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Hardy-Littlewood Type Gradient Estimates
for Quasiminimizers

J. KINNUNEN - M. KOTILAINEN - V. LATVALA

Abstract. — We prove Hardy-Littlewood type integral estimates for quasiminimizers in
the unit ball of the Euclidean n-space. These extend known results for planar analytic
functions to a more general class of functions. Our results can be regarded as
weighted Caccioppoli and Poincaré inequalities for quasiminimizers.

1. — Introduction.

We recall certain inequalities for analytic functions originally studied by
Hardy and Littlewood. Indeed, let f be complex analytic in the unit disc
D(0,1) C C. Then for every p > 0 and ¢ > — 1 the area integrals satisfy

a1 g [ 1Fera-Ed< o+ [ 1rera -k

D(0,1) D(@.,1)

and

12 fOF+ [ If@ra-td<c [ 1P - d
D(0,1) D(0,1)

with constants C' depending only on p and q. In this form, the inequalities are
stated in Lemma 2.2 of [18], see also Theorems 6 and 7 in [7] and Remark 3.2 [1].
These inequalities can be equivalently formulated for classical harmonic func-
tions in the unit disec by replacing the complex derivative with the gradient.
Several versions of (1.1) and (1.2) appear in the literature related to analytic
function spaces. For extensions to several complex variables including invariant
harmonic functions (M-harmonic functions), we refer to [1] and [18].

The purpose of this note is to point out that inequalities analogous to (1.1) and
(1.2) hold true for quasiminimizers of the s-Dirichlet integral

f |Vu(e)| de,

with s > 1, in the Euclidean n-space. The precise definition of a quasimi-
nimizer will be given below. Minor additional restrictions for the range of
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parameters are necessary in this case. The class of quasiminimizers contains
many solutions of linear and nonlinear elliptic partial differential equations,
see [9]. Quasiminimizers with constant one are precisely weak solutions of the
s-Laplace equation

— div(| V@) [ V() = 0.

Continous weak solutions of the s-Laplace equation are called s-harmonic
Sfunctions. In the special case s = 2, we obtain classical harmonic functions.

Our first result gives an analogue of (1.2) for continuous quasiminimizers in
the unit ball B(0, 1) of R" with n > 2. Continuity is not a serious restriction, since
every quasiminimizer has a continuous representative, see [4] and [9].

THEOREM 1.3. — Let s > 1, 0<p < s and q € R and assume that u is a con-
tinuous K-quasiminimizer of the s-Dirichlet integral in B(0,1) C R". Then there
is a constant C = C(n, p, s, K) such that

(14) (O)[P + f IVu@)|P(1 - |e))P dx < C f u@)|P(1 — |a])? da.
B(0,1) B(0,1)

Moreover, if u is s-harmonic in B(0,1), then (1.4) holds for all p > 0.

The proof of Theorem 1.3 relies on such standard tools as Caccioppoli in-
equality, reverse Holder inequalities and a Whitney type covering result.
Indeed, our argument shows that (1.4) is a weighted Caccioppoli type inequality.

According to our second result, an analogue of (1.1) holds true for quasimi-
nimizers if p > 1.

THEOREM 1.5. — Let s > 1, p > 1, —1<q<oo, and assume that u is a con-
tinuous K-quasiminimizer of the s-Dirichlet integral in B(0,1) C R”. Then there
s a constant C = C(n, s, K, p, q) such that

(1.6) f |u(x)|p(1—|x)qu§C<|u(0)|p+ f |Vu(9c)|p(1—x|)p+qu).
B(0,1) B(0,1)

Theorem 1.5 is sharp in the sense that the claim does not hold for ¢ = — 1. To
see this, it is enough to consider % = 1. Our proof of (1.6) is based on a classical
Hardy’s inequality and the absolute continuity of a Sobolev function on almost
every direction (Lemma 3.1 below). In fact, we prove the weighted Poincaré type
inequality

A7) [ @ - a0 e dr <€ [ [u@Pa - jupde,
BO.D) B(©,1)
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from which the result follows easily. Such inequalities (without weights) have
been studied in [2] and [19] for certain solutions of elliptic partial differential
equations in Lipschitz domains. By choosing ¢ = 0 we notice that our inequality
is an improvement of Theorem 2.1 in [19] in a unit ball.

The key novelty in the proof of (1.7) is the use of Lemma 3.1; we feel that
Lemma 3.1 offers a somewhat general method to pass from smooth functions to
Sobolev functions in balls.

2. — The proof of Theorem 1.3.

Throughout this work, s > 1 is fixed and Wllof(B(O, 1)) denotes the space of
those locally s-integrable functions in B(0,1) C R" with n > 2, whose weak first
order derivatives are locally integrable to the power s in B(0,1). The Sobolev
space with zero boundary values, denoted by Wé’s(B(O, 1)), is the completion of
compactly supported smooth functions C;°(B(0, 1)) with respect to the Sobolev

space norm. If Q is an open set with Q C B(0, 1), we denote Q € B(0, 1).

DEFINITION 2.1. — Lets > 1. A functionu € Wllo‘f(B(O, 1)) is @ quasiminimizer

of the s-Dirichlet integral in B(0,1) C R" ifthere is a constant K > 0 such that for
all open sets Q € B(0,1) we have

[ Ivu@r de < & [ 1vo@)* da
2 o
whenever v € WH(Q) with u — v € W, *(Q).

For the properties of quasiminimizers, we refer to [9] and [13]. We recall
some auxiliary inequalities for quasiminimizers. We begin with the Caccioppoli
inequality.

LEMMA 2.2. — Assume that u is a quasiminimizer of the s-Dirichlet in-
tegral in B(0,1) C R". For every J > 1, there is a constant C = C(n,s,K, o)
such that

f | V()| dae < % f [u(x)|” da
By,r) B(y,or)
whenever B(y, or) c B(0,1).

ProoF. — The claim follows easily from the definition, see Theorem 6.5 in [9]
or Lemma 3.3 in [14] for a detailed proof. O
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We also need the fact that quasiminimizers and their gradients satisfy reverse
Hélder inequalities. We denote

UB(y.r) = ][ w(x) doe =
B(y.r)

1
By, 7] Bf uwd
(y.r)

where |B(y,7)| is the volume of the ball B(y, »).

LEMMA 2.3. — Assume that u is a quasiminimizer of the s-Dirichlet integral
in B(,1) c R". For every 0<p<q and J6>1, there is a constant
C=Cn,s,K,p,q,0) such that

1/q 1/p
( ][|u(90)|qu) gc( Jf |u(9c)|pdx) ,
B(y.r) B(y,or)

whenever B(y, or) c B(0,1).

PrOOF. — By Theorem 7.4 in [9], we have

1/q 1/p
]( lu(y)|? da <C sup |u@)|<C ][ |u(x) [P da .
B@.» w€By.n B(,or)
; ) O

LEMMA 2.4. — Assume that u is a quasiminimizer of the s-Dirichlet integral
in B0,1) c R". For 0<p < s and > 1, there is a constant C = C(n,s,K,p, )
such that

1/s 1/p
(2.5) ( f|Vu(gc)de) SC( f|Vu(x)Pdﬂc>

By,r) B(y,or)

whenever By, or) c B(0,1).
ProoF. — See Theorem 6.5 and Remark 6.12 in [9]. |

REMARK 2.6. — By a self-improving property of reverse Hélder inequalities we
may also replace the exponent s on the left-hand side of (2.5) with a slightly larger
exponent, see [8] and Theorem 6.7 in [9]. This observation implies that even a
slightly stronger statement is true in Theorem 1.3. We do not need this refine-
ment here and we leave the details to the interested reader.

The proof of the claim that the exponent p > 0 on the left-hand side of (1.4)
can be made arbitrarily small in the case of the s-Laplace equation relies on the
following regularity property of the gradient of a s-harmonic function.
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LEMMA 2.7. — Let u be s-harmonic in B(0,1) C R". For every p > s and
0 > 1, there is a constant C = C(n, s, p, d) such that

1/p 1/s
< f |Vau(x)? dac) < C( ]( |Vau(x)|* dm)
B(y,r) B(y,or)

whenever B(y, or) c B(0,1).

Proor. — By regularity theory, the gradient of a s-harmonic function is locally
Holder continuous, see for example [3], [6] and [15]. See also Theorem 3.19 in [16].
Moreover, we have the estimate

1/s
sup |Vu(x)|§C( ]f |Vu(9c)|sdac) .

xeBy,r) B@.or)
The claim follows from this. O

THE PROOF OF THEOREM 1.3. — By Theorem 7.4 in [9] we have

1/p
][ |u(9c)|pdﬁc> )

[u(0)] < sup |ux)| < C(
B(0,1/2)

2€B(0,1/4)

Hence it is sufficient to prove the inequality (1.4) without the term |u(0)|”. By a
Whitney type covering argument, there is a countable covering of B(0, 1) by balls
B(x;,7;),1=1,2, ..., such that B(x;,2r;) c B(0,1),

(2.8) é(l — ) <1 —Ja;] < CA —|x))

for every x € B(x;,r;),

(2.9) 1— ;| <Oy,
and
(2.10) ZXB(x,j,Zn)(w) <C

1=1

for every « € B(0,1). Here C depends only on 7. Condition (2.10) means that the
balls B(x;,2r;), 7 =1,2,..., are of bounded overlap.
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First assume that p <s. Holder’s inequality together with (2.8) and (2.9) im-
plies that

f |Vu(@)[P(1 — |2 dae < Z f IVu@)P( — |a))? da

B(0,1) =1 B(a;,r)
o0
<> a-fuhy [ |Vu@y de
=1 Bair)

<0y —Ja)r Jf V()| dee
=1

Ba;,r;)

p/s
gCZ(l—mpP*q*’l( Jf|w(x)|8dx) .
=1

Ba;,r;)

Next we apply the Caccioppoli estimate of Lemma 2.2 and the reverse Holder
inequality of Lemma 2.3. This implies that

p/s
da- |xil)p+q+"( J( |Vu(ac)|sdx>
B(wi,ry)

=1

p/s
SCZ(llxil)’”q*”((lIxil)s f Iu(oc)"”doc)
i=1

B(; 3ri/2)

p/s
(1—|x¢|)q+"( J[ |u(9c)sdac)
B(a;,31;/2)

I
”M8

-~
||
—_

C

e a-lah™ f P do
=1 B(w; 2r;)
—cy. f @)|P(1 — |)? de

Il
—_

=1 Bx;2r;)

<C [ @l - |l de.
B(0,1)

The last inequality is based on the bounded overlap property (2.10) of the
Whitney covering.

The case p = s follows easily from the Caccioppoli estimate. Finally, if » is
s-harmonic and p > s, we apply the reverse Holder inequality of Lemma 2.7
for the gradient and the Holder inequality for the function.

REMARK 2.11. — The proof of Theorem 1.3 extends easily to general domains.
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3. — The proof of Theorem 1.5.

The proof of our second result relies on the following absolute continuity
property which is analogous to the ACL-property of Sobolev functions. The
(n — 1)-dimensional Hausdorff measure is denoted by H" 1.

LEMMA 3.1. — Let u € W,;3(B(0,1)) and 0<Ry<Ry<1. Then u has a re-
presentative that is absolutely continuous on the segment [R1{, Ro(] for

H" 1-almost every { € 0B(0,1).

PRrOOF. — The basic idea for the proof is standard. However, since some
technical modifications are needed, we give a detailed proof for reader’s con-
venience. Let us first agree that « is a function which coincides with the original «
in B (O, 1+ Ry

2
tained in B(0, 1). (In other words we multiply the original « by a suitable cut-off
function.) Let uy, := ¢, * u be the standard convolution mollification with ¢, — 0
as k — oo.

Since the mollifications u; converge to % in the Sobolev norm as ¢, — 0, we
may pick a sequence (g) so that

), belongs to W#(B(0, 1)), and whose support is compactly con-

[ (@) —ut@) + [Vute) - VugGa) dwr<2*
B(0,R2)

for every k = 1,2,.... We denote by G the set of those points in B(0, 1) for which
the pointwise limit exists and define u* by setting

w(x) = klirgc ()

for x € G, u*(x) = 0 in B(0,1) \ G. Since the set of Lebesgue points of u is con-
tained in G, we conclude that «* coincides almost everywhere with .
For each { € 9B(0,1) denote

1

(0 :fr"'*l(luk(fré) —ur)| + |Vur)) — Vu,(rQ)) dr

Ry

and

v =Y .
k=1

By the monotone convergence theorem and the spherical coordinates, we
have
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[ woarc=3" [ woar-i

0B(0,1) k=1 5B(0,1)
o 1
=S [ [ me0 w00+ [VueD) - Vue0) drdH" 1
k=1 5B(0,1) R,
< Z f (Jugp(x) — u@)| + | Vu(r) — Vug(x)|) die < oo.
k=1 B(0,1)

Hence v({) is finite H" !-almost every { € 0B(0,1). Fix { satisfying v({) < oo and
denote g;(t) = u; (), t € [0,1].

For k large enough and for any [, we have g,;(1) = ¢g,(1) = 0 and hence for
t€[Ry,1]

1 1
9610 — 90| = | [ @it — 90 ds| < [ 192010 — Va0l ds
t t

(32)
< [ V(D) = V0| + [Vaa(sD) — VulsO)| ds
t

< R Wra(O) + vr(0).

This implies that (g;) is a Cauchy sequence in C([R1,1]). We conclude that the
function g(t) = khm gx(t) is continuous in [Ry, 1]. The argumentation in (3.2) also

implies that (¢g)) is a Cauchy sequence in L'(Ry,1]). By completeness of
LY(Ry,1]) there is a function g € L'([Ry,1]) such that ¢}, — ¢ in L*(Ry,1)).
Hence for any t € [R1, R2]

1 1
g(®) = im gi(t) = — lim tf gi(s)ds = — tf (s) ds.

Since ¢g(1) = 0, this implies that ¢ is absolutely continuous on [Ry,1]. The claim
follows since g(t) = u* () for t € [Ry, Rz]. O

REMARK 3.3. — Notice that Lemma 3.1 is not true for B; = 0 since the function
u may be singular at origin. In this case the argument in (3.2) is useless, since R%’”
appears on the right-hand-side.

We also recall a useful oscillation estimate.

LEMMA 3.4. — Assume that u is a quasiminimizer of the s-Dirichlet integral
in B(0,1) C R". Foreveryt > 0 and 6 > 1, there is a constant C = C(n, s, K, t,5)
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such that 1t
osc u(x) < Cr( ][ Vu(ac)|tdac>
2B () )
B(y,or)

whenever B(y, or) c B(0,1).

Proor. — By Theorem 7.4 in [9] we have

1/s
sup |u(x) <C ]( |u(x)|® dae .
€By.m By ror/2)

The Poincaré inequality implies that

osc u(x) <2 sup |u®) — upgy aionel
veBy,r) xeBy,r)

1/s
<C ( ][ [ — upy asom| d%)
B(y,(1+0)r/2)

1/s
<Cr ( ][ | V()| doc) .
B(y,(1+0/2)

By Lemma 2.4, we may replace s with ¢ on the right hand side of the previous
estimate. 0

THE PROOF OF THEOREM 1.5. — Our proof is based on the following classical
one-dimensional Hardy’s inequality in [12] (see also [1], p. 493): If

G = [ gwat,
0

where ¢ is integrable on [0, 7] for every 0 <7 <1, then
1

1
(3.5) f |G(1/')|p(1 —m)ldr < Cf |g(1,.)|z)(1 — p)PH gy,
0 0

To prove the claim of theorem, it suffices to prove the weighted Poincaré type
inequality (1.7). To do this, we divide the integral on the left-hand side of (1.7) in
two parts. We first apply Lemma 3.4 and obtain

[ 1w —u @@~ jaly de < ¢(_ose

s u(@))”
B(0,1/2) 1/

(3.6)
<C f V()| dae < Cf V@)’ (1 — |x)P de.
B(0,2/3) B(0,1)
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1
Let 5 <R<1. Choose { € 9B(0,1) such that « is absolutely continuous in

E ¢, RC] . By Lemma 3.1, this holds for " !-almost every { € 9B(0,1). For such

{, we have
1 r
(3.7) ‘W‘C) - u(gé)’ Slf [Vu(td)| dt.
We first write the estimate
R
(@) — ()P — [ doc = f f P u(rt) — w(©)PA — )¢ dr di

BO.R)\B(0,1/2) aBO.D)
; 1 1
= f _[2”7”"‘1 ( url) —u (é C) u(i C) — u(0)

aB0.1) |
Here the latter integral I, can be estimated as in (3.6) by the inequality

un G C) — u(0)

grable.
To estimate the integral I; we use (3.7) together with (3.5) and obtain

[

p
+

P
)(1 —)ldrd{=:1; + I.

< osc u(x) and the fact that the weight (1 — |x|)? is inte-
2€B(0,1/2)

1 P
wrl) — u(zg“) ‘ A =nr)idrd

83(071)%
R r P
< f p1 f VO dt | (1 - drde
oBO.D 3 !
R r p
<C f f f L0V dt | (A — v drde
OB(O,D% 0

1
<c [ [rvueopa —rdrd
5B(0,1)0

<C f V@)L — |))P de.
B(0,1)

The claim follows by letting R — 1.
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REMARK 3.8. — We like to mention that the proofs of theorems 1.3 and 1.5 apply
also to those functions « in B(0,1) which are K-quasiminimizers in every ball
B(x, (1 — |x|)/2) with K independent of x € B(0,1). An example of such a class of
functions is given by hyperbolic harmonic functions, see [6], Section 2. These are
defined as functions u € C%(B(0, 1)) satisfying the invariant Laplace-equation

ou

a%izo

du = (1 — 2P+ 200 — 21— o)D" 2
i=1

on B(0,1). Hyperbolic harmonic functions u also satisfy the analogue of Lemma
2.7. This follows from [10], Proposition 3.4 which may be written in the form: For
any 0 <o <1 and 0 <p < oo there is a constant C such that

vupl <¢  f  Vu@p do.
B(y,o(1-|y])
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