier to prove theorems 2.3, 2.4 and (2.5).

PRroOF (of Th. 2.3). — Given a vector v € R? let us define
£ =@My =>" My.t| E@NbEW) v,
ye7?
By Prop. 3.4 we have
SIy = <(F§(T)U)2> =InT.

Following proof given for Th. 2.1 and by results contained in the Appendix A,
namely Prop. 5.1, if we define the matrix

2= {by} = {{(b:(Hb;(- )},
where b;(-) =", .2 u;c(u; -), then we have
AL
S—Z /4 (0, ) s
that is
b-v

- &) 5 170,627
o e (Mt ] )?)

where the matrix 2 is non degenerate if and only if by bes # b%z .
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Proors (of Th. 2.4 and 2.5). — In dimension v = 1,2 the corrections to cov-
ariance matrix are

PO =rPO+ PO - rPOrP@),

where we have defined

T-1
7D =3NS Myt 9 — bihoi G + (g — bbb )] |
t=0 yez’
T-1
féng)(f) =D D M@t (i — b — bely; &)
t=0 yeZ” ue’zZ’

By the short range condition, following proof given for Th. 2.2, the asymptotic
behaviour of & EJT) is the same as that of . Now we want to consider the ((EJT (&)
term. In [8] the following inequality is proved
b2
(M.t 1)) < 0ot

for some positive constants £ and for all (y,t) € 7'*. Let b be the drift of our
model, we have

Z((M(y,t )2y — bt < ctoz_ﬂy_zft |
ye"/," 3
and
7-1
L];1 = T27‘§ ,
t—1 t2

hence setting

M) — /(D))\2\3

3= (P
by the same arguments used in Prop. 3.4, we obtain

p 2 _y
(S;T)) = T?%

so that
AT) AT T
(:/(1-]- © . < éj o
~ e - ~/m — 0
S(T) ’ S(T) ’
i Yy

hence the only term that significantly contributes to the asymptotic of cor-
rection for % EJ.T)(f) is 55*%”(5). Nevertheless we already know the asymptotic
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behaviour of ‘Z’)g)(é) in dimension v = 1, 2. By proofs of theorems 2.2 and 2.3, in
dimension v =1 we can use the results contained in [12], while in dimension

v = 2 we have Prop. 5.1.

4. — Conclusions.

Results presented in this article are obtained by a small stochasticity
condition which was used to ensure that the power series coming from the
Cluster Expansion of some moments with respect to the field distribution
converge.

Removing previous assumption results on the a.s. validity of the CLT for the
quenched model are shown in [10] and in [11] provided that a non-degeneracy
condition is met. Nevertheless neither in [10] nor in [11] authors are able to prove
our results without a small randomness condition.

Even if we decided to prove our results following Cluster Expansion’s
methods developed in [8, 9], nevertheless we would like to thank the anonymous
referee who suggest that a different approach using martingale theory can avoid
several technical calculations proving our theorems in a more elegant way. The
latter will be used in a future work.

5. — Appendix A.

Under our assumptions on the model and in dimension v = 2 we want to prove
the following proposition

PROPOSITION 5.1. — Letben > 1, if ¢ € [0, 1) is small enough, then there exists
a positive constant C = C(e, n) such that

(AD)™) < Cm) - (n (e + T2 = In (@)™
Proor. — We have that

(5.1) Mtz —t,y2 —y1 | Sayg) = Z 2 MO,
B:(t1,y1)—(t2,y2)

and setting
|B|

My = [ [ i, s) - b yrB)) |
i=1

moments of the type <H§11 M%k> are zero, unless the sets {By,...,Bg,} share
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the so-called covering property, i.e. they have to satisfy following relation

Bie |J B 1,...2n.
z:li;;.Zfz,

Let us define the following class
Low ={# ={Bi,...,Ba,} | % has the covering property} ,

an element .7 = {By,...,Bs,} € %9, is identified by a finite subset of points in
7241 e,
2n
B=|JBcz*
j=1

Any point v € B can be equipped with the specification /, = {j | v € B;}, which is
a collection of labels representing the set to which v belongs.

We are interested only in those collections of sets which have the covering
property so it must be | [, |> 2 for all vertex v € .%. If we define S = {I, | v € B},
then there is a one-to-one correspondence between elements % C %, and the
pairs (B,S) obtained by imposing the following conditions

(i) If two distinet points have the same time coordinate then the corre-
spondent sets [, are disjoint
(ii)) Each label must appear at least once , i.e.

Uw={12...2n}
veB

We associate to any given element in (B,S) € %, a graph & = (By, %) ,
where By = B {0} is the set of vertexes, while ./ is the set of bonds obtained by
the union of two subsets of bonds #., %’ which is determined as follows.

For each vertex v = (t,x) € B and any given j € [, we consider the class
vi={v = ,2)|j€ly,t' >t} If v # 0 we draw a bond from v to the vertex
v, € v; with minimal time coordinate (which is unique by condition (i) ), this
method complete the construction of 4”. To construct 4, we draw a bond from
the origin to the initial point of each B;.

Let us define .%’gln’rﬁT‘ as the subset of .#%, containing all and only those
trajectories .7 = {By,...,B2,} of the type

tf(Bj) S {7.'1,...,12 -l—T*},j =1,...,2n.
If we define

2n
Numzzygﬂ,bzg%HEZMmmw,

ue’Z?
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hence by (5.1), we have

(AD ) = <( S o) >

=11

0 4t +T. 2n
(5:2) = <( SN S PhgoMit—t -y | -)H(t272/2)> >

=11 ta=t1 Y1.Y2

< b2n ” Vf ”2% Z N(ﬁ) S((/(/,)

, 71,19+ T
BER,,

where 55 is the graph associated to the particular choice of .% € .%’;‘n”z*T* and

S =] =@ I =0,

be”, bes’

with weights 7..(b), z(b) that, for b = (v,7v'),v = (t,x) and v' = (¥, 2’), are defined
as follows

_ b o) |— A
7(b) = max | H'(y;s) | gga;&l%:dw) Pily—w|,

while 7.(b) = Pj(x), if b € £, with b = (0,v) and v = (¢, ).
For every set of points B = {(y1,t1),...,Un,t,)} We define the following
quantity

n—1

No(B) = Py (yo) [ [ max | B s,y — ) |
i=1"""

hence we can rewrite last row in (5.2) as follows

2n
L\ > I Nos.

(B Ba)e g2 T =1

Using Lp— inequalities results contained in appendix A of [8], we obtain

2n—1 o+T,
(T) 2n
(-4 ONAS )7 < Z Z oy, ... nk)H Z (& -l-l)mf ’
k=1 ezl j=1 t;=1
max " >1, E n:=2n
where c(ng,...,n;) is a constant that depends on ¢ while the exponent m; is

defined as m; = max{1,n; — 1}, hence we have
((ADL)) < Clem) - (In ez + T = In ()

which concludes the proof.
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