BOLLETTINO UNIONE MATEMATICA ITALIANA

N. Ansini, O. Iosifescu

Approximation of Anisotropic Perimeter Functionals by Homogenization

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 3 (2010), n.1, p. 149–168.

Unione Matematica Italiana

 $<\!\!\mathtt{http://www.bdim.eu/item?id=BUMI_2010_9_3_1_149_0}\!>$

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Approximation of Anisotropic Perimeter Functionals by Homogenization

N. Ansini - O. Iosifescu

Abstract. – We show that all anisotropic perimeter functionals of the form $\int\limits_{\partial^+ E\cap\Omega} \varphi(v_E)\,d\mathcal{H}^{n-1}$ (φ convex and positively homogeneous of degree one) can be approximated in the sense of Γ -convergence by (limits of) isotropic but inhomogeneous perimeter functionals of the form $\int\limits_{\partial^+ E\cap\Omega} a(x/\varepsilon)\,d\mathcal{H}^{n-1}$ (a periodic).

1. - Introduction.

Object of this paper is the approximation for anisotropic and crystalline energies of the form

(1.1)
$$\mathcal{F}(E) = \int_{\partial^* E \cap \Omega} \varphi(\nu_E) \, d\mathcal{H}^{n-1}$$

defined on sets E with finite perimeter on an open set $\Omega \subset \mathbb{R}^n$. Here and henceforth ∂^*E and ν_E are the boundary and the inner normal of E in the usual measure theoretic sense and φ is convex, even, and positively homogeneous of degree one. In other words, φ is a norm on \mathbb{R}^n . We do not assume that φ is smooth or isotropic. More precisely, we address the problem of approximating anisotropic functionals of the form (1.1) by locally isotropic but inhomogeneous perimeter functionals of the form

(1.2)
$$\mathcal{G}_{\varepsilon}(E) = \int_{\partial^* E \cap O} a\left(\frac{x}{\varepsilon}\right) d\mathcal{H}^{n-1},$$

with a a 1-periodic function.

Functionals of the form (1.1) are object of active research, especially in connection with crystalline motion by curvature (see Almgren and Taylor [2], Taylor [22]-[25] and the works by Bellettini, Goglione and Novaga [7], Bellettini and Novaga [8]).

Our approximation suggests an indirect way to deal with crystalline problems where anisotropy is replaced by inhomogeneity and a passage to the limit.

In A. Braides, M. Maslennikov, L. Sigalotti [14] it has been shown that energies of the form (1.2) converge to energies of the form (1.1) (see also Ambrosio-Braides [4]). Here we show that, conversely, all anisotropic energies can be approximated by (limits of) energies of the form (1.2) in the sense of Γ -convergence.

In this paper we suggest two way to approximate φ . In Section 3 given a target φ , $0 < a \le \varphi \le \beta < +\infty$, we define a as

$$a(x) = egin{cases} arphi(v_j) & ext{if } x \in A_j \setminus igg(igcup_{h
eq j} A_higg), & j \in \mathbb{N} \ eta & ext{otherwise in } \mathbb{R}^n \ , \end{cases}$$

for \mathcal{H}^{n-1} a.e. x, where $\{v_j\}$ is a dense sequence in S^{n-1} such that $v_h \neq \pm v_j$ for $h \neq j, A_j = \mathbb{Z}^n + \Sigma_j$ and Σ_j is the hyperplane through the origin and orthogonal to v_j . The idea behind the construction of the function a is that the optimal sequences of sets $E_{\varepsilon} \to E$ will have boundaries that avoid the sets where the coefficient of a is β ; on the contrary these boundaries will lie on hyperplanes A_j , on which $a(x/\varepsilon) = \varphi(v_j) = \varphi(v_{\varepsilon_s})$, so that indeed $\mathcal{G}_{\varepsilon}(E_{\varepsilon}) = \mathcal{F}(E_{\varepsilon}) \to \mathcal{F}(E)$.

In Section 4 in order to improve the regularity of a a number of technical difficulties must be overcome. First we need to split our construction by considering a finite set $\{v_1, \cdots, v_k\}$ of rational directions before letting $k \to +\infty$, and at the same time regularize our function a to obtain a continuous integrand. In this way we obtain a Γ -limit depending on k that is a candidate for an approximation of \mathcal{F} . The identification of the energy density of this Γ -limit requires the introduction of some carefully constructed piecewise-constant comparison energy densities on which to use the representation formulas for the homogenization of perimeters in [14].

Our result has some connections with a paper by Braides, Buttazzo and Fragalà [11] where (smooth) isotropic Riemannian metrics are shown to be dense in (lower semicontinuous) Finsler metrics in the sense similar to that stated above. Previously Acerbi and Buttazzo [1] proved that the class of Riemannian metrics is not closed in the class of all Finsler metrics with respect to the Γ -convergence of energy integrals. The result in [11] has been generalized to Borel Finsler metrics by Davini [16] (see also [17]).

A possible application of our result is the approximation of perimeter functionals by elliptic energies as in Modica-Mortola [20] (see also [10]) using a double-scale procedure as in Ansini, Braides and Chiadò Piat [6]. In fact, upon identifying a set E with its characteristic functions $u = \chi_E$, the results in [6] show that energies (1.2) can be substituted by energies

$$\mathcal{J}_{\varepsilon,\delta}(u) = \int_{O} \frac{W(u)}{\delta} + \delta a^{2} \left(\frac{x}{\varepsilon}\right) |Du|^{2} dx$$

defined on $H^1(\Omega)$ where W is a 'double-well energy' and a is periodic.

2. - Notation and preliminaries.

Let Ω be an open subset of \mathbb{R}^n . We denote the Lebesgue *n*-dimensional measure and the Hausdorff (n-1)-dimensional measure of a set $E \subset \mathbb{R}^n$ by |E| and $\mathcal{H}^{n-1}(E)$, respectively, and we set

$$S^{n-1} = \{ x \in \mathbb{R}^n : |x| = 1 \} .$$

We say that a sequence $\{E_j\}$ of measurable sets of Ω converges to a measurable set $E \subset \Omega$, and we write $E_j \to E$, if $|E_j \triangle E| \to 0$. Let E be a Lesbegue measurable subset of \mathbb{R}^n . We denote the *essential boundary* of E by $\partial^* E$ *i.e.*

$$\partial^*E = \left\{x \in \mathbb{R}^n: \ \limsup_{\rho \to 0^+} \frac{|B_\rho(x) \setminus E|}{\rho^n} > 0 \ \text{and} \ \limsup_{\rho \to 0^+} \frac{|B_\rho(x) \cap E|}{\rho^n} > 0 \right\}.$$

We say that E is a set of finite perimeter in Ω , or a Caccioppoli set, if it is measurable and

$$P(E,\Omega):=\sup\biggl\{\int\limits_{E}\operatorname{div}g\,dx:\ g\in C^{1}_{0}(\Omega;\mathbb{R}^{n}), |g|\leq 1\biggr\}<+\infty\,;$$

the number $P(E,\Omega)$ is called perimeter of E in Ω . We denote the class of sets with finite perimeter in Ω by $\mathcal{P}(\Omega)$ and the class of sets of locally finite perimeter in \mathbb{R}^n by

$$\mathcal{P}_{loc}(\mathbb{R}^n) = \{ F \subset \mathbb{R}^n : F \in \mathcal{P}(\Omega), \text{ for any open set } \Omega \subset \subset \mathbb{R}^n \}.$$

Let χ_E be the *characteristic function* of E. For any set $E \in \mathcal{P}(\Omega)$ the essential boundary of E, $\partial^* E$, is \mathcal{H}^{n-1} -rectifiable i.e. there exists a countable family (Γ_i) of graphs of Lipschitz functions of (n-1) variables such that $\mathcal{H}^{n-1}\Big(\partial^* E\setminus\bigcup_{i=1}^\infty \Gamma_i\Big)=0$ and $\mathcal{H}^{n-1}(\partial^* E\cap\Omega)<+\infty$. Moreover, the distributional derivative $D\chi_E$ is an \mathbb{R}^n -valued finite Radon measure in Ω , $P(E,\Omega)=|D\chi_E|(\Omega)$ and a generalized Gauss-Green formula holds

$$\int\limits_E \operatorname{div} g \, dx = - \int\limits_\Omega \langle v_E, g \rangle \, d|D\chi_E| \,, \qquad g \in C^1_0(\Omega;\mathbb{R}^n) \,,$$

where $D\chi_E = v_E |D\chi_E|$ is the polar decomposition of $D\chi_E$ (see Theorem 3.36 in [5]). If E has smooth boundary, the Gauss-Green theorem implies that $D\chi_E = v_E \mathcal{H}^{n-1} \sqcup \partial^* E$, where v_E is the inner normal to E. This representation of the distributional derivative was generalized by De Giorgi and Federer as follows:

$$\exists \ v_E(x) := \lim_{\rho \to 0^+} \frac{D\chi_E(B_\rho(x))}{|D\chi_E|(B_\rho(x))} \in S^{n-1} \quad \mathcal{H}^{n-1} \text{- a.e. } x \in \partial^* E$$

and

$$D\gamma_E = \nu_E \,\mathcal{H}^{n-1} \, \Box \, \partial^* E \,.$$

In particular, for every set $E \in \mathcal{P}(\Omega)$, we have that $P(E,\Omega) = \mathcal{H}^{n-1}(\partial^* E \cap \Omega)$. We refer to the books by Ambrosio, Fusco and Pallara [5] and Federer [19] for the complete exposition of the theory of sets with finite perimeter.

Let $v \in S^{n-1}$, let Q^v be an open cube of \mathbb{R}^n centered at the origin having side length 1 and one face orthogonal to v, and let $H^v_{\pm} = \{x \in \mathbb{R}^n : \langle x, \pm v \rangle > 0\}$. $\partial_{\pm}Q^v$ denote the side of ∂Q^v orthogonal to v and included in H^v_{\pm} , respectively, while $\partial_L Q^v = \partial Q^v \setminus (\partial_+ Q^v \cup \partial_- Q^v)$ is the lateral part of the boundary i.e. the union of the sides of Q^v that are parallel to v.

2.1 - Preliminary results.

In this section we recall some results that we will use in the sequel.

THEOREM 2.1. – Let $\varphi: S^{n-1} \to [0, +\infty)$ be a bounded Borel function and

$$\mathcal{F}(E) = \int_{\partial^* E \cap \Omega} \varphi(v_E) d\mathcal{H}^{n-1}$$

for every $E \in \mathcal{P}(\Omega)$. Then the functional \mathcal{F} is lower semicontinuous, in the sense that for every sequence $\{E_h\} \in \mathcal{P}(\Omega)$ and $E \in \mathcal{P}(\Omega)$

$$\lim_{h\to +\infty} |(E_h \bigtriangleup E) \cap \Omega| = 0 \quad \Longrightarrow \quad \mathcal{F}(E) \leq \liminf_{h\to +\infty} \mathcal{F}(E_h) \,,$$

if and only if the positively one-homogeneous extension of φ from S^{n-1} to \mathbb{R}^n is convex.

The proof of the necessity of Theorem 2.1 is due to Ambrosio-Braides [3] while for the sufficiency we recall the Reshetnyak's theorem (see e.g. [10]).

For simplicity in the following we will say that a real valued function defined on S^{n-1} is convex if its positively one-homogeneous extension from S^{n-1} to \mathbb{R}^n

$$p \mapsto \varphi\Big(\frac{p}{|p|}\Big) \, |p|$$

is convex.

DEFINITION 2.2. – Let A be an open set with bounded Lipschitz boundary and let F and G be sets with finite perimeter in A. Let $\omega \subset \partial A$, we say that

$$G = F$$
 on ω

if and only if the trace (in the usual sense of BV functions) of χ_F and χ_G coincide for \mathcal{H}^{n-1} -almost every $x \in \omega$.

Remark 2.3. — By Theorem 2.1 and by a simple rescaling argument, for every convex function $\varphi: S^{n-1} \to [0, \infty)$ we have that

$$T^{n-1}\varphi(v) \le \int_{\partial^* E \cap TQ^v} \varphi(v_E) d\mathcal{H}^{n-1}$$
,

for every T>0 and every $E\in\mathcal{P}_{loc}(\mathbb{R}^n)$ such that $E=\Pi_+^{\nu}$ on $T\partial Q^{\nu}$. Similarly, for every convex function $\varphi:S^{n-1}\to [0,\infty)$ we have also that

$$T^{n-1} \varphi(v) \leq \int_{\partial^* E \cap TQ^v} \varphi(v_E) \, d\mathcal{H}^{n-1} \,,$$

for every $E \in \mathcal{P}_{loc}(\mathbb{R}^n)$ such that $E + T\eta_i = E, i = 1, \dots, n-1$, and $E = \Pi_+^v$ on $T\partial_{\pm}Q^v$.

THEOREM 2.4 (Homogenization of perimeters [14]). – Let Ω be a bounded open subset of \mathbb{R}^n with Lipschitz boundary and let $f: \mathbb{R}^n \to [a, \beta]$, with $0 < a < \beta < +\infty$, be a 1-periodic Borel function. Then, there exists the limit

(2.1)
$$\Gamma - \lim_{\varepsilon \to 0} \int_{\partial^* E \cap \Omega} f\left(\frac{x^{\varepsilon}}{\varepsilon}\right) d\mathcal{H}^{n-1} = \int_{\partial^* E \cap \Omega} f_{\text{hom}}(\nu_E) d\mathcal{H}^{n-1}$$

for every $E \in \mathcal{P}(\Omega)$. Moreover, there exists the limit

$$\lim_{arepsilon o 0} \quad \inf \left\{ \int\limits_{\partial^* F \cap Q^{arphi}} f \Big(rac{x}{arepsilon} \Big) \, d\mathcal{H}^{n-1} : \ F \in \mathcal{P}(Q^{arphi}), \quad F = \Pi^{arphi}_+ \ ext{on} \ \partial Q^{arphi}
ight\}$$

for every $v \in S^{n-1}$, the function f_{hom} is convex and satisfies the asymptotic formula

$$(2.2) \quad f_{\mathrm{hom}}(\mathbf{v}) = \lim_{\varepsilon \to 0} \quad \inf \left\{ \int\limits_{\partial^{\mathbf{v}} F \cap Q^{\mathbf{v}}} f\left(\frac{x}{\varepsilon}\right) d\mathcal{H}^{n-1} : \ F \in \mathcal{P}(Q^{\mathbf{v}}), \quad F = \Pi^{\mathbf{v}}_{+} \ \text{on} \ \partial Q^{\mathbf{v}} \right\},$$

for every $v \in S^{n-1}$.

(See also [4]).

Proposition 2.5 (Periodic boundary conditions). — Let f be as in Theorem 2.4. Then

$$(2.3) \quad f_{\text{hom}}(v) = \lim_{T \to +\infty} \frac{1}{T^{n-1}} \inf \left\{ \int_{\partial^v F \cap TQ^v} f(x) \, d\mathcal{H}^{n-1} : F \in \mathcal{P}_{\text{loc}}(\mathbb{R}^n), \ F = \varPi_+^v \text{ on } \right.$$

$$\left. T \partial_{\pm} Q^v, F + T \eta_i = F \quad i = 1, \cdots, n-1 \right\}$$

for every $v \in S^{n-1}$ where $(\eta_1, \dots, \eta_{n-1})$ are linearly independent vectors orthogonal to the faces of Q^v other than v.

Proof. – Let us define

$$g_T^p(v) = \frac{1}{T^{n-1}} \inf \left\{ \int_{\partial^* F \cap TQ^v} f(x) d\mathcal{H}^{n-1} : F \in \mathcal{P}_{loc}(\mathbb{R}^n), \ F = \Pi_+^v \text{ on } T\partial_{\pm}Q^v, \right.$$

$$\left. F + T\eta_i = F \quad i = 1, \cdots, n-1 \right\}$$

$$= \inf \left\{ \int_{\partial^* T F \cap Q^v} f(Tx) d\mathcal{H}^{n-1} : F \in \mathcal{P}_{loc}(\mathbb{R}^n), \ \frac{1}{T} F = \Pi_+^v \text{ on } \partial_{\pm}Q^v, \right.$$

$$\left. \frac{1}{T} F + \eta_i = \frac{1}{T} F \quad i = 1, \cdots, n-1 \right\}$$

and

$$g_T(v) = \inf \left\{ \int\limits_{\partial^* E \cap Q^v} f(Tx) \, d\mathcal{H}^{n-1} : \ E \in \mathcal{P}(Q^v), \quad E = \Pi_+^v ext{on } \partial Q^v
ight\},$$

for every $T \in \mathbb{N}$. Note that the limit of (2.4), as $T \to +\infty$, exists since it is an infimum on \mathbb{N}

Let $F_T\in\mathcal{P}_{\mathrm{loc}}(\mathbb{R}^n)$ be such that $F_T+T\eta_i=F_T,\,i=1,\cdots,n-1,\,F_T=\varPi_+^v$ on $T\partial_\pm Q^v$ and

$$(2.5) \qquad \int\limits_{\partial^* \frac{1}{T} F_T \cap Q^{\mathsf{v}}} f(Tx) \, d\mathcal{H}^{n-1} \le g_T^p(\mathsf{v}) + o(1)$$

as $T \to +\infty$. Hence, if we denote by $E_T := (1/T)F_T$ then the sequence $\{E_T\}$ converges to Π_+^{ν} as T tends to ∞ . Reasoning as in [14] Lemma 3.2 we may construct a new sequence $\{\widetilde{E}_T\}$ still converging to Π_+^{ν} such that $\widetilde{E}_T = \Pi_+^{\nu}$ in a neighborhood of ∂Q^{ν} and

In fact, let us define

(2.7)
$$\widetilde{E}_T = \begin{cases} E_T & \text{on } Q^{\nu} \setminus Q^{\nu}_{\delta} \\ \Pi^{\nu}_{+} & \text{on } Q^{\nu}_{\delta} \end{cases}$$

where $Q^{\nu}_{\delta} = \{x \in Q^{\nu}: d(x) := \operatorname{dist}(x, \mathbb{R}^n \setminus Q^{\nu}) < \delta\}$, for all $\delta > 0$. Note that \widetilde{E}_T is a test set for g_T . Moreover,

$$(2.8) \begin{array}{c} (\partial^* \widetilde{E}_T \bigtriangleup \partial^* E_T) \cap Q^{\vee} = ((\partial^* \widetilde{E}_T \bigtriangleup \partial^* E_T) \cap Q^{\vee} \setminus Q^{\vee}_{\delta}) \cup ((\partial^* \widetilde{E}_T \bigtriangleup \partial^* E_T) \cap Q^{\vee}_{\delta}) \\ = ((E_T \bigtriangleup \Pi^{\vee}_+) \cap \{d(x) = \delta\}) \cup ((\partial^* E_T \bigtriangleup \Pi^{\vee}) \cap Q^{\vee}_{\delta}) \, . \end{array}$$

Since $E_T \to \Pi^{\nu}_+$, by Coarea formula we have that

$$egin{aligned} 0 &= \lim_{j o +\infty} |Q^{\scriptscriptstyle V}_{\delta} \cap (E_T igtriangleup H^{\scriptscriptstyle V}_+)| \ &= \lim_{j o +\infty} \int\limits_{Q^{\scriptscriptstyle V}_{\delta} \cap (E_T igtriangleup H^{\scriptscriptstyle V}_+)} |
abla du \ &= \lim_{j o +\infty} \int\limits_{0}^{\delta} \mathcal{H}^{n-1}(\{d(x) = t\} \cap (E_T igtriangleup H^{\scriptscriptstyle V}_+)) \, dt \, . \end{aligned}$$

By a suitable choice of $\delta = \delta_T \to 0$ there exists $t_T \in (0, \delta_T)$ such that

$$\lim_{T\to +\infty}\mathcal{H}^{n-1}(\{d(x)=t_T\}\cap (E_T\bigtriangleup \varPi_+^{\scriptscriptstyle{V}}))=0\,.$$

Hence, by replacing δ with t_T in (2.7) and (2.8) we get (2.6). Now we can compare g_T^p with g_T . In fact,

$$\int_{\partial^* \tilde{E}_T \cap Q^{\mathsf{v}}} f(Tx) \, d\mathcal{H}^{n-1} = \int_{\partial^* E_T \cap Q^{\mathsf{v}}} f(Tx) \, d\mathcal{H}^{n-1} - \int_{(\partial^* E_T \setminus \partial^* \tilde{E}_T) \cap Q^{\mathsf{v}}} f(Tx) \, d\mathcal{H}^{n-1} + \int_{(\partial^* \tilde{E}_T \setminus \partial^* E_T) \cap Q^{\mathsf{v}}} f(Tx) \, d\mathcal{H}^{n-1} .$$

By (2.2), (2.5) and (2.6) we have that $f_{\text{hom}}(v) \leq \lim_{T \to +\infty} g_T^p$. The other inequality easily follows by definition of g_T and g_T^p .

3. – Approximation of φ .

In this section we prove that given a target φ we can construct a suitable function a such that

$$\Gamma - \lim_{\varepsilon \to 0} \int_{\partial^* E \cap Q} a\left(\frac{x}{\varepsilon}\right) d\mathcal{H}^{n-1} = \int_{\partial^* E \cap Q} \varphi(v_E) d\mathcal{H}^{n-1}$$

for every $E \in \mathcal{P}(\Omega)$.

THEOREM 3.1. – Let $\varphi: S^{n-1} \to [a, \beta]$, with $0 < a < \beta$, be a Borel function such that the positively one-homogeneous extension of φ to \mathbb{R}^n

$$p \mapsto \varphi\left(\frac{p}{|p|}\right)|p|$$

is convex and even. Let $\{v_j\}$ be a dense sequence in S^{n-1} such that $v_h \neq \pm v_j$ for $h \neq j$ and let $A_j = \mathbb{Z}^n + \Sigma_j$ where Σ_j is the hyperplane through the origin and orthogonal to v_j , for every $j \in \mathbb{N}$. Let $a : \mathbb{R}^n \to [a, \beta]$ be a Borel function defined by

(3.1)
$$a(x) = \begin{cases} \varphi(v_j) & \text{if } x \in A_j \setminus \left(\bigcup_{h \in \mathbb{N} \\ h \neq j} A_h\right), \ j \in \mathbb{N} \\ a & \text{if } x \in \bigcup_{h \in \mathbb{N} \\ h \neq j} (A_j \cap A_h), \ j \in \mathbb{N} \\ \beta & \text{otherwise in } \mathbb{R}^n. \end{cases}$$

Then,

$$\Gamma - \lim_{\varepsilon \to 0} \int_{\partial^* E \cap \Omega} a\left(\frac{x}{\varepsilon}\right) d\mathcal{H}^{n-1} = \int_{\partial^* E \cap \Omega} \varphi(v_E) d\mathcal{H}^{n-1}$$

for every $E \in \mathcal{P}(\Omega)$

$$\varphi({\boldsymbol{\mathcal{v}}}) = \lim_{T \to +\infty} \, \frac{1}{T^{n-1}} \inf \bigg\{ \int_{\partial^* F \, \cap \, TQ^{\boldsymbol{\mathcal{v}}}} a(x) \, d\mathcal{H}^{n-1} : \, F \in \mathcal{P}(TQ^{\boldsymbol{\mathcal{v}}}), \, \, F = \boldsymbol{\varPi}_+^{\boldsymbol{\mathcal{v}}} \, \mathrm{on} T \partial Q^{\boldsymbol{\mathcal{v}}} \bigg\} \, .$$

PROOF. – We recall that by Theorem 2.4 we have that

$$\Gamma - \lim_{\varepsilon \to 0} \int_{\partial^* E \cap \Omega} a\left(\frac{x}{\varepsilon}\right) d\mathcal{H}^{n-1} = \int_{\partial^* E \cap \Omega} a_{\text{hom}}(v_E) d\mathcal{H}^{n-1}$$

for every $E \in \mathcal{P}(\Omega)$, where a_{hom} is convex and

$$a_{\mathrm{hom}}(\mathbf{v}) = \lim_{T \to +\infty} \frac{1}{T^{n-1}} \inf \left\{ \int_{\partial^* F \cap TQ^{\mathbf{v}}} a(\mathbf{x}) \, d\mathcal{H}^{n-1} : \ F \in \mathcal{P}(TQ^{\mathbf{v}}), \ F = \varPi_+^{\mathbf{v}} \, \mathrm{on} T \partial Q^{\mathbf{v}} \right\}.$$

Hence, it remain to prove then that $\varphi = a_{\text{hom}}$.

We first deal with the inequality: $a_{\text{hom}}(v) \geq \varphi(v)$. Let $F \in \mathcal{P}(TQ^v)$ such that $F = \Pi_+^v$ on $T\partial Q^v$. The essential boundary $\partial^* F$ may intersect A_j in a set of positive \mathcal{H}^{n-1} measure, which means that a relevant part of $\partial^* F$ coincides with a part of A_j ; hence,

$$v_j = \pm v_F$$
 \mathcal{H}^{n-1} - a.e. in $\partial^* F \cap A_j$.

Since $\varphi(v) = \varphi(-v) \in [a, \beta]$, by (3.1) we get then

$$(3.2) \int_{\partial^{*}F \cap TQ^{v}} a(x) d\mathcal{H}^{n-1}$$

$$= \sum_{j \in \mathbb{N}} \int_{\partial^{*}F \cap A_{j} \cap TQ^{v}} \varphi(v_{j}) d\mathcal{H}^{n-1} + \int_{(\partial^{*}F \setminus \bigcup_{j}A_{j}) \cap TQ^{v}} \beta d\mathcal{H}^{n-1}$$

$$\geq \sum_{j \in \mathbb{N}} \int_{\partial^{*}F \cap A_{j} \cap TQ^{v}} \varphi(v_{F}) d\mathcal{H}^{n-1} + \int_{(\partial^{*}F \setminus \bigcup_{j}A_{j}) \cap TQ^{v}} \varphi(v_{F}) d\mathcal{H}^{n-1}$$

$$= \int_{\partial^{*}F \cap TQ^{v}} \varphi(v_{F}) d\mathcal{H}^{n-1}.$$

By (3.2) and Remark 2.3, we can conclude that

$$\int\limits_{\partial^* F \cap TQ^{\nu}} a(x) \, d\mathcal{H}^{n-1} \geq T^{n-1} \varphi(\nu)$$

and by definition of a_{hom}

$$a_{\text{hom}}(v) > \varphi(v).$$

By (3.1), we have that

$$\int_{\Sigma_j \cap TQ^{v_j}} a(x) d\mathcal{H}^{n-1} = T^{n-1} \varphi(v_j);$$

hence, $a_{\text{hom}}(v_j) = \varphi(v_j)$ for every $j \in \mathbb{N}$. To conclude the proof of the theorem it remains to show that $a_{\text{hom}}(v) = \lim_{j \to \infty} a_{\text{hom}}(v_j)$, and this is an easy consequence of the convexity of a_{hom} .

The following proposition allows us to describe φ also by a homogenization formula with periodic boundary conditions.

Proposition 3.2.

$$(3.4) \quad \varphi(v) = \lim_{T \to +\infty} \frac{1}{T^{n-1}} \inf \left\{ \int_{\partial^* F \cap TQ^v} a(x) \, d\mathcal{H}^{n-1} : F \in \mathcal{P}_{\text{loc}}(\mathbb{R}^n), \ F = \Pi^v_+ \right.$$

$$\text{on } T\partial_{\pm}Q^v, F + T\eta_i = F \quad i = 1, \cdots, n-1 \right\}$$

for every $v \in S^{n-1}$ where $(\eta_1, \dots, \eta_{n-1})$ are linearly independent vectors orthogonal to the faces of Q^v other than v.

PROOF. – By Theorem 3.1 we have that $a_{\text{hom}}(v) = \varphi(v)$; hence, by Proposition 2.5 we get (3.4).

4. – Approximation scheme for φ by regularization.

In this section we suggest another way to approximate φ by regularizing a.

THEOREM 4.1. – Let $\varphi: S^{n-1} \to [a, \beta]$, with $0 < a < \beta$, be a Borel function such that the positively homogeneous of degree one extension of φ to \mathbb{R}^n

$$p \mapsto \varphi\left(\frac{p}{|p|}\right)|p|$$

is convex and even. Then there exists a family of functions $a_{k,\lambda} : \mathbb{R}^n \mapsto [a,\beta]$, 1-periodic and λ -Lipschitz, such that

$$\Gamma - \lim_{\varepsilon \to 0} \int_{\partial^* E \cap O} a_{k,\lambda} \left(\frac{x}{\varepsilon} \right) d\mathcal{H}^{n-1} = \int_{\partial^* E \cap O} \varphi_{k,\lambda}(v_E) d\mathcal{H}^{n-1}$$

for every $\lambda \in \mathbb{R}^+$, $k \in \mathbb{N}$ and $E \in \mathcal{P}(\Omega)$. Moreover,

$$\lim_{k \to +\infty} \lim_{\lambda \to +\infty} \varphi_{k,\lambda}(v) = \varphi(v)$$

for every $v \in S^{n-1}$ and

$$\varGamma\text{-}\lim_{k\to +\infty} \left(\varGamma\text{-}\lim_{\lambda\to +\infty} \int\limits_{\partial^*E\cap O} \varphi_{k,\lambda}(\nu_E)\,d\mathcal{H}^{n-1}\right) = \int\limits_{\partial^*E\cap O} \varphi(\nu_E)\,d\mathcal{H}^{n-1}$$

for every $E \in \mathcal{P}(\Omega)$.

PROOF. — Let \mathcal{Z} be the set of unit rational directions *i.e.* $\mathcal{Z} = \left\{v = \frac{x}{|x|} \in S^{n-1}: x \in \mathbb{Z}^n \setminus \{0\}\right\}$. Since \mathcal{Z} is dense and countable in S^{n-1} we consider a dense sequence $\{v_j\}_{j\in\mathbb{N}} \in \mathcal{Z}$ such that $v_h \neq \pm v_j$ for $h \neq j$. We define $A_j = \mathbb{Z}^n + \Sigma_j$ where Σ_j is the hyperplane through the origin and orthogonal to v_j , for every $j \in \mathbb{N}$. The set A_j is closed and 1-periodic with respect to the canonical basis (e_1, \cdots, e_n) of \mathbb{R}^n . We fix $k \in \mathbb{N}$ and we consider the first k directions $(v_1, \cdots, v_k) \subset \{v_j\}_{j\in\mathbb{N}}$. We define

$$(4.1) a_k(x) = \begin{cases} \varphi(\nu_j) & \text{if } x \in A_j \setminus \left(\bigcup_{h=1 \atop h \neq j}^k A_h\right), \quad j = 1, \dots, k \\ \\ a & \text{if } x \in \bigcup_{h=1 \atop h \neq j}^k (A_j \cap A_h), \quad j = 1, \dots, k \\ \\ \beta & \text{otherwise in } \mathbb{R}^n \end{cases}$$

and we denote by $a_{k,\lambda}$ the Yosida transform of a_k *i.e.*,

$$a_{k,\lambda}(x) = \inf_{y \in \mathbb{R}^n} \{ a_k(y) + \lambda |x - y| \}, \qquad \lambda \in \mathbb{R}^+.$$

Hence, $a_{k,\lambda}$ is λ -Lipschitz. Moreover, since a_k is lower semicontinuous and 1-periodic, we have that $a_{k,\lambda}$ is also 1-periodic and the sequence $\{a_{k,\lambda}\}_{\lambda}$ converges increasingly to a_k as $\lambda \to +\infty$ *i.e.*

$$(4.2) a_k(x) = \sup_{\lambda > 0} a_{k,\lambda}(x)$$

(see e.g. [13] Remark 1.6 and Proposition 1.7). For any fixed $k \in \mathbb{N}$ and $\lambda \in \mathbb{R}^+$ the function $a_{k,\lambda}$ is continuous, bounded and 1-periodic. By Theorem 2.4 we have that

$$\Gamma - \lim_{\varepsilon \to 0} \int_{\partial^* E \cap \Omega} a_{k,\lambda} \left(\frac{x}{\varepsilon} \right) d\mathcal{H}^{n-1} = \int_{\partial^* E \cap \Omega} \varphi_{k,\lambda}(v_E) d\mathcal{H}^{n-1}$$

and

$$\Gamma - \lim_{\varepsilon \to 0} \int_{\partial^* E \cap \Omega} a_k \left(\frac{x}{\varepsilon}\right) d\mathcal{H}^{n-1} = \int_{\partial^* E \cap \Omega} \varphi_k(\mathsf{v}_E) d\mathcal{H}^{n-1}$$

for every $E \in \mathcal{P}(\Omega)$ where $\varphi_{k,\lambda}$ and φ_k are convex functions. By Proposition 2.5, $\varphi_{k,\lambda}$ and φ_k can be also described by the following formulas

$$(4.3) \quad \varphi_{k,\lambda}(\nu) = \lim_{T \to +\infty} \frac{1}{T^{n-1}} \inf \left\{ \int_{\partial^* F \cap TQ^{\nu}} a_{k,\lambda}(x) \, d\mathcal{H}^{n-1} : F \in \mathcal{P}_{\text{loc}}(\mathbb{R}^n), \right.$$

$$F = \Pi^{\nu}_{+} \text{ on } T\partial_{\pm}Q^{\nu}, \ F + T\eta_i = F \quad i = 1, \cdots, n-1 \right\}$$

and

$$\begin{aligned} (4.4) \quad \varphi_k(\mathbf{v}) &= \lim_{T \to +\infty} \frac{1}{T^{n-1}} \mathrm{inf} \bigg\{ \int_{\partial^* F \cap TQ^{\mathbf{v}}} a_k(\mathbf{x}) \, d\mathcal{H}^{n-1} : \ F \in \mathcal{P}_{\mathrm{loc}}(\mathbb{R}^n), \\ F &= \varPi^{\mathbf{v}}_+ \ \text{on} \ T\partial_\pm Q^{\mathbf{v}}, \ F + T\eta_i = F \quad i = 1, \cdots, n-1 \bigg\} \,, \end{aligned}$$

for every $v \in S^{n-1}$. Our aim is to study the pointwise convergence of $\{\varphi_{k,\lambda}\}_{k,\lambda}$ letting first λ and then k go to $+\infty$. In the following we first prove that $\{\varphi_k,\lambda\}_{\lambda}$ pointwise converges to φ_k as λ tends to $+\infty$; then, we show that $\{\varphi_k\}$ pointwise converges to φ as k tends to $+\infty$. Therefore to conclude the proof of the theorem it remains to observe that the pointwise convergence of the convex integrands $\{\varphi_{k,\lambda}\}_{\lambda}$ and $\{\varphi_k\}_k$ implies the Γ -convergence of the corresponding families of functionals. In fact, the pointwise convergence of convex functions implies the uniform convergence on S^{n-1} . Hence, we have that

$$\Gamma$$
- $\lim_{\lambda \to +\infty} \int_{\partial^* E \cap \Omega} \varphi_{k,\lambda}(v_E) \, d\mathcal{H}^{n-1} = \int_{\partial^* E \cap \Omega} \varphi_k(v_E) \, d\mathcal{H}^{n-1}$

and

$$\varGamma\text{-}\lim_{k\to+\infty}\int\limits_{\partial^*E\cap\Omega}\varphi_k(\nu_E)\,d\mathcal{H}^{n-1}=\int\limits_{\partial^*E\cap\Omega}\varphi(\nu_E)\,d\mathcal{H}^{n-1}$$

which concludes the proof of the theorem.

Let us deal with the pointwise convergence of $\{\varphi_{k,\lambda}\}_{\lambda}$ to φ_k . By (4.2) we have that $\varphi_k(\nu) \geq \varphi_{k,\lambda}(\nu)$. Hence, if we prove that

$$\liminf_{\lambda \to +\infty} \varphi_{k,\lambda}(\nu) \ge \varphi_k(\nu)$$

then we can conclude that there exists the limit, as λ tends to $+\infty$, and

$$\lim_{\lambda \to +\infty} \varphi_{k,\lambda}(\nu) = \varphi_k(\nu)$$

for every $v \in S^{n-1}$. To obtain (4.5) we need to introduce some auxiliary functions $\tilde{a}_{k,\lambda}$.

Definition of the auxiliary functions. – Let $k \geq n$. We define

$$S(k) = \{s = (s_1, \cdots, s_k) : s_j = 0 \text{ or } j, \quad j = 1, \cdots, k \quad \text{and}$$
at least two of (s_1, \cdots, s_k) are different from 0 }.

For every fixed $s \in S(k)$ we define then

$$H^d_s = \bigcap_{\stackrel{s_j
eq 0}{i=1}} A_{s_j}$$

where $d=0,\cdots,n-2$ denotes the dimension of H^d_s . Note that for any fixed d the sets H^d_s , $s\in S(k)$, may be not disjoints. Moreover, the intersection between $\{H^d_s\}_{d,s}$ and TQ^v gives rise to a finite number of sets.

Around any H_s^d and A_j we construct suitable neighborhoods and we define the following sets

$$U = \bigcup_{s \in S(k) \atop d=0,\dots,n-2} \left\{ x \in \mathbb{R}^n : \operatorname{dist}(x, H_s^d) < \lambda^{-1/n-d} \right\}$$

and

$$U_j = \left\{ x \in \mathbb{R}^n : \operatorname{dist}(x, A_j) < \lambda^{-\gamma} \right\} \setminus U$$

with $1/2 < \gamma < 1$ and $j = 1, \dots, k$. Since the sets A_j , $j = 1, \dots, k$ are closed and pairwise disjoint, the sets U_j are pairwise disjoint for λ large enough. Note that $\lambda^{-\gamma} < \lambda^{-1/2} < \dots < \lambda^{-1/n-d} < \dots < \lambda^{-1/n}$. Finally, we define for λ large

enough

(4.7)
$$\tilde{a}_{k,\lambda}(x) = \begin{cases} \varphi(v_j) & \text{if } x \in U_j, \quad j = 1, \dots, k \\ a & \text{if } x \in U \\ \beta & \text{otherwise in } \mathbb{R}^n; \end{cases}$$

where U_i and U are defined as above.

The choice of the radii in the definition of U and U_j allows to compare easily $a_{k,\lambda}$ and $\tilde{a}_{k,\lambda}$ and prove that

$$(4.8) a_{k,\lambda}(x) \ge \tilde{a}_{k,\lambda}(x)$$

for every $x \in \mathbb{R}^n$ and for λ big enough. In fact, if $x \in U$ the inequality is trivial since $\tilde{a}_{k,\lambda}(x) = a$ while, by definition, $a_k(y) \geq a$ for every $y \in \mathbb{R}^n$. If $x \in U_j$ then $\tilde{a}_{k,\lambda}(x) = \varphi(v_j)$ and there exists H_s^d such that

$$a_{k,\lambda}(x) = \min\{a + \lambda | x - \Pi_s^d x|, \ \varphi(v_i) + \lambda | x - \Pi_i x|, \ \beta\}$$

where Π_s^d denotes the orthogonal projection on H_s^d and Π_j is the orthogonal projection on A_j . The sets A_j are not convex. The orthogonal projection makes no sense globally. By the way, in most formulas only $|x - \Pi_j x|$ is used. This is the distance from A_j , which is always well defined. In order to prove the inequality (4.8) it is sufficient to exclude that $a + \lambda |x - \Pi_s^d x|$ can be the minimum, for example, showing that

$$(4.9) a + \lambda |x - \Pi_a^d x| > \beta.$$

In fact,

$$a + \lambda |x - \Pi_{\circ}^d x| \ge a + \lambda^{(1-1/n-d)} > \beta$$

for λ big enough. Similarly, if $x \in \mathbb{R}^n \setminus \left(U \cup \bigcup_{j=1}^k U_j\right)$, then $\tilde{a}_{k,\lambda}(x) = \beta$ and $a_{k,\lambda}(x)$ is essentially reduced to be

$$a_{k,\lambda}(x) = \min\{a + \lambda | x - \Pi_s^d x |, \varphi(v_h) + \lambda | x - \Pi_h x |, \beta\}$$

for a suitable choice of A_h and H_s^d . But also in this case (4.9) is satisfied and

$$\varphi(v_h) + \lambda |x - \Pi_h x| \ge \varphi(v_h) + \lambda^{1-\gamma} > \beta$$

for λ big enough, which implies (4.8).

In order to prove (4.5) we now have to compare $\tilde{a}_{k,\lambda}$ with a_k . To this end in the following Steps we introduce the functions $\phi_{\lambda}^d: \mathbb{R}^n \mapsto \mathbb{R}^n$, for $d = 0, \dots, n-1$, such that if we compose them then we get a function $\phi_{\lambda} = \phi_{\lambda}^{n-1} \circ \cdots \circ \phi_{\lambda}^0$ that "projects" the sets U, U_j into H_s^d , A_j , respectively, for every $j = 1, \dots, k$, $d = 0, \dots, n-1$ and $s \in S(k)$.

Step 0 (d=0). – For every $s\in S(k)$ the set H^0_s is a sequence of points $\{x^s_p\}_p$. We denote by $B^s_p(r)=B(x^s_p,r)$ and we define ϕ^0_λ as follows:

(a) ϕ_{λ}^{0} projects $B_{p}^{s}(\lambda^{-1/n})$ into the center x_{p}^{s} *i.e.*,

$$\phi^0_{\boldsymbol{\lambda}}(x) = x^s_p \,, \qquad x \in B^s_p(\boldsymbol{\lambda}^{-1/n}) \,, \quad \forall \ p \ \ \text{and} \ \ s \in S(k) \,;$$

(b) ϕ^0_{λ} dilates $B^s_p(\lambda^{-1/n+1}) \setminus B^s_p(\lambda^{-1/n})$ into $B^s_p(\lambda^{-1/n+1})$ keeping fixed $\partial B^s_p(\lambda^{-1/n+1})$; *i.e.*,

$$\phi_{\lambda}^{0}(x) = \frac{1}{1 - \lambda^{-1/n(n+1)}} \left(|x - x_{p}^{s}| - \lambda^{-1/n} \right)^{+} \frac{x - x_{p}^{s}}{|x - x_{p}^{s}|} + x_{p}^{s}$$

for every $x \in B^s_p(\lambda^{-1/n+1}) \setminus B^s_p(\lambda^{-1/n})$, p and $s \in S(k)$;

(c) ϕ_{λ}^0 is the identity on $\mathbb{R}^n \setminus \bigcup_{s \in S(k), p} B_p^s(\lambda^{-1/n+1})$; *i.e.*,

$$\phi_{\lambda}^0(x) = x$$
, $x \notin \bigcup_{s \in S(k), p} B_p^s(\lambda^{-1/n+1})$.

Note that ϕ^0_λ is a Lipschitz function with constant

$$\operatorname{Lip}(\phi_{\lambda}^{0}) = \frac{1}{1 - \lambda^{-1/n(n+1)}}$$
.

Fig. 1. $-\phi_{\lambda}^{0}$ applied to the neighborhoods of H_{s}^{0} and H_{s}^{1} .

In dimension $d \geq 1$, ϕ_{λ}^d is the natural generalization of ϕ_{λ}^0 but we have also to take into account that ϕ_{λ}^d is applied to sets already modified by $\phi_{\lambda}^{d-1} \circ \cdots \circ \phi_{\lambda}^0$.

Step
$$d$$
 $(d=1,\cdots,n-2)$. – We denote by
$$I_s^d=\phi_i^{d-1}\circ\cdots\circ\phi_i^0(\{x\in\mathbb{R}^n\,:\,\mathrm{dist}\,(x,H_s^d)\!<\!\lambda^{-1/n-d}\})$$

and

$$N_s^d = \{x \in \mathbb{R}^n : \text{dist}(x, H_s^d) < \lambda^{-1/(n-d+1)}\}$$

Let \widetilde{H}^d_s be the orthogonal projection on ∂I^d_s ; \widetilde{H}^d_s is defined only locally. We recall that H^d_s is the orthogonal projection on H^d_s . Then we define ϕ^d_λ as follows: (a) ϕ^d_s projects I^d_s into H^d_s ; i.e.,

$$\phi_{\lambda}^{d}(x) = \Pi_{s}^{d}(x), \qquad x \in I_{s}^{d}, \quad \forall s;$$

(b) ϕ_{λ}^d dilates $N_s^d \setminus I_s^d$ into N_s^d keeping fixed ∂N_s^d ; *i.e.*,

$$\begin{split} \phi_{\lambda}^{d}(x) &= \frac{\lambda^{-1/(n-d+1)}}{\lambda^{-1/(n-d+1)} - |\widetilde{\Pi}_{s}^{d}(x) - \Pi_{s}^{d}(x)|} \\ & \quad \cdot \left(|x - \Pi_{s}^{d}(x)| - |\widetilde{\Pi}_{s}^{d}(x) - \Pi_{s}^{d}(x)| \right)^{+} \frac{x - \Pi_{s}^{d}(x)}{|x - \Pi_{s}^{d}(x)|} + \Pi_{s}^{d}(x) \end{split}$$

for every $x \in N_s^d \setminus I_s^d$ and $s \in S(k)$;

(c) ϕ_{λ}^d is the identity on $\mathbb{R}^n \setminus \bigcup_{s \in S(k)} N_s^d$; i.e.,

$$\phi^d_\lambda(x) = x \,, \qquad x
otin \bigcup_{s \in S(k)} N^d_s \,.$$

Note that

$$I_s^d = \phi_{\lambda}^{d-1} \circ \dots \circ \phi_{\lambda}^0(\{x \in \mathbb{R}^n : \operatorname{dist}(x, H_s^d) < \lambda^{-1/n-d}\}) \cap \{x \in \mathbb{R}^n : \operatorname{dist}(x, H_s^d) < \lambda^{-1/n-d}\}$$

then

$$\frac{\lambda^{-1/(n-d+1)}}{\lambda^{-1/(n-d+1)} - |\widetilde{H}_{o}^{d}(x) - H_{o}^{d}(x)|} \leq \frac{\lambda^{-1/(n-d+1)}}{\lambda^{-1/(n-d+1)} - \lambda^{-1/(n-d)}} = \frac{1}{1 - \lambda^{-1/(n-d)(n-d+1)}} \; .$$

Therefore, ϕ_{λ}^{d} is a Lipschitz function with constant

$$\operatorname{Lip}\left(\phi_{\lambda}^{d}
ight) = rac{1}{1-\lambda^{-1/(n-d)(n-d+1)}} \ .$$

Moreover, by definition, any function ϕ_{λ}^d maps H_s^d and A_j in themselves for every $d=0,\cdots,n-2,$ $s\in S(k)$ and $j=1,\cdots,k$.

STEP (n-1). – Finally, we define ϕ_i^{n-1} as the function that dilates

$$\mathbb{R}^n \setminus \left(\phi_{\lambda}^{n-2} \circ \cdots \circ \phi_{\lambda}^0 \left(igcup_{j=1}^k U_j \cup U
ight)
ight)$$

such that

$$egin{cases} \phi_{\lambda}^{n-1} \circ \phi_{\lambda}^{n-2} \circ \cdots \circ \phi_{\lambda}^0 igg(igcup_{j=1}^k U_j \cup Uigg) = igcup_{j=1}^k A_j \ \phi_{\lambda}^{n-1}(A_j) = A_j & j = 1, \cdots, k \ \operatorname{Lip} \phi_{\lambda}^{n-1} = 1 + (c_k/\lambda^{\gamma}) \,. \end{cases}$$

We define then

$$\phi_\lambda = \phi_\lambda^{n-1} \circ \cdots \circ \phi_\lambda^0$$

that is a Lipschitz function with constant

$$(4.10) \qquad \qquad \text{Lip}(\phi_{\dot{\lambda}}) = \left(1 + \frac{c_k}{\lambda^{\gamma}}\right) \prod_{d=0}^{n-2} \left(\frac{1}{1 - \lambda^{-1/(n-d)(n-d+1)}}\right),$$

and

$$\lim_{\lambda \to +\infty} \operatorname{Lip}(\phi_{\lambda}) = 1.$$

Now we use the construction of ϕ_{λ} and of the auxiliaries functions $\tilde{a}_{k,\lambda}$ to prove the inequality (4.5). Let $G \in \mathcal{P}_{loc}(\mathbb{R}^n)$ such that $G = \Pi^{\nu}_{+}$, on $T\partial_{\pm}Q^{\nu}$, $G + T\eta_i = G$ for $i = 1, \dots, (n-1)$; by (4.7) we have that

$$(4.12) \int_{\partial^* G \cap TQ^{\nu}} \tilde{a}_{k,\lambda}(x) d\mathcal{H}^{n-1}$$

$$= \sum_{i=1}^k \varphi(\nu_i) \mathcal{H}^{n-1}(\partial^* G \cap TQ^{\nu} \cap U_j) + a \mathcal{H}^{n-1}(\partial^* G \cap TQ^{\nu} \cap U) + \beta \mathcal{H}^{n-1}(\partial^* G \cap V_j),$$

where $V_j = TQ^{\nu} \setminus (U_j \cup U)$. Note that by definition of ϕ_{λ} we have that $\mathcal{H}^{n-1}(\phi_{\lambda}(\partial^*G \cap TQ^{\nu} \cap U)) = 0$. Hence, by (4.12), (4.10) and the property of the Hausdorff measure with respect to a Lipschitz function (see [5] Proposition 2.49 (iv)) we get that

$$\begin{split} &(4.13) \quad \mathrm{Lip}(\phi_{\lambda})^{n-1} \int\limits_{\partial^{*}G \cap TQ^{\vee}} \tilde{a}_{k,\lambda}(x) \, d\mathcal{H}^{n-1} \\ &\geq \sum_{j=1}^{k} \varphi(\nu_{j}) \, \mathcal{H}^{n-1} \big(\phi_{\lambda}(\partial^{*}G \cap TQ^{\vee} \cap U_{j}) \big) + \beta \, \mathcal{H}^{n-1} \big(\phi_{\lambda}(\partial^{*}G \cap V_{j}) \big) \geq \int\limits_{\partial^{*}\tilde{G} \cap TQ^{\vee}} a_{k}(x) \, d\mathcal{H}^{n-1} \, , \end{split}$$

where $\tilde{G} \in \mathcal{P}_{loc}(\mathbb{R}^n)$ such that

$$(4.14) \partial^* \tilde{G} \cap TQ^{\vee} \subseteq \phi_{\flat}(\partial^* G \cap TQ^{\vee}).$$

Note that, since A_j is 1-periodic with respect to the canonical basis (e_1,\cdots,e_n) of \mathbb{R}^n , we have that, in general, $A_j+T\eta_i\neq A_j$ for every $i=1,\cdots,n-1$ and $j=1,\cdots,k$. Hence, when we apply ϕ_λ we may have that $\tilde{G}+T\eta_i\neq \tilde{G}$ for some $i=1,\cdots,n-1$. By definition, any change due to ϕ_λ remains in a neighborhood of ∂^*G with radius smaller than $\lambda^{-1/n+1}$ (see Steps $d=0,\cdots,n-1$). Hence, we may slightly modify \tilde{G} close to $T\partial_LQ^\nu$ to match the periodic boundary conditions. We denote by $S\in\mathcal{P}_{loc}(\mathbb{R}^n)$ this new set such that $S=\Pi^\nu_+$ on $T\partial_\pm Q^\nu$, $S+T\eta_i=S$, for every $i=1,\cdots,n-1$ and such that

$$\left|\mathcal{H}^{n-1}(\partial^*S\cap TQ^{\nu})-\mathcal{H}^{n-1}(\partial^*\tilde{G}\cap TQ^{\nu})\right|=O(\lambda^{-1/n+1}\,T^{n-2})\,.$$

By (4.13) and (4.15), since a_k is bounded, we get then

$$\begin{split} (4.16) \quad & \frac{\operatorname{Lip}(\phi_{\lambda})^{n-1}}{T^{n-1}} \int_{\partial^{*}G \cap TQ^{v}} \tilde{a}_{k,\lambda}(x) \, d\mathcal{H}^{n-1} \\ & \geq \frac{1}{T^{n-1}} \int_{\partial^{*}S \cap TQ^{v}} a_{k}(x) \, d\mathcal{H}^{n-1} + O(\lambda^{-1/n+1} \, T^{-1}) \\ & \geq \frac{1}{T^{n-1}} \inf \bigg\{ \int_{\partial^{*}F \cap TQ^{v}} a_{k}(x) \, d\mathcal{H}^{n-1} : \ F \in \mathcal{P}_{\operatorname{loc}}(\mathbb{R}^{n}), \ F = \varPi_{+}^{v} \ \text{on} \ T\partial_{\pm}Q^{v}, \\ & F + T\eta_{i} = F \quad i = 1, \cdots, n-1 \bigg\} \\ & + O(\lambda^{-1/n+1} \, T^{-1}) \, . \end{split}$$

Hence, by (4.8), (4.16) and the definition of $\varphi_{k,\lambda}$ and φ_k (see (4.3) and (4.4)) passing to the limit as T tends to $+\infty$ we have that

$$\varphi_{k,\lambda}(v) \ge \frac{1}{\operatorname{Lip}(\phi_{\lambda})^{n-1}} \, \varphi_k(v)$$

for every $v \in S^{n-1}$. Finally, by (4.11) passing to the limit as λ tends to $+\infty$ we get (4.5) which implies, as already observed, the pointwise convergence of $\{\varphi_{k,\lambda}\}_{\lambda}$ to φ_k .

It remains to study the pointwise convergence of $\{\varphi_k\}$ to φ as k tends to $+\infty$. By Remark 2.3 and (4.1) we have that

$$\varphi(v) \leq \frac{1}{T^{n-1}} \int_{\partial^* F \cap T\Omega^v} \varphi(v_F) d\mathcal{H}^{n-1} \leq \frac{1}{T^{n-1}} \int_{\partial^* F \cap T\Omega^v} a_k(x) d\mathcal{H}^{n-1},$$

for every $F \in \mathcal{P}_{loc}(\mathbb{R}^n)$ such that $F + T\eta_i = F$, $i = 1, \dots, n-1$, and $F = \Pi_+^{\nu}$ on $T\partial_{\pm}Q^{\nu}$. By definition of φ_k we have then

$$(4.17) \varphi(v) \le \varphi_k(v)$$

while

(4.18)
$$\varphi(v_j) = \varphi_k(v_j), \qquad j = 1, \dots, k.$$

We define

$$\psi_k(z) = egin{cases} arphi(z) & ext{if } z \in igcup_{j=1}^k \mathbb{R} \, v_j \ eta|z| & ext{otherwise,} \end{cases}$$

then, $\varphi(v) \leq \psi_k(v)$. Let $co \psi_k$ be the convex envelope of ψ_k . Since φ is convex we have $\varphi(v) \leq co \psi_k(v)$. Moreover, $\varphi(v_j) \leq co \psi_k(v_j) \leq \psi_k(v_j) = \varphi(v_j)$; hence,

$$\varphi(v_i) = co \psi_k(v_i)$$

for $j = 1, \dots, k$. The functions $co \psi_k$ are equi-lipschitz on compact sets of \mathbb{R}^n (see Section 5.1, Chapter 5 in [13]); hence, by (4.19) and the density of $\{v_i\}$ we get that

$$\lim_{k \to +\infty} co \psi_k(v) = \varphi(v)$$

for every $v \in S^{n-1}$. By (4.18) and the definition of ψ_k we have then

$$(4.21) \varphi_k(v) \le \psi_k(v) \,.$$

We recall that by Theorem 2.4 the functions φ_k are convex for every $k \in \mathbb{N}$. By (4.21) it follows then

for every $v \in S^{n-1}$.

By (4.17), (4.22) and (4.20) we can prove that there exists the limit as k tends to $+\infty$ and

$$\lim_{k \to +\infty} \varphi_k(v) = \varphi(v)$$

for every $v \in S^{n-1}$ which concludes the proof.

Acknowledgements. We gratefully acknowledge stimulating discussions with A. Braides and a very careful reading of the manuscript by the anonymous referee.

REFERENCES

- E. Acerbi G. Buttazzo, On the limits of periodic Riemannian metrics, J. Anal. Math., 43 (1984), 183-201.
- [2] F. J. Almgren J. E. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies, J. Differential Geom., 42 (1995), 1-22.
- [3] L. Ambrosio A. Braides, Functionals defined on partitions of sets of finite perimeter I: integral representation and Γ-convergence, J. Math. Pures Appl., 69 (1990), 285-305.
- [4] L. Ambrosio A. Braides, Functionals defined on partitions of sets of finite perimeter II: semicontinuity, relaxation and homogenization, J. Math. Pures Appl., 69 (1990), 307-333.
- [5] L. Ambrosio N. Fusco D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford University Press, 2000.
- [6] N. Ansini A. Braides V. Chiadò Piat, Gradient theory of phase transitions in composite media, Proc. Royal Soc. Edinburgh A, 133 (2003), 265-296.
- [7] G. Bellettini R. Goglione M. Novaga, Approximation to driven motion by crystalline curvature in two dimensions, Adv. Math. Sci. and Appl., 10 (2000), 467-493
- [8] G. Bellettini M. Novaga, Approximation and comparison for nonsmooth anisotropic motion by mean curvature in \mathbb{R}^n , Math. Mod. Meth. Appl. Sc., 10 (2000), 1-10.
- [9] G. BOUCHITTÉ I. FONSECA G. LEONI L. MASCARENHAS, A global method for relaxation in $W^{1,p}$ and in SBV_p , Arch. Rational Mech. Anal., 165, 3 (2002), 187-242.
- [10] A. Braides, Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics (Springer Verlag, Berlin, 1998).
- [11] A. BRAIDES G. BUTTAZZO I. FRAGALÀ, Riemannian approximation of Finsler metrics, Asymptot. Anal., 31 (2002), 117-187.
- [12] A. Braides V. Chiadò Piat, Integral representation results for functionals defined on SBV(Ω, ℝ^m), J. Math. Pures Appl., 75 (1996), 595-626.
- [13] A. Braides A. Defranceschi, Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998.
- [14] A. Braides M. Maslennikov L. Sigalotti, Homogenization by blow-up. Applicable Anal., 87 (2008), 1341-1356.
- [15] G. Dal Maso, An Introduction to Γ -convergence, Birkhäuser, Boston, 1993.
- [16] A. DAVINI, On the relaxation of a class of functionals defined on Riemannian distances, J. Convex Anal., 12 (2005), 113-130.
- [17] A. DAVINI, Smooth approximation of weak Finsler metrics, Differential Integral Equations, 18 (2005), 509-530.
- [18] E. GIUSTI, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser, Boston, 1984.
- [19] H. Federer, Geometric Measure Theory, Springer Verlag, Berlin, 1968.
- [20] L. Modica S. Mortola, Un esempio di Γ -convergenza, Boll. Un. Mat. Ital., 14-B (1977), 285-299.
- [21] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123-142.
- [22] J. E. TAYLOR, Crystalline variational problems, Bull. Amer. Math. Soc., 84 (1978), 568-588.
- [23] J. E. TAYLOR, Constructions and conjectures in crystalline nondifferential geome-

- try, Differential Geometry, eds. B. Lawson and K. Tanenblat, Pitman Monographs in Pure and Applied Math., 52 (Pitman, 1991), 321-336.
- [24] J. E. TAYLOR, Mean curvature and weighted mean curvature II, Acta Metall. Mater., 40 (1992) 1475-1485.
- [25] J. E. TAYLOR, Motion of curves by crystalline curvature, including triple junctions and boundary points, Proc. Symp. Pure Math., 54 (1993) 417-438.

N. Ansini, Dip. Matematica, Sapienza Univ. di Roma P.le Aldo Moro 2 00185 Roma (Italy) E-mail: ansini@mat.uniroma1.it

O. Iosifescu, Instit. Mathématiques, Univ. de Montpellier II place Eugène Bataillon, 34095 Montpellier cedex 5 (France) E-mail: iosifescu@math.univ-montp2.fr

Received October 28, 2009 and in revised form November 10, 2009