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Representations of Numbers as Sums and Differences
of Unlike Powers

ENRICO JABARA

Abstract. — In this paper we prove that every n € 7 can be written as
n = e X% + ey + e3%5 + e4]

and as

: 4 1
n = 81;%“1} + &2xy + 83%2 + 84%2 + 851‘% + 86.%'2 + 87.’[? + 88x80

with x; € 7, and & € {—1,1}. We also prove some other results on numbers ex-
pressible as sums or differences of unlike powers.

1. — Introduction.

A classical problem in number theory is that of the representation of a given
(natural, integer or rational) number as a sum of suitable powers. The best
known example of this type is Waring’s problem, that is the problem of re-
presenting any given positive integer n as a sum of s kth powers (k fixed, s de-
pending on k):

Q) n= zs: xf
i=1

with x; € IN for 1 <17 < s (as usual, we mean 0 € \N).

A variation on this theme is the problem of representing an integer as a sum
of increasing powers. Given an integer r > 2, we denote by H(r) the smallest
positive integer s such that every sufficiently large integer n can be represented
in the form

@ n=uy+ayt 4 !

with x; € N (1 <1 < s). Moreover, we denote by H (r) the smallest integer s such
that almost all (in the sense of asymptotic density) natural numbers can be
expressed in the form (2).

Roth in [6] proves that H (2) = 3 and, in [7], that H(2) < 50. The latter result
has been improved by Ford, who shows that H(2) < 14 ([1], Theorem 1). In the



170 ENRICO JABARA

same paper, Ford proves that H(3) < 72 ([1], Theorem 2) and that for sufficiently
large r one has H(r) < 12 log () ([1], Theorem 3). Finally, Laporta and Wooley
([5], Theorem 1) prove that H(3) < 8.

Given the elementary character of this exposition, we give a simple proof of
the following result, which turns out to be useful for fully understanding
Theorem 2 and Remarks 4 and 5.

REMARK 1. — Let s, yq, s, - - . , 14, be positive integers, s > 2. Then every suf-
ficiently large natural number » can be represented in the form

S
3) n= Z )
i1

with x; € N only if
51
@) > —>1

S
PROOF. — Let py, ttg, . .., i1, € Nwith > ﬂi‘l = p < 1 and assume, working by
i=1

contradiction, that there exists a K € IN such that every n > K can be re-
presented in the form (3). Clearly, we can assume that 2 < gy < pp < --- <y and
that K > 2.

To get a contradiction, it is enough to produce an R € N, R > K, such that not
all R — K integers contained in the interval [K, R — 1] have a representation in
the form (3).

Choose 7 € N such that if R = r##2-# —1 then R > @QuK)". It is easily
checked that this inequality implies the following:

) (KR 4 KRCV) <1,

For every i € {1,2,...,s}, define M; = {«" | x € N, a* <R}. Every sum-
mand in (3) must clearly belong to a suitable M;. Moreover, as |M;| = RY*, one
sees that

My x Mz x ... x M| = [[R"" =R <R.
i=1
For every 11, As € [1, K], taking (5) into account, one gets
(Rl/ﬂ1 _ ;_1>”1 I (Rl/ﬂs _ ;LS)”"Z (Rl//q —K)ﬂl+(R1/’“ _K>”S
> R(z — KRV ﬂsKI-rl/ﬂs) >R,

and hence at least K2 of the R” sums (3) turn out to be bigger than R. Hence, it is
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possible to represent at most R” — K? elements of the set [0, R — 1] in the form
(3), while the set [K, R — 1] has cardinality R — K. O

A natural generalization of Waring’s problem is the so-called “easier Waring’s
problem” introduced in [9] (see also [2] and §§21.7 and 21.8 in [3]), which consists
in representing every integer n as a sum or difference of a suitable number ¢ of
kth powers (k fixed, ¢ depending on k):

t
(6) n="> &
1=1

with «; € Z and ¢; € {—1,1}.

In this paper we consider the “easier” version of the problem of representing
an integer as a sum of increasing powers.

We denote by H.(r) the smallest positive integer s such that every integer is
representable in the form

) n = g1 + epay 4 4 gl T

with x; € Z and ¢; € {—1,1}.
The main result in this paper is the following:

THEOREM 1. — Every n € 7 can be represented (in infinitely many ways) in
the form

2 4
n = &%) + 82903 + &3x3 + 84902

and in the form

n= sloc? + 82903 + egacg + 34902 + 85acg + sﬁmg + 87903 + 88905150

with x; € 7 and ¢ € {-1,1}.

An equivalent way of expressing Theorem 1 is that
H.(2)<4 and H.(3) <8.

It is worth observing that a general conjecture concerning Waring’s problem
(see the introduction of chapter 8 in [8]) would imply that H(2) = 3 and that
H(3) = 5 since

1

1 1 1 1
+Z>1 and §+ +-+-+=>1

.\ 1
4 5 6 7

DO —
Wl

The statement H.(2) <4 is a consequence of the following more general
result:
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PROPOSITION 1. — Let v € N be odd and coprime to 3. Then every n € 7, can be
represented (in infinitely many ways) as

n:81m§+82x§+83x§+84x2 x, €7 ¢€{-1,1}

Similarly, the statement H.(3) < 8 is a consequence of the following:

PROPOSITION 2. — Every n € Z can be represented as
n= elx? + Sng + 83.%; + 84{E§ + 85m§ + egxg + 67%%0

with ©; € 7, and & € {—1,1}.

We stress here that in the “easier” case, where we allow differences as well as
sums, a statement corresponding to that of Remark 1 does not hold. Namely, we
have the following:

THEOREM 2. — Let vy, vo € Nwith vy odd. Then everyn € 7, can be represented
(in infinitely many ways) as

®) n=a}+yi —ys+a) +ay LY Y2, 21,82 € 2
In particular, if vy = v3 = v > 12 is odd, then in (8) one has

)SEIRTETEFESR g
S 3 4 4 v o
All the above mentioned results have an elementary proof, which is suggested
by the polynomial identity

9) (T+1D*— (T -1 - 2T = 8T.

We finish this introductory part by recalling that while for Waring’s problem
powerful analytic methods has been applied (see [8]), every approach to the
“easier problem” is based, up to now, just on polynomial identities and some
elementary arithmetic (e.g. congruences).

2. — Proofs.

We first observe that every in every representation of type (6) or (7) we can
omit the factor ¢; in front of every summand raised to an odd power.

In the proofs, we use the same strategy used in [2] and [9]. First, one proves
that every element in a suitable coset a’Z + b are representable as sums or dif-
ferences of i powers. Then, one proves that every element of the ring 7 /a’Z can
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be represented as sums or differences of k powers. So, it follows that every
element of 7 is representable as sums or differences of at most & + k powers.

The proof of Theorem 2 is very easy. In fact, if A € N is an odd number, then,
for every odd number y € 7, one has

(10) g/ =y mod 8.

Since every n € 7 can be written as n = 8¢ 4+ d; + dg with d; € {0,1,3,5,7} and
dy € {0,1}, the statement follows as an immediate consequence of (9) and (10).

In order to prove Proposition 1, we first observe that the preceding argument
implies that the claim of Proposition 1 is true when » = 0,1,3,5,7 mod 8. It is
hence enough to show that every even number » € 7 can be written in the form
(8). We will make use of following lemma (where ¢ denote Euler’s totient func-
tion).

LEMMA 1. — Let v, t € 7 be odd and such that (v, (7)) = 1. Let r be a positive
integer and let

E={ce7/27Z

£#£0 mod 2}.
Then the map & — E & & is a bijection.

Proor. — It is enough to recall that 7./2"t7 ~ 7./2""7, x '7,/t7, and that the
map 7/1/,— 7/t7 nw~ n"is injective. O

In order to complete the proof of Proposition 1, we observe that in Z[T] one
has

11) (T+8)*—@T+38°—(T*+2T +7%=26T +5.

If ve N is odd and coprime to 3, then (v,12) =1 and Lemma 1 applied
to =13 yields that the map Z—Z5 &— ¢ is bijective (where = =
{&E€7/267 | £ # 0 mod 2}).

If » € Z is even, then there exist (infinitely many) Ty, # € Z such that

n=26T)+5+7n

with # (necessarily) odd. Hence there exists & € 7 with £" = # mod 26 and one
can determine T € 7 such that n = 26T + £". So, one gets

12) n=26[Tg+T1]+5+¢&.

Now, recalling the polynomial identity (8), it follows that every integer » can be
represented in the form n = &a? + el + e3af + eq) with «; € Z and
& € {—1,1}. Moreover, by (12) we see that there are infinitely many such re-
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presentations for a given integer n, since there are infinitely many choices for an
integer ¢ such that & = » mod 26.

To prove Proposition 2 we use the identity
(T + 252 . 728)8 _ (T _ 252 . 728)8
(13) . (28 . 74 . T)7 _ (232 . 717 . T)5 7 (288 . 747 . T)S
_ 9368 7196

and the following

LEMMA 2. — Ifm = 2"7% (r;s > 1), then every element of the ring A = 7,/m’Z,
can be written in the form +ai + al’, for suitable ay,as € A.

ProoF. — We first introduce some useful notation. If R is a commutative ring
with unity, we denote by Z(R) the multiplicative group of the invertible elements of
R and, for k € N, we denote by 7 the endomorphism #f : Z(R) — Z(R) x + aF.
Given two subsets X,Y of R, we write — X ={-x|cecX}, £ X=XU-X,
X+Y={e+ylecXyel}, X-Y=X+4+(-Y)and XY =X+(£Y).
Finally, if n € N, we define R" = {»" | » € R}.

We observe that A =B x C with B=7/2"7 and C = 7Z/77. The en-
domorphism ngB is in fact an automorphism, since ker(ng ) = {1} (and B is a finite
set). Hence Z(B) C B¥. Now, B = {0,1} + Z(B) and hence every b € B can be
written as j + «” and as & + »° with j € {0,1}, h € {0, -1} (and x,y € B).

We consider now ={j: one sees that ker(z{)) =ker(z§)={-1,1} (as
(5,p(7) =1). Since —1 is not a quadratic residue modulo 7, it follows that
m10(Z(C) N[ — m1o(Z(C)] = @), and hence

Z(C) = mo(Z(O) U [ — mo(Z(O))].

and Z(C) C +C1Y. Since {0,1} C C¥, it follows that C = C®! + C1Y and that
every ¢ € C can be written as k + £2'° with k € {0,1}, £ € {1, -1} (and z € C).
Therefore, for every (b,c) € A
k)’ +@G,"° if ¢=1
(b,e) = S0
W, k) — (h,2)"° if £= -1

which yields the required decomposition. O
Theorem 1 is an easy consequence of Proposition 1 and Proposition 2. In fact,

H_.(2) < 4 follows by considering v = 5 in Proposition 1. On the other hand, by
using Proposition 2 and by observing that every 8th power is also 4th power, one
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gets that every integer n can be represented in the form
(14) N = e1x3 + a0 + e300 + eq ) + e5xs + ey + ey’

with &; € 7 and ¢; € {—1,1}. Since in (14) the term corresponding to 6th powers
is missing, it easily follows that there are infinitely many representations of % in
the second form given in Theorem 1.

3. — Further remarks.

REMARK 2. — Proposition 1 remains true also for v = 3. In this case, we can
prove it by using the identity

(T —T+1°2+(T-1P+T3 T4 =T

(for further identities concerning the sum of a square and two cubes see [4]).

REMARK 3. — The polynomial identity (11) is a (slightly changed) particular
instance of the more general identity

(15) T+ QT +y+4° — (T? +4T + 6y + 16)2 = 2f()T + ¢(»)

where f(y) = 3)2 — 16 and g(y) = ® — 24> — 144y — 192. Observe that if y € 7
is an odd number, then f(y) and g(y) are odd, as well. Using those facts, one
can check that Proposition 1 remains true in many cases even if the re-
striction (v,3) =1 is dropped. In fact, many numbers of the form f(y) are
primes of the type 2p + 1 with p prime. In the following table, y; denotes the
1th natural number such that f(y;) is a prime number of the form 2p; + 1,
with p; prime.

1 1 2 3 4 5 . 31 . 1.000
Vi 3 5 9 11 | 21 | ... 1.001 . 102.455
Di 5 29 | 113 | 173 | 6563 | ... | 1.502.993 | ... 15.745.540.529

We remark that Proposition 1 remains valid for every positive integer v not
divisible by any prime p; such that 2p; +1 =f(y,) is prime. In particular,
Proposition 1 holds true for every odd v divisible by at most 10000 distinct primes
or such that v < 101" (this follows just by extending the table above).

Not only Proposition 1 is almost certainly true for every odd v, but it is quite
likely that the term containing the vth power is not going to be necessary. We
state the following conjecture, which is based on the results in [6] and on “ex-
perimental” evidence:
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CONJECTURE 1. — H.(2) = 3, i.e. every n € 7 can be written in the form
n = sle + sgacg + 8390@%

with X1,%2,%3 € 7. and €1,82,83 € {—1,1}.

On the other hand, it looks not possible to represent every integer as sums
or differences of two 4th powers and a cube. Presumably, the smallest
counterexample is 4, but no proof of this is known. Taking a considerable
amount of computer-based experiments into account, it looks reasonable the
following:

CONJECTURE 2. — Every n € 7 can be written (in infinitely many ways) in the
form
n = 8190? + 82903 + egacg + 84901

with X1,%2,%3,X%4 € 7, and €1,82,€3,84 € {—1, 1}.

REMARK 4. — With the same methods used in the proof of Theorem 2 and using
the identity
(16)  (T® —16T*+192T +512° + 2T —8)° —~T° =23.29 . T 4+ 21%.7

one can show that, given any v, ve € IN with v; odd and coprime to 7, every n € 7
can be represented in the form

2 )
n =2 + x5 — o + ) +ap

with a1, @2, 23, x4, 5 € Z. To see this, it is enough to apply Lemma 1, recalling that
p213.29) =214.17.
Also in this case, if v = v3 = v > 15 is odd and coprime to 7, one gets that

REMARK 5. — Let A be an algebra over a field F of characteristic # 2 (in
particular, one can consider A = I = Q). Then the identity (9) shows that every
element @ € A can be written as

a:a§+a§—a§

with suitable aq, ag, ag € A. Moreover, if the characteristic of ['is not 2 and not 7,
by the identity (13) we can write every a € A as

a=F+ B3+ B+ L~ S
with suitable f;, fs, B3, B4, B5 € A. Finally, if the characteristic of I is not 2 and not
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29, by the identity (16) we can write every a € A as

a=7%+%-9%

with suitable y;, 75, 75 € A.

We note that the numbers

1 1 1 1 1
§+Z+Z~0.833, éJrg

S

+

are both less than 1.

The polynomial identities (13), (15) and (16), though rather elementary, do not

appear in any of the paper available to the author of this note.

(1]
(2]
(3]
(4]
(5]
(6]
[7]
(8]
(9]
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