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Bollettino U. M. 1.
(9) IIT (2010), 149-168

Approximation of Anisotropic Perimeter Functionals
by Homogenization

N. ANSINI - O. IoSIFESCU

Abstract. — We show that all anisotropic perimeter functionals of the form [ ¢o(vg) dH" !
O*ENQ
(p convex and positively homogeneous of degree one) can be approximated in the sense
of I'-convergence by (limits of) isotropic but inhomogeneous perimeter functionals of

the form [ a(x/e)dH™ " (a periodic).
PEna

1. — Introduction.

Object of this paper is the approximation for anisotropic and crystalline en-
ergies of the form

(1.1) FE) = f o(vp) dH™ 1
I*ENQ

defined on sets E with finite perimeter on an open set Q C R". Here and hen-
ceforth 0*F and vy are the boundary and the inner normal of £ in the usual
measure theoretic sense and ¢ is convex, even, and positively homogeneous of
degree one. In other words, ¢ is a norm on R”. We do not assume that ¢ is smooth
or isotropic. More precisely, we address the problem of approximating aniso-
tropic functionals of the form (1.1) by locally isotropic but inhomogeneous peri-
meter functionals of the form

(1.2) G(E) = f a(%) dH"

O*ENQ

with @ a 1-periodic function.

Functionals of the form (1.1) are object of active research, especially in con-
nection with erystalline motion by curvature (see Almgren and Taylor [2], Taylor
[22]-[25] and the works by Bellettini, Goglione and Novaga [7], Bellettini and
Novaga [8]).

Our approximation suggests an indirect way to deal with crystalline problems
where anisotropy is replaced by inhomogeneity and a passage to the limit.
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In A. Braides, M. Maslennikov, L. Sigalotti [14] it has been shown that en-
ergies of the form (1.2) converge to energies of the form (1.1) (see also Ambrosio-
Braides [4]). Here we show that, conversely, all anisotropic energies can be ap-
proximated by (limits of) energies of the form (1.2) in the sense of I"-convergence.

In this paper we suggest two way to approximate ¢. In Section 3 given a
target ¢, 0<a < ¢ < f< + oo, we define a as

p(v)) if @ € Aj\ <UAh>, jeN
heN

ax) = o

B otherwise in R",

for H""! a.e. x, where {v;} is a dense sequence in S"~! such that v, # +v; for
h#j,A; =7" + 2; and Xj is the hyperplane through the origin and orthogonal
to v;. The idea behind the construction of the function a is that the optimal se-
quences of sets K, — E will have boundaries that avoid the sets where the
coefficient of a is f£; on the contrary these boundaries will lie on hyperplanes A;,
on which a(x/¢) = p(v;) = ¢(vg,), so that indeed G.(E,) = F(E,) — F(E).

In Section 4 in order to improve the regularity of a a number of technical dif-
ficulties must be overcome. First we need to split our construction by considering a
finite set {vy, - - -, v} of rational directions before letting k — +oo, and at the same
time regularize our function a to obtain a continuous integrand. In this way we
obtain a /"-limit depending on k that is a candidate for an approximation of 7. The
identification of the energy density of this 7 -limit requires the introduction of some
carefully constructed piecewise-constant comparison energy densities on which to
use the representation formulas for the homogenization of perimeters in [14].

Our result has some connections with a paper by Braides, Buttazzo and
Fragala [11] where (smooth) isotropic Riemannian metrics are shown to be dense
in (Jlower semicontinuous) Finsler metrics in the sense similar to that stated
above. Previously Acerbi and Buttazzo [1] proved that the class of Riemannian
metries is not closed in the class of all Finsler metrics with respect to the I'-
convergence of energy integrals. The result in [11] has been generalized to Borel
Finsler metrics by Davini [16] (see also [17]).

A possible application of our result is the approximation of perimeter func-
tionals by elliptic energies as in Modica-Mortola [20] (see also [10]) using a
double-scale procedure as in Ansini, Braides and Chiado Piat [6]. In fact, upon
identifying a set £ with its characteristic functions u = yj, the results in [6] show
that energies (1.2) can be substituted by energies

Jes(u) = f %“) + da? (%) \Du dz
Q

defined on H'(Q) where W is a ‘double-well energy’ and a is periodic.
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2. — Notation and preliminaries.

Let 2 be an open subset of R". We denote the Lebesgue n-dimensional
measure and the Hausdorff (n — 1)-dimensional measure of a set £ C R" by |E|
and H" 1(E), respectively, and we set

Sl ={peR": |x| =1}.

We say that a sequence {£}} of measurable sets of  converges to a measurable
set £ C Q, and we write E; — E, if |E; AE| — 0. Let E be a Lesbegue mea-
surable subset of R". We denote the essential boundary of E by 0*E i.e.

1B,@)\ E|

p—0F ﬂ" p—0*

OE = {xeR": lim sup > 0 and limsup}W>0}.

We say that E is a set of finite perimeter in Q, or a Caccioppoli set, if it is
measurable and

P(E. Q) = sup{fdivgdac i g€ Cé(Q; R™),|g| < 1} < +o00;
E

the number P(¥, Q) is called perimeter of £ in Q. We denote the class of sets
with finite perimeter in Q2 by P(2) and the class of sets of locally finite perimeter
in R" by

Ple(R") ={F c R" : F € P(Q), for any open set 2 cC R"}.

Let yy be the characteristic function of E. For any set E € P(Q2) the
essential boundary of E, 9*E, is H" !-rectifiable i.e. there exists a countable
family (I';) of graphs of Lipschitz functions of (n» — 1) variables such that

H (8*E’ \ Ej r Z) =0and H" 1(&"E N Q)< + oco. Moreover, the distributional
i—1

derivative D)é;w is an R"-valued finite Radon measure in Q, P(E, Q) = |Dy|(€2) and
a generalized Gauss-Green formula holds

[divgde=—[tm.g)diDzsl,  geCh@rY,
E Q

where Dyy = vg |Dyy| is the polar decomposition of Dy (see Theorem 3.36 in
[5]). If E has smooth boundary, the Gauss-Green theorem implies that
Dyp =g H" 1L 9*E, where vg is the inner normal to E. This representation
of the distributional derivative was generalized by De Giorgi and Federer as
follows:

Fyg(x) := lim Dy p(B,(x))

B o gl 1 ae. O'K
P Dy B, @) S H a.e.x €
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and
Dyy=vg H" 1LOE.

In particular, for every set £ € P(Q), we have that P(E, Q) = H" {(0*E N Q).

We refer to the books by Ambrosio, Fusco and Pallara [5] and Federer [19]
for the complete exposition of the theory of sets with finite perimeter.

Let v € S”71, let @’ be an open cube of R" centered at the origin having side
length 1 and one face orthogonal to v, and let IT', = {x € R" : (x,+v) > 0}.0.Q"
denote the side of Q" orthogonal to v and included in /7%, respectively, while
oL@’ = 0Q" \ (0+Q" U 0-Q") is the lateral part of the boundary 1.e. the union of
the sides of @' that are parallel to v.

2.1 — Preliminary results.

In this section we recall some results that we will use in the sequel.
THEOREM 2.1. — Let ¢ : 8”1 — [0, +00) be a bounded Borel function and
FE) = [ popan

IENQ

for every E € P(Q). Then the functional F is lower semicontinuous, in the sense
that for every sequence {E)} € P(Q) and E € P(Q)

hlim (B, AE)NQ =0 = FE)< I}ibminf]-'(E'h)7
—400 — 400

if and only if the positively one-homogeneous extension of ¢ from S*~! to R" is
convex.

The proof of the necessity of Theorem 2.1 is due to Ambrosio-Braides [3]
while for the sufficiency we recall the Reshetnyak’s theorem (see e.g. [10]).

For simplicity in the following we will say that a real valued function defined
on S"7! is convex if its positively one-homogeneous extension from S"~! to R"

p
qu)(w) i
is convex.

DEFINITION 2.2. — Let A be an open set with bounded Lipschitz boundary and
let F and G be sets with finite perimeter in A. Let w C 0A, we say that

G=F on w
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if and only if the trace (in the usual sense of BV functions) of xr and yq coincide
for H" -almost every x € w.

REMARK 2.3. — By Theorem 2.1 and by a simple rescaling argument, for every
convex function ¢ : "1 — [0, c0) we have that

T g0 < [ pmant,
FENTQ

for every T' > 0 and every E € Pi,.(R") such that £ = IT", on T0Q".
Similarly, for every convex function ¢ : S*~1 — [0, c0) we have also that

Tl < [ g,
PENTQY
for every E' € Pio.(R") such that £+ Ty; =E,i=1,---,m —1,and E = II', on
T0.Q".

THEOREM 2.4 (Homogenization of perimeters [14]). — Let 2 be a bounded
open subset of R" with Lipschitz boundary and let f:R" — [a,Bl, with
0<a<f< + oo, be a 1-periodic Borel function. Then, there exists the limit

. X n—1 _ n—1
(2.1) rim [ () are = [ fonOmdn
FENQ FENQ
for every E € P(Q). Moreover, there exists the limit
lim inf{ f f(%) dH": FePQ), F=I' on 8Q"}
' FFNQ

for every v € 8", the function fyom is convex and satisfies the asymptotic for-
mula

(22) fron(» =lim inf{ f f(%) dH"': FeP@), F=IT on 8Q"}7
&— o gy &
for every v € 8" 1L,

(See also [4]).

ProposiTION 2.5 (Periodic boundary conditions). — Let f be as in Theorem
2.4. Then
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1, 0 )
(2.3) fhom(v)Tlirwamf{ f f@dH"™ : F € Proo(R"), F =T, on
FFNTQ

To.Q" . F+Ty =F i:l,---,n—l}

for every v € 8" where (py, -+, n,_1) are linearly independent vectors ortho-
gonal to the faces of Q" other than v.

Proor. — Let us define

1
g’;(v) T 1mf{ f f@)dH" ! : F e P (R"), F = I, on T0.Q",
FFNTQ"

F+Ty=F i:l,---,n—l}

(2.4)
1
— inf f F@R) AW 2 F € Puo(RY), 7 F = I, on 0:Q",
o HFNQ”
1 1
FF i =5F 1_1,-..,7@_1}
and

gr(v) = inf{ f f(Tx) dH"': E€PW@"), E= II" on GQ"} ,

OENQ’

for every T € N. Note that the limit of (2.4), as T — + oo, exists since it is an
infimum on N.

Let Fy € Pio.(R") be such that Fp + Ty; = Fp,i=1,---,n —1, Fp = II', on
T0.Q" and

2.5) f FTw)dH" < gh() + 0(1)
oL FpNQ

as T — + oo. Hence, if we denote by Ey := (1/T)Fy then the sequence {E7}
converges to /T, as T tends to co. Reasoning as in [14] Lemma 3.2 we may

construct a new sequence {ET} still converging to /7', such that Ep = II' in a
neighborhood of 0Q" and

(2.6) lim H" (' Er AOED)NQ’) =

T—+o0
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In fact, let us define

o . {E onQ'\ @

II'. on Qj
where Q% = {x € Q" : d(x) := dist (x, R" \ Q") <}, for all 6 > 0. Note that Eris
a test set for gy. Moreover,

OEr AOEDNQ =(0"Er AOEp) NQ"\ Q) U0 Er A0 Ep) N QY)

2.8
®8) =(Er A )N {d@) =0} U Er AITI")NQY).

Since E'r — IT',, by Coarea formula we have that

0= lim QN Ep AT
oo

— lim f \Vd| dz
J—+00
QNEr AITY)
J
= lim H" 1 {d@) =t} N Er AIT,)dt.
0

7—>

By a suitable choice of 6 = d7 — 0 there exists ¢ty € (0, ) such that
Jim H" M {d(@) = tr} N Er AT) =0
T—+o0

Hence, by replacing ¢ with ¢7 in (2.7) and (2.8) we get (2.6).
Now we can compare g7 with g7. In fact,

f F(Te)ydH" = f F(Tw)ydH" — f F(Ta) dH"

o EpnQr & ErnQ @ Er\o*EpnQ”
n f F(Tx)ydH" " .
(O*Er\0*Ep)N@Q"

By (2.2), (2.5) and (2.6) we have that fhom(v) < hm 7- The other inequality
easily follows by definition of g7 and g. O

3. — Approximation of ¢.

In this section we prove that given a target ¢ we can construct a suitable
function a such that

_1i % n—1 _ n—1

ri [ o)t [ s
FENQ FENQ

for every E € P(Q).
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THEOREM 3.1. — Let ¢ : 8"~ — [a, B, with 0<a < f3, be a Borel function such
that the positively one-homogeneous extension of p to R"

p w(w) Pl

is convex and even. Let {v;} be a dense sequence in S"~! such that v, # % v;
for h#j and let A; = 7" + X; where X is the hyperplane through the origin
and orthogonal to v;, for every j € N. Let a: R" — [a, ] be a Borel function
defined by

o(vj) if veA;\ (l |Ah), jeN
heN
h#j

a ifeelJAnAy, jeN
heN
h#j

B otherwise in R" .

(8.1) alr) =

Then,

L

IFENQ rENQ

for every E € P(Q)

o(v) = hm Ti 11nf{ f a@x)dH" ' : F e PTQY), F =1II" onTBQ‘}
FFNTQ

ProoF. — We recall that by Theorem 2.4 we have that

»ENnQ FENQ

for every £ € P(Q), where ay,y is convex and

1
Uhom(V) = hrfC>O T 11nf{

a@)dH" ' FeP(TQ"), F=1II" onTaQ‘}
FFNTQY

Hence, it remain to prove then that ¢ = aygn.
We first deal with the inequality: anom(v) > @(v). Let F € P(TQ") such that
F =1TI', on TOQ". The essential boundary 0*F may intersect A; in a set of po-
sitive H"~! measure, which means that a relevant part of &*F coincides with a
part of A;; hence,
v = +vp anl_ a.e. in O'F ﬂAj .
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Since p(v) = p( —v) € [a, f], by (3.1) we get then

a(x)dH" 1
PFNTQ
— Z f (0(\/]) dHn—l + f ﬁdHn_l
(3.2) JEN 9 Fn4;nTQ (@ F\UA)NTQ"
> [ eepart+ [ popan
JEN 9 Fna;nTQ (0*F\U;ApNTQ"
= [ vomant.
IFNTQ"

By (3.2) and Remark 2.3, we can conclude that
a@)dH" > T" ()
IFNTQ
and by definition of apom
(3.3) Ghom(V) > p(v).
By (3.1), we have that

[ a@arn = =10,
2;NTQY

hence, anm(v;) = ¢(v;) for every j € IN. To conclude the proof of the theorem it
remains to show that anem(v) = lim apem(v)), and this is an easy consequence of
the convexity of apom. e O

The following proposition allows us to describe ¢ also by a homogenization
formula with periodic boundary conditions.

PROPOSITION 3.2.
1
(34) o0 = lm it [ a@dH" s F e PR, F =11
e FFNTQ
on T0.Q" F+Tn;=F 1= 1,~-,n—1}

for every v € "1 where (ny,---,n,_1) are linearly independent vectors ortho-
gonal to the faces of Q" other than v.

Proor. — By Theorem 3.1 we have that ay.,(v) = ¢(v); hence, by Proposition
2.5 we get (3.4). O
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4. — Approximation scheme for ¢ by regularization.

In this section we suggest another way to approximate ¢ by regularizing a.

THEOREM 4.1. — Let ¢ : 8"~ ! — [a, ], with 0 <a <f, be a Borel function such
that the positively homogeneous of degree one extension of ¢ to R”

pwo(%) i

is convex and even. Then there exists a family of functions ay; : R" — [a, f], 1-
periodic and A-Lipschitz, such that

. X
r-lim (1&,1(*) dH" = f 0p () AHL
o IENQ & O*ENQ

forevery . € RY, k € N and E € P(Q). Moreover,
lim lim (ok’/«y(v) =)

k—+o00 A—+oo

for every v e 8" 1 and

F—klim (F-Nlim f qok,;,(vE)dH"—l): f p(vg)dH" !
e Ao O*ENQ O*ENQ

for every E € P(Q).

Proor. — Let = be the set of unit rational directions i.e. = = {v - e S 1.

x € 7"\ {0} ;. Since = is dense and countable in S"~! we consider a dense se-
quence {v;},., € Zsuchthatv, # v;forh # j. We define A; = 7" + X; where 2;
is the hyperplane through the origin and orthogonal to v;, for every j € IN. The set
Aj; is closed and 1-periodic with respect to the canonical basis (e, - - - , €,,) of R". We
fix k € N and we consider the first k directions (vi, - -+, vp) C {v;};cn. We define

k
h=1
hi#j

4.1 ay() = k
(4.1) 1o () o ifaelJUnay, j=1,k
h=1

it

I otherwise in R"

and we denote by ay ; the Yosida transform of ay i.e.,

ay,;, () = inf {ax(y) + Ax —y|}, JeRY.
yeR”
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Hence, ay is A-Lipschitz. Moreover, since a; is lower semicontinuous and 1-
periodic, we have that ay; is also 1-periodic and the sequence {ay ,}, converges
increasingly to a;, as A — +o0 t.e.
(4.2) ay(x) = sup ay, ;(x)

>0
(see e.g. [13] Remark 1.6 and Proposition 1.7). For any fixed k € N and 1 € R

the function ay, ; is continuous, bounded and 1-periodic. By Theorem 2.4 we have
that

I-lim Y (%) dH" ! = f or () dH" !

e—0
IENQ OIENQ

and

ri [ e~ [ oo

I*ENQ 0*ENQ

for every K € P(Q) where ¢, and ¢, are convex functions. By Proposition 2.5,
¢r, and g, can be also described by the following formulas

. 1 . ,
(4.3)  ¢p,(n) = TLHE mlnf{ f we (@) dH" 1 F € Pro(RY),
> PFNTQ

F=1' onTo.Q", F+Tn, =F i:1,~--,n—1}
and

) 1 . n
(44) ¢,(» = TLHP Tw,—1mf{ f ap@) dH" ' F € Pr(R™),
> PFNTQ

F=1II"onTo.Q", F+ Ty, =F 1:1,--.,7@—1}7

for every v € S"~1. Our aim is to study the pointwise convergence of {¢; ;};
letting first 4 and then k go to +occ. In the following we first prove that {¢k7 b
pointwise converges to ¢, as 4 tends to + oo; then, we show that {¢; } pointwise
converges to ¢ as k tends to + co. Therefore to conclude the proof of the theorem
it remains to observe that the pointwise convergence of the convex integrands
{r,}, and {g;}, implies the I"-convergence of the corresponding families of
functionals. In fact, the pointwise convergence of convex functions implies the
uniform convergence on S"~!. Hence, we have that

F—)lim f(”k,i(VE)d"‘ﬂFIZ f op(vg) dH" !
T g iing O*ENQ
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and

- lim f () dH" 1 = f o(vg) dH"!

k—+o00
O*ENQ I*ENQ

which concludes the proof of the theorem.
Let us deal with the pointwise convergence of {¢;,;}, to ¢,. By (4.2) we have
that ¢, (v) > ¢, ,(v). Hence, if we prove that

(4.5) liminf ¢, ,(v) > ¢,(v)
A—+00 ’
then we can conclude that there exists the limit, as A tends to +oo, and

(4.6) JAm 9,00 = 9 )

for every v € S"~1. To obtain (4.5) we need to introduce some auxiliary func-
tions ay ;.

DEFINITION OF THE AUXILIARY FUNCTIONS. — Let &k > n. We define

Sk)={s=(s1,---,81) : s=0o0rj, j=1,---,k and
at least two of (sq,---,s;) are different from 0} .

For every fixed s € S(k) we define then

H! = (1 4,

570
=1k
where d =0, ---,n — 2 denotes the dimension of H?. Note that for any fixed d
the sets H;‘l, s € S(k), may be not disjoints. Moreover, the intersection between
{H%},, and TQ" gives rise to a finite number of sets.
Around any H¢ and A; we construct suitable neighborhoods and we define the
following sets

U= U {zeR" : dist(x, H) </}

seS(k)
d=0,--n—2

and
U= {o e R dist(.A4)<i7}\ U
with 1/2<y<1landj=1,---, k. Since the sets A;, j=1,---,k are closed and

pairwise disjoint, the sets U; are pairwise disjoint for 4 large enough. Note
that 17<A V< ... <7V d< ... <;7Y" Finally, we define for A large
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enough

o) el j=1--.k
(4.7) dkﬁg(%) =< a ifxeU

B otherwise in R";

where U; and U are defined as above.
The choice of the radii in the definition of U and U; allows to compare easily
ax,, and ay, and prove that

(4.8) () > ay ()
for every x € R" and for 1 big enough. In fact, if # € U the inequality is trivial

since dy ,(x) = a while, by definition, a;(y) > a for every y € R". If « € U; then
ar;(x) = ¢(v;) and there exists H? such that

ar; (@) = min{a + Ao — %, p(vj) + Ajx — x|, B}

where Hgl denotes the orthogonal projection on Hf;l and [I; is the orthogonal
projection on A;. The sets A; are not convex. The orthogonal projection makes no
sense globally. By the way, in most formulas only |x — I7;x| is used. This is the
distance from A;, which is always well defined. In order to prove the inequality
(4.8) it is sufficient to exclude that a + Ajx — I7%]| can be the minimum, for ex-
ample, showing that

4.9) a+ A
In fact,

x— %] > p.

a +M9{7 - Hggd >a+ /"L(lfl/nfd) > /),

k
for /. big enough. Similarly, if & € R" \ (U Ul U,-), then @ ;(x) = f8 and ay,, ()
is essentially reduced to be =1

(@) = min{a + Alw — I%|, p(v,) + Ax — My, B}
for a suitable choice of 4, and Hgl. But also in this case (4.9) is satisfied and

o) + A — M| > o) + 277 > B

for / big enough, which implies (4.8).

In order to prove (4.5) we now have to compare @y, ; with a;. To this end in the
following Steps we introduce the functions gbf R*'—R" ford=0,---,m—1,
such that if we compose them then we get a function ¢, = ¢} ' o--- 0 ¢) that
“projects” the sets U, U; into Hff, A;, respectively, for every j=1,---,k,
d=0,---,n—1and s € S(k).
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STEP 0 (d = 0). — For every s € S(k) the set Hg is a sequence of points {x;}p.
We denote by BZ(r) = B(ac;, r) and we define ¢2 as follows:

(@) ¢2 projects Bfo(fl/ ") into the center ), i.e.,
Hw) =, weBA), Vp and seSk);

(b) @) dilates B5(2~""*1)\ B3 (A~"/") into B3 (i "/"*") keeping fixed B3 (2~ "/"*1);

ie.,
x—ax
x— x| — Am* P4y

1
0 _
¢A(x) - 1_ ifl/n(rﬁl) (

for every @ € B3 (A" \ B5(A"1/"), p and s € S(k);

(¢) ¢) is the identity on R"\ (U B3("/"*); ie,
seSk),p

45()),(90):90, x ¢ U B;(ﬂ_l/"’“).

seSk),p

Note that ¢ is a Lipschitz function with constant

1
.0
Llp (¢)) = 1— Afl/n(nﬂ) ’

—1/n+1

—1/n

/-L—l/n—l

Fig. 1. — ¢ applied to the neighborhoods of H? and H!.
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In dimension d > 1, ¢f is the natural generalization of ¢, but we have also to
take into account that ¢f is applied to sets already modified by ‘f’l 0.0 ¢2.

STEP d (d =1,---,n — 2). — We denote by
IP=¢"0. 0 #{x e R" : dist (¢, HY) < /"))

and
N? = {x e R" : dist (x, HY) </ V0D

Let /7% be the orthogonal projection on 8I%; I1? is defined only locally. We recall
that 177 is the orthogonal projection on H?. Then we define gb‘f as follows:
(a) ¢f projects I¢ into HY; i.e.,
) = M), well, Vs;
(b) ¢¢ dilates N7 \ I? into N keeping fixed ONY; i.e.,
J-V/=d+D)
-1/(n—d+1) _ ‘ﬁg(%) _ Hg(x)|

ﬁmzz

+ @ — @)

. — d — I7¢ - d

+ %)

for every x € N?\ I¢ and s € S(k);

(©) ¢! is the identity on R"\ |J N9 i.e.,
seS(k)

¢lx) =1, we |J NY

seS(k)
Note that

IP=¢"o 0 g)({weR" : dist (@, H) <"}

A

{x e R" : dist (2, H!) </ /")
then

)Lfl/(n7d+1) ifl/(n7d+l) 1

/qv—l/(’n—d+1) _ |ﬁg(x) _ H?(.’)C)| S i—l/(ﬂ—d-ﬂ—l) _ i—l/(?@—d) = 1— A—l/(?l—d)(n—d#—l) :

Therefore, ¢ is a Lipschitz function with constant

1
o od
Lip (¢;) = | Vo dm—di

Moreover, by definition, any function ¢f maps H? and A; in themselves for every
d=0,---n—2,se€Sk)andj=1,--- k.
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STEP (n — 1). — Finally, we define "71 as the function that dilates

R™\ ( 2 o%(UU UU))

k
?710 2, O¢A(UU UU) U
7=1
71041)‘_ y j ::17...,k
Lipg} ' =1+ (cr/7).

such that

We define then
b=¢ oo

that is a Lipschitz function with constant

n—2
1
(4.10) Llp(%) = (1 + /ly) H (1 — ;Ll/(nd)(ndJrl)) ’
and
(4.11) lim Lip(¢;) =1.
A——+00

Now we use the construction of ¢, and of the auxiliaries functions @y ; to prove
the inequality (4.5). Let G € Pp(R") such that G = IT L,onT0.Q", G+ Ty, =G
fori=1,---,(n — 1); by (4.7) we have that

(4.12) f i () AR
*GNTQ"

=

=S g HTN@GNTQ NU) +a K" {@'GN TR NU) + FH NI GNV)),

Jj=1

where V; =TQ"\ (U;UU). Note that by definition of ¢, we have that
H" 1($,(0*GNTQ' N U)) = 0. Hence, by (4.12), (4.10) and the property of the
Hausdorff measure with respect to a Lipschitz function (see [5] Proposition 2.49
(iv)) we get that

(413) Lip(g," ! f i (o) dH !
*GNTQ"

k
>3 o H T GO GNTQ N U) +AH g0 G V) > [ anwdn
J=1 o CNTQ"
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where G € Pj.(R") such that
(4.14) FGNTQ' C ¢,(0"GNTQ").

Note that, since A; is 1-periodic with respect to the canonical basis
(e1,---,e,) of R", we have that, in general, A;+ Ty; #A; for every
t=1,---,n—1and j=1,---,k. Hence, when we apply ¢, we may have that
G+ Ty; # G for some i=1,---,n—1. By definition, any change due to ¢,
remains in a neighborhood of 9*G with radius smaller than 271/ (gee
Steps d =0,---,%n — 1). Hence, we may slightly modify G close to ToLQ" to
match the periodic boundary conditions. We denote by S € Pj,.(R") this new
set such that S =11, on 70.Q", S+ Tn; =S, for every i=1,---,n—1 and
such that

(4.15) (H" @SN TQ") — H" Y9G NTQ"| = 0G /"1 T72).
By (4.13) and (4.15), since ay, is bounded, we get then

Lip(¢,)" "

(416) =75

f i () AR
*GNTQ"
1

Tnrn-1
*SNTQ”

>

U/k(%) danl + O(/l—l/nJrl T—l)

71 i - »nn v v
2 7 inf { f a @) dH" ™ F € Poe(R"), F =IT', on T0:Q",
IFNTQ"

FiTy—=F 1:1,--.,7@—1}
_’_O(/«Lfl/nJrl T_I).

Hence, by (4.8), (4.16) and the definition of ¢, ; and ¢, (see (4.3) and (4.4)) passing
to the limit as T tends to + oo we have that

@, (V) > — (V)

B
Lip(¢,)

for every v € §"~1. Finally, by (4.11) passing to the limit as / tends to +oo we get
(4.5) which implies, as already observed, the pointwise convergence of {¢;, ; }, to ¢;..

It remains to study the pointwise convergence of {¢,} to ¢ as k tends to +oc.
By Remark 2.3 and (4.1) we have that
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for every F' € Pio(R") such that F +Ty; =F,i=1,---,n—1,and F = IT', on
T0.Q". By definition of ¢, we have then

(4.17) () < g, (v)

while

(4.18) o) = 9,(vp) j=1,---,k.
We define

k
p) ifze |JRy
vi(2) = J=1

plz| otherwise,

then, p(v) <y, (v). Let cow, be the convex envelope of y,.. Since ¢ is convex we
have p(v) < coy,(v). Moreover, ¢p(v;) < coy,(v;) < w,.(v;) = p(v;); hence,

(4.19) p(v;) = coy(v))

forj=1,---, k. The functions coy, are equi-lipschitz on compact sets of R" (see
Section 5.1, Chapter 5 in [13]); hence, by (4.19) and the density of {v;} we get that

(4.20) klim coy,(v) = p(v)

—+00
for every v € S"1. By (4.18) and the definition of y, we have then
(4.21) 0 (1) <y ().

We recall that by Theorem 2.4 the functions ¢, are convex for every k € IN. By
(4.21) it follows then

(4.22) 0(v) < coy(v)

for every v € S"° L.
By (4.17), (4.22) and (4.20) we can prove that there exists the limit as & tends to
+ 0o and

lim ¢,() = p()
k—+00

for every v € 8”1 which concludes the proof. O
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