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q-Hypergeometric Functions and Irrationality Measures

VILLE MERILA

Abstract. — We present a q-analogue of the Rhin-Viola method for the analysis of @-adic
valuations of the q-gamma factors occurring in the basic Euler-Pochhammer integral
representation of the Heine series 2¢,. Moreover, we show that this approach yields
the best known irrationality measures for logq(z), logq 2 and {,(1).

1. — Introduction.

In the diophantine approximation of the values of ordinary logarithm at ra-
tional points, good irrationality measures derive from the analysis of p-adic va-
luation of the gamma factors occurring in the Euler-Pochhammer integral re-
presentation

(1)  oFi(a,biciy) =

1 b—1¢1 _ \c—0-1
() fw (<1 D e, R > RO) >0
0

r')Ic->= 1—ay)

of the Gauss hypergeometric function. The scope of this paper is to present a g-
analogue of this approach to the study of log,(2), a g-analogue of the logarithmic
function defined by

o0 z n ]
logq(2)=zl_qzqn, <1, g=1/p, pez\{0,£1},
n=1

and to point out that good approximations come from the application of the -
analogue of Euler-Pochhammer integral representation for the Heine series 2¢;
(a g-analogue of 2F'1) and from the study of the related g-gamma factors.

In the recent articles [4], [8] and [9] sharp irrationality measures were ob-
tained through &-adic analysis of suitable g-binomial coefficients. Indeed, the
method corresponds to the well-known arithmetic approach introduced by Hata
in [3], based on the properties of Legendre type polynomials. In [7] Viola pro-
posed a technique, making use of the equation (1), and showed that it gave the
best-known irrationality measures for a set of values of the logarithm at rational
points. In the following we present the g-analogue of [7] and show that this also
yields the best-known irrationality measures for log,(z), log, 2 and {,(1).
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We recall that x is an irrationality measure of the irrational number ¢ € R if
for every ¢ > 0 there exists a constant gy = q¢(¢) > 0 such that

p e
¢ - —’ >q
-
for all integers p and q > qo. If gy can be effectively computed, then we say that u
is an effective irrationality measure. Furthermore, we denote by (&) the least

irrationality measure of &.

THEOREM 1. — Let ¢ =1/p, p € Z\ {0, £ 1}, then forz € Q, 0<z| <1

(2) ,u(lqu(Z)) <3,7633....

In the particular cases corresponding to z = —1 and z = 1, respectively, we get
the sharper estimates

(3) plog,2) <2,9383..., (1) <24649.. .,

where we denote
n

ogz=> L Vg oy 1
B= R = oA

n=

2. — Preliminaries.

We shall only briefly recapitulate some notations and lemmas used in the
presentation of this paper. Firstly, the g-analogue of an ordinary Riemann in-
tegral on the interval (0, a) is a “discrete integral”

[f@dia=at - fagq", 0<lgl<1,
0

n=0
(see[1], p. 486) i.e. Riemann sum, when f is a Riemann-integrable function. By &,
we denote the cyclotomic polynomials

S

o= [] @-*HeZq, s=12...,
k=1,(k,5)=1

irreducible in the ring Z[q] with the property

(4) ¢ —1=[[2, nez"

sln
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In addition, we need the g-Pochhammer product notation

n—1 n—1

@@ =[]0 —ag"), lm [TA-0ag") =@ lgd<1,
k=0 NnN—00 %—0
as well as the notation for the g-binomial coefficient

n (@; Dn : n
S 1L LY ke )
) m T G < Ak deg, M , = M=k

Let

a b, ¢ = (qa§q)n(qb;Q)n "
gy =y Sy <1,
21 550 2@ DG @ i

denote the Heine series. Then the basic Euler-Pochhammer integral re-
presentation for »¢, (see [1], p. 521) yields the identities

I'4(c) xb 1 @Y% Qoo (@G Qoo dye
Iy (e - b) @Y; Ooo@q°0; Qoo

6)  241(¢". " gy =

@ Docl@Y: Do, (oo b
7 = YRR E
(7) @ D D 261" Y 4" Y 45 47)
for 0<|gq/|, ly| <1, with the real part of b, R(b) > 0,c — b # 0, —1,..., and where

(45 Do 1-a
I(a)=—"">01-¢q)
«(@) (q“;q)w( 7
is the ¢-gamma function. The equation (7) is commonly known as Heine’s
transformation.
The following two standard lemmas will also be needed.

LEMMA 1. — For
D,(p)=lem{p—1,p* —1,....p" =1} = [[®i(»), peZ\{0,£1}

we have the asymptotic bound

log |D (p| 3

lim =3 log |p|.

n—oo
Furthermore, if [u,v) C (0,1) and by {n/s} we denote the fractional part of n/s,
i.e.n/s =[n/s]+ {n/s}, then

1 3log|p| [
lim Y logloyp)| = -5 uf dy' (@),

nN—0o0 N

s:{n/s}teluw)
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where

2

v' () = % log I'(x). (Note that I (x) is the ordinary gamma function.)

LEMMA 2. — Let a € R and (p,) and (q,) be two sequences of integers sa-
tisfying

m log |py — qual - _R
n=co  n?log [p] 7

and
g |qx|
lim su )

n%oop Zlog |p|

where R, T are positive numbers, then
T
<=+1
Ha) < 5+

holds.

For more details concerning Lemma 1, one is referred to [8], whereas Lemma
2 is an application of Lemma 3.5 in [2].

3. — The g-hypergeometric transformation and ®-adic valuations.

THEOREM 2. — Let

1

. @Yq" Qoo (@q; Qoo
8 Lh,j. Ly = | " . dox, lyl<1,

where h,j,l,j+h—1€ 7" and ¢=1/p, p € 7.\ {0,£1}. Suppose we have a
sequence of approximations

Zq(hn7jna lna ?/0) - Qq(hnajna ln7 yO)éq - pq(hW‘?jn) lna yO)a n e Z+

to an wrrational number &, at y = yo with Qq(hn,jn,ln,yo), Py(hn,jn,ln;yo) €
Z[p] and

(9) Iq(hnvjna lnv ?/0) - Cn : Iq(hn7jna lna ?/0) fOT every h’7ja l7
where the constant C,, > 0 is chosen to be minimal satisfying (9). Then

An|7)q(hnvjnvlm?/0), 4y = H Dy(p),
w:{;—;‘}EQ
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where {n/s} is the fractional part of n/s and w € Q C [0,1) if and only if
[lo] + [(j + kb — Do) < [jeo] + [he).

PROOF. — By the symmetry 2¢;(¢%, ¢%; ¢°; ¢; 4) = 2¢1(¢°, ¢% ¢°; ¢; ), we get

(10) fl o1 @Y D@ D g L0 (e~ b) 190“*1 y’s Do 0s )

@Y Poo@q Q) © Tgla) 4(c — @) ) @Y Poo @G5 Qs ¢

when R(a),R®0®) >0 and c—a,c—b#0,-1,-2,..., |yl<l. Set a=1+1,
b=h+1,c=j5+h+2, then (10) holds when %,j,l,7 + h — I > 0. Moreover, we
obtain

(1) Tyt j, by = PP D)

MR T (b — 1, b o)
;PP Pjsnt * J vo

and by the irrationality of &, it follows that
(12) (0 ph(D; Pjsn—1Pg(h s 5 yo) = (03 PIu(p; P)iPo(j + b — L, b o).
Let A,B,C,D < 7" such that A + B = C + D, and denote by
aa,(p) = Vo) (P; D) an(D; P)Br)y  Bavy(py = V() (D3 D)en(P; P)pn)

the @-adic valuations of the p-products. By (4), we know that

Vo, (p)(D; P = {%’]
Uap,(p) = Voo, (p) (D3 D)an) + Voo, () (D3 D)Br)
[An] [Bn}
= — J’» —,
s s

Bopy = Va,(p((D; P)en) + Vo () ((P; P)Dr)

ERE]

By denoting the fractional part of n/s by o, i.e.

o~ E)-2-F)

hence

and

we get
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and therefore
o (p) ~ Ba,p = [A0] + [Bo] - [Co] — [Do].

Similarly to [6] (Lemma 4.1), we deduce that if A + B = C + D, then

—1<app = Bop < 1.
This is promptly seen, because

[A]+[B] - [C]-[D]={C} +{D} — {A} - {B},
whence
—2< —{A} —{B} <[A]l+I[B]-[C]-[DI< {C}+ {D}<2.
Now,setA=1,B=j+h—1,C=j, D =h,then if
o] + [( + = De] < [joo] + [he],

we have
by equation (12). O

3.1 — The case of log,(1).

Let us consider the case when 7y = ¢**1, k € N and denote
1

1,(h.j, 1)) = f o
0

(xq; q);
(g g

When k <j <1 (the choice k >j does not provide good approximations) the
partial fraction decomposition yields

(2q; Q) _ (q; @)y __%n ikl
@@ @@ Qe 1—wgitt T 1 — gt
where
(®q; Ok

as = lim (1 — x¢®) —"——
BT 1 (g7 ™ @iy

_ @
(@7 Qs 1@ Qs i1
(— 1) -sk(gs+; g,
(=g DG i1 Diksia

(Q» Q)l+k_j k q s—7— 1 ¢

(J+1<s<l+k+1)
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Thus,
S acra ”z’“fl f al'a,
i (Wqﬁl;(l)lﬂcfjﬂ s=11 D 1 — g o
Since, (¢'q; @) = 0 for i = —1,..., —k, we have for ¢ = g% that
" (eg; O f GV
(g7 Qi Gy = (vq/*1; q) 0
0 ) +hk—j+1 s Y l+k—j+1
and
q* I+k+1 ok I+k+1 " 2l
I(h,j, k) = f > et =2 a [ o
s=j+1 s=j+1 0
k41 00 q(h+1)n k41 GD q<h+1>(n+b>
7(17q)zasz 7( 7q)zaq +SZ 1—gn+s
s=j+1 %,7;6 s=j+1
l%l D) ZOO: q(h/+1)n
=(1-9 asq """ —
s=j+1 n=s—k 1- q"
l+k2+1 ) i qn _ q 4 q(h+l)n
=1-9q » aq " 8( )
s=j+1 n=s—k
I+k+1 - qn 00 qn _ q(h+1>n
:(1—q)zasq—(+)9<log 1 - l—q"_ Zil—q" )
s=j+1 n=1 n=s—k
I+k+1 —k— q" © _h
=1 q) Z asq —(h+1)s (log 1) — Z Z qun>
s=j+1 n=1 n=s—k m=1
I+k+1 k—1 h _
—(1-¢) i asq~ 4V (log, (1) bz q" qu(s &
v 1— q — 1— qm
s=j+1 m=1
=Q,(h,j,1,k)log,(1) — Py(h,j,1,k)
where
I+k+1
Q.. Lk) =1 —q) > ayq "
s=j+1
I+k :
—(1—¢ OIS +1( _ 1)sﬂ'+k+1q(*j)+(";)—s(lc+h+1) [S - 1} [l + k _]]
(@ Dk 57 kol ls—i—1],
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and
I+k+1 s—k—1 q" h qm(s,k)
Pq(h7j’ l’ k) = (1 - q) Z asq(h+1)s< Z ]_ n + Z 1 m)
s=j+1 n=1 -9 m=1 " q
—(1- MMH( — )itk () + () —sthetheD [3 - 1] {l +hk _]} .
(@ Dk 57 kol,ls-7-1],

s—k—1 n h m(s—k)
q q
o ]

n=1 m=1 1 - q

(See [4], [8] and [9] for similar computations.)
When g = 1/p, we denote

I+k+1 -

. 1] [l+k—y
R S E ] i B ]
9;1 k p 8 TI = 1 p

and compute

I+k+1
P(h,j, 1,k p) = Z (— 1)s+j+k+1 B(s)—h(s—k—1)

s=j+1
s—1] Ml+k _]} (S—k—lp(s—k—l)h h p(s—k—l)(h—m)>
: ) +
|:k :|p|:8_]_1p ; pn_l 'mzzl p’ﬂ’l/_l

lJfl( 1) L b 1)[ 1] [l+k—j] N
k
)

s=j+1 S_j_lpnzl ]0"—1
h I k+1-5)k—s)/2 1+ k —3q
) P s|tth+s—) hm. lz m+1
) g (-1
o ;; oY [ k ush(p gt

where y=k(k +1)/2+ &+ D +1)+U+k—7+1)(j—k) (in the last equa-
tion, Lemma 3 from [8] was used), and

iD= ()= (5) [3—1] [Z+lf—j] D [3—1] [lJrlf—j] '
k ypls =7 — 1]y k J,ls=j—1],

Therefore,

(14) deg,Qh,j, L, k;p) <A+ k) +j+k) — % (C+E)? + 7+ k) + O(max{l, h}),

since by (5) and (13) deg,Q(%,J,, k; p) < max; n(s), where
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nes)=¢)+k(s—k-—1)+6—7j-DU+k—-s+1)
B s—j kE+1
cwensn (750) - (4)
<yl+k+1).

Moreover,

¢<s>=(sgl) sk 1R+ (’“;1> - (jgl) FGHDAHE D

>H(j+1) if I+k<j+h
and

K(h7j7 l7 k) = min{ ¢(] + 1)7 y}

:<k ; 1> +min{(j 4+ D+ 1),k + D+ 1) + U +k—j+ 1D —k)}

:(k‘z”> G DA D Uk —f DG k),

By denoting

(@ Dk

h’ .’ l’k = _K(h‘i’l’k)Dmax —_
Qh,j, 1, k) ==p {l,h}(p)(l T

and

. _K(hj (@ Divi—j , ,
Plh,j, 1, k) := p KEitOp 2 P(h,j, 1Lk p) € Zp,
(h,j,1,k) :==p ax{Lh} (D) T (.3, 1, k; p) € Zlp]

we have

(15) I(h,j,1,k) = Qh,j,1, k)log,(1) — P(h,j, 1, k) € 7 -log,(1) + 7,

where
i Lk) = pKGidd @Dk g
I(h,Ja la k) p Dmax{l,h}(p) a— q)(q7 q)k It](ha.]7 l7 k).
Note that
@ Dikj (= DL () () (D; Pisse—j .
(1 — g; i (1 — p)(p; Pk

For h,l,j € 7%, j <1<j+h, the g-hypergeometric transformation (10)
yields

(p; Pn(p; p);

(;lz(ha -al7k): e
prEg P o Do Py

I(la]+h_l7h7k)a 51781 €N7
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after multiplication by a suitable power of p, similarly to equation (11). Further,
when [ +k <j+ h a repeated application of Heine’s transformation and g¢-hy-
pergeometric transformation yields

o (0 D)3 Pk

2T (h,j,lk) =
@ J P (p; Di(p; P

Ikl +Ek—J,j+h =1, 02,60 €N.

Again, by the irrationality of log,(1), we get the identities
16)  p" (D PP Pt PR, 1K) = P (p; (D3 P PULG + b — L, k),
and
(A7) P P(D; PIP ., L k) = (03 Pl (03 DY PU K, L+ K = G + B = D).
Since gcd(p,p — 1) = 1, we know by (16), (17) and Theorem 2 that
(18) O (p)|Pthn, jn, In, kn), ne€ 7+
when o = {n/s} € Qis such that
(o] + [(j + I — D] <[jo] + [heo]
or
(lo] + [ko] < [jo] + [T+ & = jo],
that is
[lo] — [jo] < max{[hw] — [(j + h — Do), [l + k — jo] — [kw]}.

If w<1/c, where ¢ = max{h,l}, then [jo]= [ho]=[l+k —j)w] =0, and
thus w¢ Q. Therefore, if @s(p)|4,, then w = {n/s} € 2,and n/s > w > 1/c. This
implies that s < cn = max{#, [}n, which in turn yields @s(p)|Dmax(1,1}.(p), and so

Dy, SR
axA{ln,hn} c ,Z[p]
Whence,
(19) A, Q(hn, jn, In, kn) € Z[p].

Let us denote K,, = K(hn,jn,n, kn), i.e.

K, = (’m; 1) + (kn + D + 1) + (In + kn — jn + 1)(jn — kn)

2
(20) - (% b+ A+ E— ) — k)> n* + O(m)

=An? + O).
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From (15), (18) and (19) , we obtain
A;ll(hn,jn, n,kn) € Zlogq(l) + 7
and by Lemma 1 and (20)

. log |4, T(hn,jn, In, kn)| B 3 2 3 /
Jim, n2log|p| =4+ 2 max{l, i} 72 Qfdl// @)

2
— % (rnax{l,h}2 —&—fdl///(x)) - % — (kh+ U+ k=50 = k)
)

=:R(h,j,1, k).
On the other hand, by the estimate (14)

-1 .
lim log |4, Q(hn, jn, In, kn)|
e n?log p]

1 ; . . .
- E ((l + k)z +]2 + kz) + R(haj7 l7 k) = T(h;]a l> k) + R(h/a.?> la k)

<UA+k)h+7+k)

Lemma 2 with the choice h =75 =14, [ = 15, k = 12 gives
ulog, (1)) < 2,4649. ...

Usually, we denote logq(l) = {,(1) and call the value a g-analogue of zeta function
at point one or the g-harmonic series (see, for example [5] for further discus-
sions).

OBSERVATION 1. — For log,(y), it is more advantageous to employ the con-
nection (6) when computing the approximation form, instead of using the ex-
pression coming from the dirvect computation of the q-integral (8). In fact, in [4]
the authors derive an approximation

F+l (% Dy (@ D, 21 (@0, gL g g g ) = Q(2) log, (2) + P@)
((I; Q)nlJranrl

with ny > ngy, ne > ng and ng — ny < m < ne. By denoting ny = h, ng =1, ng =73,
m =k and y = 2¢**, we have by (6)

21— @ (4, 1 2d ) = Q@) log,(2) + P(2)
and Theorem 2 yields the irrationality measures
ﬂ(logq(z)) <3,7633..., ,u(logq( —1)) <2,9383... (g-analogue of log?2)

as in [4], given the same analytic estimates for the approximation polynomials.
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