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Bollettino U. M. 1.
(9) II (2009), 731-754

Smooth Dependence on Initial Data of Mild Solutions to
Evolution Equations

GGIOVANNI VIDOSSICH

A Guido Stampacchia,
mio Maestro,
che ricordo con affetto e gratitudine.

Abstract. — We prove two general theorems related to the smooth dependence on data of
mild solutions to evolution Cauchy problems and provide some of their applications
to the Faedo-Galerkin method for approximating solutions as well as to the existence
and uniqueness of periodic solutions.

1. — Introduction.

This paper is devoted to two general theorems related to the smooth de-
pendence on data of mild solutions to evolution Cauchy problems

u = Au+f(E,u), ula) = wu

as well as to some of their applications, A being the generator of a Cy-semigroup
on a given Banach space.

One of the theorems provides sufficient conditions for the continuous de-
pendence of % on f, a and uy. This theorem generalizes the main results of
VIDOSSICH [8] because the convergence f,, — fy is now only pointwise. Exactly
this improvement is useful in the approximation of mild solutions (as shown in § 4
below for the Faedo-Galerkin method) as well as in the existence of periodic
solutions (as shown in § 5 below).

The other theorem states that « depends in a C'-way on uy when f is C! (in

0 . L. o e
constrast to the fact that T does not exist always), generalizing and unifying in

a single statement various results proved in ch.6 of TEMAM [7] (e.g., in his § 6.8
Temam assumes A positive and symmetric on a Hilbert space). The partial de-

0 . L
rivative 87“ turns out to solve a Volterra integral equation in the space of
0

bounded linear operators. The proof is adapted from the original (but apparently
not well-known) approach to the differentiability of solutions to ODEs due to
SOTOMAYOR [6], based on the Fiber Contraction Theorem of HIRSCH-PUGH [4]
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(the traditional argument used in ODEs does not seem to work for evolution
equations). Applications to the existence and uniqueness of periodic solutions are
given in § 5.

2. — Notations, terminology and preliminaries.

We shall denote by:

e X a Banach space;

e U C X an open set;

J :=[a, bl with a > 0;

L(X,Y) the space of bounded linear operators X — Y;
LX) = LX, X);

I the identity mapping of X.

We say that

e f:DCRxX — X satisfies locally the Caratheodory hypotheses when
f(-,x) is measurable for all x, f(¢,-) is continuous for a.e. ¢t and for every point
z € D there exist a neighborhood N, of z and &, € L] _such that

loc
[/ @) < h(8)

in N, N D for a.e. t;

o U, — uy uniformly on compacta when for every compact subset K of the
domanin of uy there is ng such that u, is defined on K for n > ng and
lim,, u,, = u¢ uniformly on K.

We use repeatedly the following results:

LemMA 0.1. (PAzY). — Let T(t) be a compact semigroup on X, a<c<b,
h e L'(a,cl,R") and

t
Flu)(t) == f Tt — syu(s) ds

foru € L'\([a,c],X). The set
{Fu)(s) : u € L'(a,c],X), ||u(-)| <h ae}
has compact closure in X for avery a < s < ¢, and the set
{Fw):u € L'(a,cl,X), lu( )| <k ae}

has compact closure in the space of continuous functions [a,c] — X endowed
with the L*>°-norm.
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LemMA 0.2. (WARD) — When f (-, u) is p-periodic and satisfies the Caratheodory
hypotheses, the evolution equation

w = Au+ f(,w)

has a p-periodic mild solution if and only if there exists a mild solution w such
that u(0) = u(p). Then the mild solution with initial value u(0) is p-periodic.

Proofs of these lemmas are omitted by the following reasons: Lemma 01 is
substantially what is proved on p. 25 (lines 1-9 from bottom) and p. 26 (lines 1-11
from top) of PAazy [5], while Lemma 02 is proved on p. 596 (lines 6-10 from top) of
WaRrD [10].

3. — The two general results.

The first result is devoted to the continuity of mild solutions as functions of
data. It shows that the pointwise convergence f,, — fy suffices when a uniform
local Lipschitz condition holds on the f,;’s. This fact is needed in the proofs of
Theorems 2, 3 and 5 below.

THEOREM 1. — For every n = 0 let u, be the maximally defined mild so-
lution of
u = Au+ fi(t,w), wla,) = ug

where A is the generator of a Co-semigroup T() on X, f, : J x U — X satisfies
locally the Caratheodory assumptions, uy € U and a, € J. If

@) for every (ty,xg) € J x U there exist a neighborhood W of (ty, o) in
J x U and h,L € L. such that

loc
1fult. ) =l S L@ - le -yl and || fult, )] < 2(?)

m W fora.e tand alln = 0;
() f, — fo pointwise on J' x U with J \ J' having measure zero;
(i) uf — ud € U;
iv) a, < agand a, — agp;

then u, — uy uniformly on compacta.
Note that the uniqueness of u,, follows from (i).

ProoF. — The proof is based on a local version of the theorem, namely on the
following claim:

(x) Let A and f, be as in the theorem. Let c,, € J and v,, € U satisfy ¢, < co,
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¢y, — €y and v, — vy. Let wy, be the maximally defined mild solution of
w = Aw +f;l(ta w), w(cy) = vy

for m=0. Then there exists 0 >0 such that w, is defined on
Js := [co, co + J1 for n large and:
o wy, — wy uniformly on Js;

e sup Jw,®) — vl —0asn cc.
cp <t<c

To prove (x), at first we fix M > 0 such that
ITO| <M  O0<t<co+1)
and next ¢ > 0 and &, L € L such that the closed ball B in X with center v, and

loe
radius ¢ is contained in U and moreover

| £t ) — fult, )] < L@) - [|x — ¥ and | fut, )| < R(t)
for a.e. teJJNlcg—¢,co+e]l , n=0 and x,y € B [as allowed by (@i)]. Fix
0 € 10,min{1, ¢}] such that J; := [co, co + 5] C J and
M Ws)ds<e , M f L(s)ds<1.
JNlcy—d,c0+6] JNleg—d,c040]
In the last side of the inequalities

||T(t - Cn)vn - 7)0” < ||T(t - Cn)'Un - T(t - Cn)vO” + ||T(t - Cn)UO - DOH

< M|vy, — ol + || T — en)vo — vo|

all addenda become small for » large and ¢, <t < ¢y: the first because v,, — vy,
the second by the continuity of 7'( - )vy. This and

t
f T — s)fu(s,w(s)) ds

t
<th(s)ds<e

when w(s) € B for ¢cg — 0 < ¢, < s <t <c¢y+ J, imply that:

e the functions

t
wn®) = Tt = c)vn + [ T = 5)f, (5,0,(5) ds

Cn

are defined on [c,,co + J] and take values in B for » large by virtue of the
classical argument based on fixed points of contractions;

o sup |w,(@®) —wv| —0asnT occ.
e <t<
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From the integral representation of mild solutions, in Js we have:

l|wn @) — wo@®)|| < || T — co)wnlco) — T — co)vo|

t
+f 1Tt — )| - [|.fu (5, 00(8)) = fo(s,0(5)) % fru (5,00(5)) || ds

co+0
< Mljwaleo) =l + [ M- L(s) - max [10,() — wy() ds
b éeds
co+0
[ MU 0®) —fols w0(®) | ds

so that from the Lebesgue dominated convergence theorem, from w,(co) — vo
co+0

and from [ M- L(s)ds<1 we get

Co

max [[wn (&) — wo(O)]| — 0 as n T co.

This means that (x) holds true.

Now we proceed to the proof of the theorem. To start with, we note that it
suffices to show the following: given any closed interval of the type [ag, 5] which
is contained in the maximal domain J, of u, every subsequence of (u,), has a
subsequence whose elements are defined in [ay, f] and converge there uniformly
to uo. So fix [ay, f]1 C Jy and any subsequence (uy, )y, of (uy),. Define

A ::{t > ay : there exists k;; — oo such that lim Uny,, = 0 uniformly on [ayg, t]},
1 1,0
¢ :=supA.

Note that A is not empty and that ¢ > ay: this follows from (x) with ¢, := a,, and
vy, :=ug. If we show that ¢ > f, then we are done. So assume ¢ < f3, and let us
find a contradiction. There are t; € A such thatt; T c. By definition of A, for every
1 there is k; > 7 such that

||unk_i(t) —up)||<1/2 (ag <t <ty).
Applying (%) with ¢; :=1t;, ¢o :=c and v; := un,ki(t,;), Vo := up(c) we see that

supA = ¢ + 0 for a suitable 6 > 0 [as Jy is a right-open interval]. This is the
desired contradiction. O

Now we establish the differentiability of mild solutions as functions of initial
data and parameters.

THEOREM 2. — Let X, Y be Banach spaces, A the generator of a Co-semigroup
T onX, U CXandV C Y opensetsandletf :J x U x V — X satisfy locally
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the Caratheodory hypotheses. Under these assumptions, the mild solution
u = u(t, x, 1) of the evolution equation in X

w =Au+f¢,u, ), ua) =x
has the following properties as a function of (¢, x, A):
o iffy, = % f exists and satisfies locally the Caratheodory hypotheses, then

u has continuous partial derivative v = a—u(-, x, 4) and it is the solution of the
Volterra equation v

t
ot) = T — ) + [ Tt = 5) 0 fu (5, u,2,2), ) o v(s) ds

m LX), o
o if f,, = E f and f, = 9 f exist and satisfy locally the Caratheodory
hypotheses, then uw has continuous partial derivative z := au(-, x, ) and it is

the solution of the Volterra equation
t
2(t) =f Tt —s) o { fuls,uls,®, 1), 2) oz + f(s,uls, x, 1), 2) } ds
a

m LY, X).

The solutions v and z ato the above Volterra equations have the same domain
of u(-,x,4). Moreover, %u(o, x,A) -y is the mild solution of the variational
Cauchy problem

v =Av + fo(s,uls,x, 2),2) v, v(@) =y.

0 . . . .
In other words, —u(-,x,4) acts like the principal matrix of variational

equations for ODEs in RY.

Proor. — We treat only the case of u, since the argument for u, is similar. We
shall use freely the fact that u(t,x, ) is a continuous function of (f,x, 1). This
follows by applying Theorem 1 to

ﬁ7/(t7 x) ::f(ta x; }"VL)
whenever 1, — /o [as allowed by the fact that the inequality
£ @, 40) — f &y, 2|l < sup|| fult,z, )| - [l — y|| < L@) - || — |
¥4

holds locally for a suitable L € Li . by virtue of the mean value theorem].

Fix xp € U and /y € V. Let [a, by[ be the maximum domain of u(-, xy, Ag). To
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start with, we prove the following claim:

() Ifty € [a,bol, h € L. and the positive constants 6, ¢, n, M fulfil the fol-

loc
lowing conditions:

(i) the closed balls By := B(ulty, %o, %0), &) and By := Blxg,n) are con-
tained in U; the closed ball By := B(ly,n) is contained in V; the in-
terval Js := [ty, ty + 0] is contained in [a, byl;

(i) uy(to,x, A) exists and is continuous and bounded on By x Ba;

(i) ||f &y, Dl <h®) and || .y, ]| < k(@) for y € Bo, A € By and a.e.
teds;
(iv) | T®| <M for Of t<1;
to+
V) d<sland M [ h(s)ds<min{1/2 ¢/3};

to
(Vi) HT(t — to) u(to,.%‘o, )»0) — u(to, X0, /10)” <8/3f07‘t € J(s;
(vil) M |Ju(ty, x, A) — ulto, o, A0)|| <e&/3 fort € Js, & € By, A € By;

then u, exists continuous and is bounded on Js x By x Bs.

To state (x) we shall use the Fiber Contraction Theorem in HIRSCH-PUGH [4].
To this aim, let C° and L be the metric spaces of bounded continuous functions
Js X By x By — By and J; x By x Bs — L(X), respectively, with the metrics
induced by the L>®-norms. Obviously C° and L are complete metric spaces. For
teds, x e B, e By and v e C° we have

t to+o
fHT(t—s)f(s,v(s,x,l),l)”ds<Mf h(s)ds <¢/3.
to

to

This, (vi), (vii) and (iii), (ii) show that the functions

t
(t, 2, 2)~> Tt — to)ulty, x, A) —l—f Tt — s)f (s,v(s,2,2), 1) ds,
to

t
(10,20 Tt — 1) 0 uylto, 2, 1)+ [ T — )0 fu(s,005,2, ), 2) 0 (s, v, )
to
belong to C° and L, respectively, whenever v € C° and w € L. Define now the
maps
Fi:C"=C . Fy:C"xL—L , F:C'xL—C"xL
by the following formulas:

t
o Fi(w)(t, @, 4) := Tt — to)ulto, ®, ) + [ Tt — $)f(s,v(s,2,1),2) ds;
to
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t

o Fy(w,w)t,u,7) := Tt — to) o up(to, ¢, 2) + [ Tt — s) o fu(s,v(s,,2),2) owls,x, ) ds;
to

o F':=(F1,F5).

We have:

(a) F; is a contraction because

[|1F1(v)(E, 2, A) — Fr(v2)(E, 2, A

t
< [IT@ =) 11f (5,065, 2, 2) = f (5,05(5,, ), 2) || ds
to

to+o
< f |1T@ — s)|| - h(s) - ||v1(s, 2, L) — vals, x, A)|| ds
to
[by the mean value theorem]
to+0

< v — 2l M f h(s)ds
to
<min{1/2,¢/3} - |1 — vz,
so that

1
[|1F1(v1) — Fi(v2)|| o, < 5 o1 — v2l o5

(b) for every w, the map Fa(-,w) : C° — L is continuous, as follows from the
Lebesgue dominated convergence theorem;

(¢) the map Fo(v,-) : L — L is a contraction with the same constant for all v
since

HFQ(’U,?/Ul)(t,x, i)_FZ(va/M&)(L X, }“)”oo
t
< supf 1Tt — 8)]| - () - (s, @, A) — wals, x, 2))]|| ds
t
to
to+0
< |lwy — ws . M f h(s) ds

to
<min{1/2,¢/3} - |Jw1 — wa||

so that

1
|F2(v, w1) — Fa(v,ws)|| , < 5 w1 — wal| .-

This shows that F' fulfils all assumptions of the Fiber Contraction Theorem in



SMOOTH DEPENDENCE ON INITIAL DATA OF MILD SOLUTIONS ETC. 739

HirscH-PUGH [4], so that F' has an attractive fixed point (v, ws). We have
Fl('Uoo) = Vo and F2(7)007woo) = Wxo

hence in particular v (t, ¢, 1) = u(t, x, ) on Js x By x By by the uniqueness of

solutions to Cauchy problems for our evolution equation [the definition of F}

being based on the formula allowing the extension of u(-, x, 1) to the right of #].
0

To prove that %vw = Wy, We consider the successive approximations of

Voo, Woo) defined inductively by

1
and  (Vps1, Wpt1) = F oy, wy,) = F (vo, wo).

{ UO(t7x7 ﬂv) = u(t07x7 1)7

wolt, z, 1) = a% ulto, @, )

By differentiating (using Leibnitz rule) the integral equation corresponding to
Vi1 = F1(vy), it is easily seen by induction that

0
% Vp = Wy
for every n. Consequently from the uniform convergences
0
Vy, — Voo and — 1V — Weo
Ox

and well-known theorems of Calculus we deduce that v, is continuous and that

a—voo = Wy and is continuous. As u = v, on Js x By X By, (x) is proved.
i3

After these preliminaries we are ready for the proof of the theorem. Define

Jo ::{t € [a, byl : u, exists continuous and is bounded in a neighborhood of
(s, 20, A) for each s € [a,t]},
¢ :=supJy.

Since the derivative is a local concept, it suffices to show that ¢ = by. At first we
note that the set Jy is not empty and that ¢ > a: this follows from (x) applied
with ty = a; for, the equality u(a,x,1) =« implies (ii) while the other as-
sumptions of () are fulfilled by the continuity of 7T'( - Yu(ty, 2o, Z9) and u( - ) [the
continuity of u( - ) follows from Theorem 1 since f satisfies (i) of Theorem 1] as
well as by the properties of f and f,. Assume c<by and argue for a contra-
diction. In view of the assumptions of the theorem, there are ¢ > 0 and & € LllOc
such that the closed balls By := B(ulc, %9, 40),€) and By := B(xg,¢) are con-
tained in U, the closed ball By := B(Jy,¢) is contained in V, the interval
[c — &, ¢ + €] is contained in [a, by[ and

[f@ @, D <h®) and ||fult, @, D] < k()
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when |t —c| <¢ ae, x € By and /. € Bs. Fix 0<d < min{e, 1}, 0<x < ¢ and
M > 1 such that

e |T®)|| < M whenever 0 <t < 1;
t+o

e M [ h(s)ds<min{1/2 ¢/3} whenever |t — ¢| < J;
i

o ||T(t) ulc, xg, 2o) — ulc, o, Ao)||| <&/9 whenever 0 < t < J [as allowed by the
continuity of 7'( - ) u(c, %o, 10)];

o M ||u(t,x, 1) — ule, xo, Ao)|| <&/9 whenever | — x|l <#, |4 — || <# and
[t — ¢| < J [as allowed by the continuity of (- )].

Now we fix any point ¢y in Jo N [c — §/2, c[. By taking » smaller if necessary,
we assume that

o u,(ty,x,A) exists, is continuous and uniformly bounded whenever
le — 2] < and |4 — Ao|| <3

and we plan to apply (x) in ty. In view of
|7t — to) ulto, xo, Z0) — ulto, %o, A0)|
< || — to) ulto, o, 20) — T(E — to) ule, o, Ao)||

+ || Tt — to) ule, o, Ag) — ulc, o, Ao)|| + |lule, 2o, ) — ulty, %o, Ao ||
< M ||Ju(to, 20, Ao) — ulc, %o, Ao)|
+ || Tt — to) ulc, 0, 4o) — ulc, %o, Ao)|| + [Julc, 20, Ao) — ulto, o, Aol|
<e/3 las M > 1]
and of
M |jut, 2, 2) — ulto, 2o, Ao)||
S M |Jult, x, 2) — ule, xo, 4o)|| + M |Jule, %o, 4o) — ulto, %o, Ao)||
<e/3

true for |t — ty| < J, we have (vi) and (vii) of (%), while the other assumptions of
(%) are trivially satisfied. Then () implies that ty + 6 € Jy, hencec =ty + 0 > ¢, a
contradiction showing that necessarily ¢ = by. With this we have stated the ex-

istence and continuity of 2 Now we differentiate the identity

¢
ut,x, lo) = Tt — a)x —|—f Tt — s)f (s,uls,x, 20), A) ds

with respect to x and get the desired formula for (%u
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Finally, to state the last assertion of the theorem, fix ¥y € X and apply

0 . . . .
V=g at . From the Volterra integral representation of the partial deriva-

tive just obtained we get
t
o(t) -y =Tt — a)y + f T(t — 5) fu(s, u0(s), Ao)v(s) - y ds.
a

This means that v(t) - y is the mild solution to the variational Cauchy problem. [J

4. — Application to the approximation of mild solutions.

The following theorem is a corollary to Theorem 1. It seems to be an abstract
framework for the Faedo-Galerkin method as shown by the two subsequent
examples. These examples show that Theorem 3 provides an easy way to check
the traditional convergence of the Faedo-Galerkin approximations as well as a
better convergence in some cases.

Note that all assumptions about the P,’s are trivially fulfilled when X is a
Hilbert space, the P,’s are orthogonal projections with £, := P,(X) invariant by
A, dmE, <, E, CE,;; and EOJ E, is dense in X.

n=1

THEOREM 3. — Let A be the generator of a Cy-semigroup T(t) on X and let

f:d x U — X satisfy locally the Caratheodory hypotheses. Assume that:

(a) f s locally Lipschitz in u;

(b) there exists a sequence of projections P, : X — dom(A) such that
e P, — I pointwise,
e cvery K, .= P,(X) is tnvariant by A,
e AP, | B, 18 the generator of a Cy-semigroup on K,

If uy, is the maximally defined mild solution of
w = APyu + P, f(t, Pyu), u(a) = Py(u),
then (uy), converges uniformly on compacta to the unique solution of
w = Au+f¢,u), wa) = up.

PRrOOF. — Since the elements of the Cyp-semigroup generated by AP, |; maps
E, — E,, the range of u,, is contained in £,,. Then we have

u;; = Auy, + Py f(,uy)

because Pn| 5, is the identity mapping. This suggests to apply Theorem 1 with



742 GIOVANNI VIDOSSICH

Ju=Pyof for n=1, fo:=f, uy = Py(uo), a, :==a. By the pointwise con-
vergence P, — I and the Banach-Steinhaus theorem there is N > 0 such that

1Pu SN (n=0).

This implies that assumption (i) of Theorem 1 is satisfied because f is locally
Lipschitz and fulfills locally the Caratheodory assumptions. Assumptions (ii) and
(iii) of Theorem 1 follow from the pointwise convergence P, — I. Then
Theorem 1 provides the conclusion. O

ExampLE 1. — Consider the following parabolic initial-boundary value pro-
blem:

w(t,x) =0 on ]0,1[ x {0, 7}

Ut = U + 9, 2, %) on ]0,1[ x 0, n[
{ (0, ) = uo(x) on 0, n[

where

e g:[0,1]x[0,7] x R - R is twice continuously differentiable and
9(t,x,0) =0 when x =0, 7

® Uy € C% 5
[so that one of the simplest choices for g is a polynomial in % of arbitrary order
with 0 and 7 as roots].

We plan to apply the above theorem to implement the Faedo-Galerkin
method in L? for the evolution equation corresponding to this parabolic problem
and deduce that in reality the approximations converge uniformly on a suitable
interval [0, 6] to the solution not only with respect to the L?-norm but also in the
L*>-norm.

To reach this goal we fix B > ||u0||C§ and a twice continuously differentiable
function p : R — R with compact support such that p(x) = 1 whenever |x| < R,
and define

G, x,u) := pu) - g(t, x,u).
This is a C?-function with compact support. It is well-known that the parabolic

problem

u = u" + G, %, u) on 10, 1[ x 10, z[
{ w(t,x) =0 on ]0,1[ x {0, =}
w0, x) = uo(x) on 10, [
is equivalent to the evolution equation
(4.1) w = Ayu + f(t,u), u0) =uy in C°:= C°(0, 7))
as well as to the evolution equation

(4.2) v = Asv +f(t,v), v(0) =uy in L? := L?(0,x])
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where

o fis defined by f(t,u) :== G(t,-,u(-));

e A; is the linear operator corresponding to the restriction of «” on
dom(4,) := C3;

e Ay is the linear operator corresponding to the restriction of «” on
dom(Ay) := {u € HY([0,x]) : u” € L?}].

2 .
Lete,(x) := \/; -sin (nx), m = 1, be the orthonormal sequence in L? made of

the eigenfunctions of

(43) {w +Aw =0

w(0) =0 =wr)’
let
E, :=spley,...,ey)
be the vector subspace spanned by the first » eigenfunctions and let P, be the

n
orthogonal projection L? — E,, i.e. P,(u) = Z W, e with 4y, the k** Fourier
k=1
coefficient of u. Let v, be the solution to the finite-dimensional ODE

7)/ - A2an + Pnf(t7 an)a 7)(0) - Pn('MO)

[which is equivalent (via the canonical identification between finite—dimensional
vector spaces) to the system in R"

?=Mz+ F,(@,2)

where M, := diag(4,...,/,) is the diagonal matrix made of the first n eigen-
values of Ay and F,(t,2) := ((f¢t,2)|e)z, . .., (FE, 2)|en)rz)].

By Theorem 3, the sequence (v,), converges uniformly on compacta in the
L?-norm to the mild solution v of (4.2). We plan to deduce a stronger conclusion:
v, — v in the L*-norm.

We shall show below that

(44) sup |1Prn )| o, <00

ueCﬁ,HuHCg <Rm=1

Assume for the moment that (4.4) holds true and let us finish with our analysis.
As Pn| g, 1 the identity mapping, each v, satisfies also the evolution equation
(4'5) ’U;l = A1y + Py f(t,00), 0,(0) = Py (u)

in C°. As the semigroup generated by A; is compact and the Fourier series of
eigenfunctions of uy € C3 converges in the L>*-norm, (4.4) allows to apply
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Lemma 01 to (4.5) in the space C° and conclude that (v,,),, has compact closure in
(. Consequently every subsequence has a convergent subsequence in C°. The
limit is necessarily » because the topology of C° is finer than the topolgy of L?.
This implies that v,, — v uniformly in the L*-norm. Thus the solution v to (4.2)
will be continuous with respect to the L*-norm, so that |[v(®)||., <R for
0 <t <, d >0 suitable, hence v is the solution on ]0,J[ x 0, z[ of the original
parabolic problem. This proves the claimed convergence of the Faedo-Galerkin
approximations.

To finish with the proof we have to state (4.4). We shall follow some ideas from
the treatment of Fourier series of eigenfunctions in VipossicH [9]. Fix u<0.
Since u is not an eigenvalue of (4.3), the following BVP

{w”+u cw = —h(x)

(4.6) w(0) = 0 = w(n)

has a unique solution for every h € L?, denoted hereafter by Sy (k). We claim
that

@ ||kl =M and ||S,(W))|; =N = |S.(h)], < const =: K =K(0M,N);
(ii) the relation between the partial sums of the Fourier series of & and of
Sy(h) is

Z hi - ;) = Z (Su), -
i=1
ie. >0, (S;(%))i - ¢; is the unique solution of
w//+ﬂ.w:_ ) ];/e
(4.7) Z .
w(0) = 0 = w(n)
We prove only (i), because (ii) is nothing else than a mere computation (and is
the content of Example 4 in § 13.2 of VipossicH[10]). To state (i), assume

||lz: < M and ||S,(R)| ;2 < N. To simplify notations, set w := S, (k). From (4.6)
we get

[l 2 < — 1N + M.

Since w is C! with ' absolutely continuous, there is x such that w/(xy) = 0. Then
we have

Xo n
wol< [ weldy< [ @ldy < w72 < (- g+ M) -7t
0 0

by the Cauchy-Schwarz inequality. This bound depends only on M and N. Now
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we have simply to apply Gronwall lemma in the following inequality

@] =/ )2+ [ @~ ) {—p-w) — @)} dy|
0
< 2w O) + [1lle - 72 + [ =)+ {—pe i)} dy
0

< (—uN +M) -2 + Ma'/? + ﬂf{—u ()|} dy
0

and get an a priori bound for || w|| . depending only on M and N. This establishes (i).
Now we are ready to prove (4.4). Choose any w € C3 with Hw”cg < R and set

(4.8) b= —w" — uw.
Clearly S,(h) = w. Consequently w, = zn: w; - e; is the unique solution of (4.7)
by virtue of (ii). Moreover, Bessel inequ:ﬁi#;y implies
lwallz < llwlze < 7/%(|w], < 7'R,
while

1/2

el ze < N[0l e = llwllge < 730"l — pnt2 ]l < 721 = R,

"lloe
Then (i) imply that
lown|l, < const=:C=C(R) foraln=1
n
and (4.4) follows because P,w = Z?fvl e = Wy, O
i=1
ExamMpLE 2. — Consider the following hyperbolic initial-boundary value pro-
blem:

Uy = Au + g(u) on ]0,b[ x Q

w(t,x) =0 on ]0,5[ x 092
w(0,2) = uo(x) on Q
(0, ) = vo(a) on Q

where Q is a bounded domain in RY with smooth boundary, ¢ : R — R is con-
tinuous and satisfies the following conditions
e 9(0) = 0;
o |gx) —g(y)| <const -(1+ x|+ |y|") - Je—y| for al wxyeR with
0 < a<oo a constant such that (N — 2)a < 2;
and uy € H{(Q), vy € LA(Q).
As shown in § 6.2 of CAZENAVE-HARAUX [3], the given problem is equivalent
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to the evolution equation

U =AU +FU)

in the Hilbert space X := H{(Q) x L*(Q) with U := (u,v), F(u,v) := (0,g(x)) and

- (0)

with dom(4) := {(u,v) € X : 4u € L*(Q),v € H\(Q)}.
By Proposition 6.1.5 of CAZENAVE-HARAUX [3], F' is Lipschitz on bounded
sets of X. Let E,, be the vector space spanned by the eigenvectors of the first n

eigenvalues of the Laplacian in H}(Q). Then E := U E, is dense in H}(Q) as well

asin L2(Q), hence £ x E'is densein X. Let P, : X n—> E,, x E, be the orthogonal
projection. Obviuosly £,, x E, is invariant by A and contained in dom(A). Then
we apply Theorem 3 and conclude that the solutions to the finite dimensional
Cauchy problems

U =AP,U + P,f(t,P,U), U) = P,(ugp, vo)

converge uniformly on compacta in the norm of X to a mild solution of the above
evolution equation. O

5. — Applications to the existence and uniqueness of periodic solutions.

In this section we use the previous theorems to determine the existence and
uniqueness of periodic mild solutions. Roughly speaking, the existence proofs are
based on Theorem 1, while the uniqueness proofs on Theorem 2.

To start with, we prove a perturbation type result in the spirit of the implicit
function theorem. Next, we extend to evolution equations Theorems 4 and 5
proved in CASTRO-LAZER [2] for scalar parabolic equations by the method of
upper and lower solutions [a tecnique not applicable to systems, contrary to the
present one]. This also answers the open problem raised by BECKER [1, § 4] for
the case in which the non-linearity is below the first eigenvalue of —A [showing
that the position of the eigenvalues of the periodic problem for #' — A has no
influence in the present case, contrary to Becker’s conjecture].

THEOREM 4. — Let X, Y be Banach spaces, A the generator of a compact
semigroup T®) on X, U C X and V C Y open sets. Let f : Rt x U xV — X be
continuously differentiable with f (-, u, 1) p-periodic foreveryu € U and /. € V. If
ug 18 a p-periodic mild solution to

w = Au +fE,u, o)
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such that the variational equation in X
(5.1) Z =Az+fu(tuo®), A) - 2

has only the trivial solution as p-pertodic mald solution, then there exists 6 > 0
such that

w = Au+ft,u,l)

has a unique p-periodic mild solution whenever |1 — | < 0.

Proor. — Let ¢(t, x, 1) be the value at ¢ of the unique mild solution to
w = Au+f¢,u,A), u0) = x.
By virtue of Lemma 02, we have to show the solvability of the equation
p(p,x, ) =
for J close to 4y. We plan to apply the implicit function theorem to
FQ,x) :=x—op,x,1)

by considering & = x(1) a function of 1. The function F is continuously differ-
entiable in a neighborhood of (/10, uo(O)) because ¢(p, -, -) is continuously differ-
entiable in a neighborhood of (uo(O), },0) by Theorem 2. For 1 = 4y we have

F(20,0(0)) = u0(0) — ¢(p, u0(0), 49) =0
in view of the p-periodicity of uy = ¢(-,u((0), 49). Thus to apply the implicit

function theorem we need only to show that glf’ (/10, uo(O)) is an invertible linear
operator. We have v

0 . 0
%F(/Lo,uo(())) =I- %(P(ﬁuo(o),io)

and, by Theorem 2, v(t) ::aé(p(t, up(0), 4g) is the solution of the Volterra
equation v

t
(5.2) v(t) = T(t) +f Tt — s) o fu(s, u0(s), Ao) o v(s)ds
0
in £(X). Consequently we have the representation
i
o) = TQ) + [ T — )0 fi5,20(6), 7o) o 0(s) ds.
0

We use the argument in the proof of Theorem 3.1 in Pazy [5] to show that v(p) is
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a compact linear operator on X. For 0 <e<p we define v, : X — X by

p-e

v, = T(p) + f T(p — ) o f (5, 20(5), Jo) o v(s) ds
0

p—¢

=Tp)+T() o f Tp—s—e¢)ofy, (s, uo(8), AO) ov(s)ds.
0

Since T'(p) and T'(¢) are compact linear operators, v, is a compact linear operator
X — X. Since T(-), fu (-, uo( - ), 29) and v( - ) are bounded on [0, p], there exists a
constant K > 0 such that

p
lo(p) —ve|| < f |T(p — 8) o fu(s,u0(s), o) o v(s)|| ds < eK
p—eé
and so 11}61 v, = v(p) in L(X) and v(p) is a compact linear operator. This implies

that (%F(io, ug(O)) is a compact perturbation of the identity. Consequently, by

the Fredholm alternative, (%F(/IO,MO(O)) is invertible if and only if its kernel

contains only the origin. Now, if & belongs to this kernel, then « is the initial value
of a p-periodic mild solution to (5.1) by the last assertion of Theorem 2 and by
Lemma 02. Then the uniqueness of the p-periodic mild solution to (5.1) implies

that the kernel of % F (%9, u0(0)) is reduced to the origin, and so (% F (%0, u0(0)) is

invertible and the implicit function theorem applies. In view of Lemma 02,
F(4,x2) = 0 means that x is the initial value of a p-periodic mild solution to
u = Au + f(t,u, A), and so we are done. |

ExampLE 3. — Consider the following periodic boundary value problem:

uy = Au + g(t, x, u) + h(t) on 10, +oo[ x R*
u(t, -) g-periodic for every t
u(-, ) p-periodic for every x € Q

where & : R — R* is continuous and p-periodic, g : R x R x RF — R* is con-
tinuously differentiable with g(-, x, %) p-periodic for every (x,u) and g(t, -, u) g-
periodic for every (t,u). If there exist p-periodic functions ug, ho such that
h € C'(R) and uy is a solution of the given problem when % = kg and the varia-
tional equation

v = M+ g (8,2, u0(t)) v + ho(t) on 10, +oo x R*
v(t, -) g-periodic for every t
(-, x) p-periodic for every x € Q
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has only the trivial solution as p-periodic mild solution, then there exists ¢ > 0
such that the given problem has a unique p-periodic mild solution whenever
|k — hollcr <6.

This claim is a direct consequence of the previous theorem. In fact, consider
the Banach space X [resp.: Y] of g-periodic [resp.: p-periodic] continuous
fumetions R — R endowed with the L*-norm. Following the patterns of the
example in § 6 of PAzY [5], we see that the given problem is equivalent to a
periodic problem for an evolution equation

w = Au + G(@E,u) + h(t)
where A is the generator of a compact semigroup 7(f) on X, and
G(t,u) :==g(t,-,u(-)). Then we have simply to apply Theorem 4 with U := X,
V=Y, A:=h,[f({tul):=GEtu)+ h). a

THEOREM 5. — Let X be a real Hilbert space and A the generator of a compact
semagroup T(t) on X. Assume that:
o A is symmetric and there is 1y > 0 such that

(Azfe) < = o]’

for all x € dom(A).

Letf : RT x X — X be locally Lipschitz, bounded on bounded sets with f(-, x)
p-periodic for every x and

Then the evolution equation
w = Au +ft,w)

has p-periodic mild solutions and their initial values form a compact set in X.

ProoF. — We plan to use the Leray-Schauder topological degree. To this aim
we start by considering a family of evolution equations. For every 0 < v < 1 let
@.(t,x) be the value at ¢ of the unique mild solution to

w' = Au+ tf ¢, u), u(0) = .

By Lemma 02, the initial values of p-periodic mild solutions to the above evo-
lution equation satisfy the identity

€= g¢.(p, )
i.e. they are the fixed points of ¢_(p, ). As

P
0.p0) = T+ [ T 9)f (5,0.05,)) ds,
0
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».(p, -) is a completely continuous operator by Lemma 01. We claim that there is
an a priori bound p for the fixed points of all ¢_(p, -). Assume the contrary, i.e.
the existence of sequences (x,), and (z,),, such that ||x,| — oo and «x,, is a fixed
point of ¢, (p,-), and argue for a contradiction. To simplify notations, set
un(t) == ¢, (t,2,). By the above, u, is a p-periodic function. We shall reach the
desired contradiction by showing that the u,’s are uniformly bounded. To this
aim we fix n and constants 0 </1<4y and R > 0 such that x, # 0 and

Iz >R = (f¢®)) <Al

[as allowed by the definition of limsup]. Consider the finite-dimensional
Cauchy problems

(5.3) w = APpu + 1, P f(¢, Prw), w(@) = Py (u,(0))

where P}, is the orthogonal projection of X onto the vector space spanned by
the eigenspaces of A corresponding to its first k& eigenvalues counting multi-
plicities. As A is the generator of a compact semigroup, its resolvent operators
are compact (Theorem 1.1 of Pazy [5]). In view of the assumptions, 0 € p(A)
and consequently A~! exists and is a compact operator. As A~! is also sym-
metric, the union of the eigenspaces of A~! is dense in X. As A and A~! have
the same eigenvectors, the P;(X)’s are finite-dimensional. Moreover, f is locally
Lipschitz. Thus we are in the position to apply Theorem 3: if %, is the unique
solution to (5.3), then limy %, = u, uniformly on compacta. We claim that

(%) For k sufficiently large, there is ty, € [0, p] such that ||w, ;&) < E.

In fact, if ||u, x(?)|| = R for all t € [0, p] and infinitely many £’s, then for these
k’s we have

% 1 @)|F =2 (PkAun.k(t) + T Prf (t, Prtt (D))
[ as A commutes with P}]
—2( A 0104 ®) + 70 (f (t Pt s®) | Praei®)
< 2(— o + Dl s ®).

oy

Calling M := — 1y + 4, from classical scalar differential inequalities in the finite-
dimensional space Py(X) we get

[k ®|* <v(t) whenever 0<t<p
where v is the unique solution to the scalar Cauchy problem
v =2Mv
{ 0(0) = [Ju, ()]
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Consequently ||un(t)||2 <o) for0<t<pas liin Uy o = Uy. Since M <0, we have

e @)* < v(p) = [ O] €2 <l O = e ()]
which is a contradiction showing that (x) holds true. Now set

N = sup |f@ )| and Jip:={t=0:|u,,@®] <R}

0<t<plel<R

In view of (%), J; #@. In Pi.(X) we have
d 2
@ ”un,k(t)n = Z(PkAun,k(t) + T Prf (tvpkun,k(t)) |un,k(t)>

{—%Ww@V+NWM®HiH€h,
<2

(= 40 + Dl @] otherwise

< 2M|[u 1 @) + 2N 1 @) |
where again M := — Ay + A. Then from classical scalar differential inequalities we
get
|n k@] < wi() whenever ¢, <t<2p

with wy, the unique solution to the scalar Cauchy problem

’M);C =Mw, + N

wt) =R
For, z := w? is a solution of 2/ = 2Mz + 2N /z and y := ||u,x( - )||? satisfies the
differential inequality ' < 2My + 2N, /y. Passing to a subsequence if necessary,
we assume t;, — t,, for a suitable t,, € [0,p]. By the continuous dependence of

solutions for scalar Cauchy problems, w; — w,, uniformly on compacta, wy,
being the unique solution to

W, = Mwsx + N
{ Woo(tse) = R '
This and limy, %y, = «, uniformly on compacta imply that
|| < W) +1 whenever p<t<2p

and consequently the u,’s are uniformly bounded in view of their p-periodicity.
This is a contradiction, hence the existence of the a priori bound p is established.
By the homotopy invariance of the topological degree we have

deg(l - ¢1(p7 )7370) = deg(l - (ﬂo(p, )aBa())
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where B is the open ball centered at the origin with radius p. As ¢, is the solution
operator corresponding to ' = Au whose only p-periodic mild solution is the
trivial one (because || T(t)x| < const - e~?),

deg(l - ¢0(p7 ')7B7 0) =+1

by a well-known degree property related to compact linear operators.
Consequently

deg(l - ¢1(pa )7B70) = deg(I - T(p)vBaO) =

Then the solution property of the topological degree and Lemma 02 guarantee
the existence of p-periodic mild solutions to the given evolution equation as ¢; is
its solution operator.

Finally, we note that the compactness of a bounded, closed set of fixed point of
a completely continuous operator is well-known, hence we are done. O

COROLLARY. — Let X and A be as in the statement of Theorem 5. Let
f:R" xX — X be continuously differentiable, bounded on bounded sets and
satisfy the following conditions:

e f(-,u) is p-periodic for every u;

o the partial derivative f,(t, x) is a symmetric linear operator for every t and x;

o there exists a constant 0 <A< g such that (f,,(t,x) - z|z) < }v||z||2 for every t,
x and z.

Then the evolution equation

w = Au +f(t,u)

has exactly one p-periodic mild solution.

PrOOF. — Let ¢(t, ) be the value at ¢ of the unique mild solution to
w = Au +f¢,u), uw0)=x.

In the proof of Theorem 5 we have seen that the initial values x of p-periodic mild
solutions to the above evolution equation satisfy the identity

xr— (P(ZL 90) = 07
that ¢(p, ) is a completely continuous operator with
deg(I — ¢(p,-),B,0) = deg(I — T(p),B,0) = £1

where B is an open ball centered at the origin and containing the set F of all the
fixed points of ¢(p, -). The set F' is non-empty and compact by Theorem 5. Fix

x € F. Following the patterns of the proof of Theorern 4, we see that 86 o(p,x)is

a compact linear operator on X and that z = (p(p, x) - z if and only if z is the
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initial value of a p-periodic mild solution to

(5.4) v =Av+f, (L, 0, 0) - v.
As
(5.5) (fult, ot ) - yly) < Ay,

applying Theorem 5 to (5.4) we see that the 2’s satisfying z = (% p(p,x) -z form a
compact set K. As K is also a vector space by the linearity of equation (5.4), it
follows that K = {0}. Then 7 — 8%/ ¢(p, x) is an invertible linear operator. This has

two consequences:

(i) every point of F' has a neighborhood where I — ¢(p, -) is injective by
virtue of the local inversion theorem. Consequently F is finite in view of
its compactness. Call N the number of points in F;

(i) atheorem of Leray-Schauder implies that

0
deg(l_ ¢(pa )5370) = deg(l_a_y¢(p790)73>0)

where B(x, ;) is the open ball centered at x with radius ¢, sufficiently
small. In view of (5.5), we can repeat for the evolution equation (5.4) the
argument in the proof of Theorem 5 and get

0

Consequently
deg(I — p(p, ), B(x,¢,),0) = deg(I — T(p), B,0).
Then (ii), (i) and the additivity property of the topological degree imply that
deg(I — T(p),B,0) =deg(I — p(p,-),B,0) = Z deg(I — ¢(p,-), B(x,&,),0)

xeF

=N -deg(I — T(p),B,0).

The only possibility for the validity of this identity is N =1 because
deg(I — T(p),B,0) # 0. O
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