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Isomorphisms of Royden Type Algebras Over S!

TERESA RADICE - EERO SAKSMAN - GABRIELLA ZECCA

Abstract. — Let St and D be the unit circle and the unit disc in the plane and let us denote
by ASY) the algebra of the complex-valued continuous functions on S' which are
traces of functions in the Sobolev class W2(D). On A(SY) we define the following norm

1
2
~12
ol = el + (f [1va )
D

where U is the harmonic extension of u to D.
We prove that every isomorphism of the functional algebra A(S') is a quasi-
symmetric change of variables on S'.

1. — Introduction.

Recent years have seen an intensive development of quasiconformal analysis
and its relations to other areas in mathematics. We refer the reader to the
monograph [2]. An interesting phenomenon to this direction is that for many
function spaces (resp. function algebras) quasiconformal maps can be char-
acterized as homeomorphisms such that the induced composition operator pro-
vides an isomorphism of the function space (resp. algebra).

One of the most interesting results in this direction was provided by H.M.
Riemann in 1974. His result [9] shows that the BMO space of functions of
bounded mean oscillation is of significance in connection with quasiconformal
mappings of R". More precisely, a K-quasiconformal homeomorphism of € onto
Q,f: Q — @ induces a linear isomorphism

f*: BMO(Q) — BMO(Q),

where fi(u) = u o f for u € BMO(€'). The norm of f* is bounded by a constant
depending only on % and K,

[ o fll pmoce) < CE, W[ wll grro)-

Conversely, under certain regularity assumptions on the homeomorphism
f:Q — @ the induced map f* defines an isomorphism between BMO(X') and
BMO(Q) only if f is quasiconformal.
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Similar type results remain true for other function spaces, we just mention
here [1], [5], [10]. In this connection (and independently) it is natural to ask when
two domains Q and €' are quasiconformally equivalent; that is, if there exists a
quasiconformal mapping f : Q — €. In general, this problem is extremely dif-
ficult even in the plane. However, one implicit characterization of quasiconfor-
mally equivalent domains Q and €' is that A(Q) and A(Q), their respective
Royden algebras, are algebraically isomorphic.

Given a domain Qin R”, if W1(Q) denotes the Sobolev space of functions, the
Royden algebra of Q is defined as the algebra of functions % € C(Q) N W"(Q)
with the norm

[l = N[l o) + IVl -

It is easily shown that a quasiconformal mapping f : Q2 — Q' always induces an
algebra isomorphism between A(€2') and A(Q). Conversely, an algebra iso-
morphism 7 : A(Q) — A(LQ') always induces a quasiconformal mapping of Q onto
. These theorems were proven for the two dimensional case by M. Nakai in [8],
then generalized for n dimensions by L. G. Lewis in [7].

Let S' and ID be the unit circle and the unit disc in the plane and let us denote
by A(SY) the function algebra of the (real-valued) continuous functions on st
which are traces of functions in the Sobolev class W12(D), i.e.

ASYH = 0 N Hx(SY,

where H: stands for the standard Sobolev space of L2-functions with half-deri-
vative in L2. We will equip A(S') with the following norm

(L) ol = ol et + (f [1val )

where % is the harmonic extension of % in D. In the same spirit our aim here is to
prove that every algebra isomorphism 7T : ASYH — ASY induces a home-
omorphism of S! onto S' (Theorem 1.3). The following

PROPOSITION 1.1. — Let u,v € A(SY). Then
(1.2) (vl < [lull[|v]

(see Section 2 for the proof) implies that A(S') is a normed algebra under
pointwise multiplication, with the constant function 1 as identity. It is a real
commutative Banach algebra with identity.

A classical theorem of Beurling and Ahlfors (see [3]) states that, given a
homeomorphism f from the unit circle S' onto itself, a necessary and sufficient
condition for the existence of a quasiconformal mapping F': D — D such that
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F|q = f is that the homeomorphism f is quasisymmetric, i.e. there exists D>1
such that for every « € R and every t € (0, )

1 < df(Aert.x) <D

(1.3) D~ df ey )

where df is the distributional derivative of f, 4 ., &' < ", denotes the (smaller)
arc of the circle S with extremal points ¢ and ¢” respectively. The infimum of
such constants D is named “quasisymmetry constant” of f. We have the fol-
lowing precise result.

THEOREM 1.2. - Let F:D — D be a K-quasiconformal map and let
f: St — St be the quasisymmetric boundary-homeomorphism induced by F, i.e.
f2) = Zlulm F(z), z € S. Then, forany v e ASY) the double mequality

1

(1.4) =

o]l <[l o fll < VK]
holds.

Proor. — Let v € A(SY) and let % be the harmonic extension of the composed
function u = v o f on D. Obviously |lu||., = ||?|... Moreover, let us observe that

170|51 = (’lN)OF)L%l =U.

Since the harmonic extension % minimizes the energy, by the chain rule formula

[[vae< [[1vG e pPay = [ [ 1vow@ncDr)Fay
D D D

< f f \VHE@) | DF Edy — f f IVH(F @) IDFP.
D D
On the other hand, F' is K-quasiconformal, hence for a.e. y € D the distortion
inequality
IDF(y)]* <KJp(y)

holds, where we have denoted by J the Jacobian determinant of F'. By a simple
change of variables x = F(y),

[[1var <k [ vs@aErrway
D D

_ Kf{])-|V®(x)|2dx < +x.
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Hence, u = vof € A(S!) and

loofi<ivll. + K (f i wﬁ) .

D

It is well known that the inverse function ! of the K- quasiconformal map ¥
is K- quasiconformal. Hence, the inverse function f~! of f is the quasisymmetric
homeomorphism induced by ', i.e. F| ' = f . Then, by previous estimate, (1.4)
is completely proved. ’ O

In other words, under the assumptions of Theorem 1.2 we have proved that f
defines a linear continuous operator T :v € ASH = vo fe A(SY), such that
T(v1vs) = T Tvs for vy, vs € A(S). Moreover, if for each w(y) € ASY we set
Trv(x) = v(f(x)), then

Ty : AGSY) — ASYH

is a bounded operator and (Tf)*1 = Tp+1. We can conclude that 7' is a bicontin-
uous automorphism.

We shall henceforth call 7 : A(S') — A(SY) an isomorphism if T is both to-
pological and algebraic isomorphism. In other words, T is a bicontinuous bijec-
tion (i.e. an homeomorphism) that commutes with addition and multiplication.
Our main result is the following

THEOREM 1.3. — Let T : A(SY) — A(SY) be a algebra isomorphism. Then, there
exists a quasisymmetric homeomorphism
f:st = ¢!
such that for each u € ASY) we have (Tu)(x) = u( f(@) for any x € St e
(1.5) Tu=uof.

Let us observe that, in other words, Theorem 1.3 together with Theorem 1.2
says that the isomorphisms of the functional algebra A(S') are in one to one
correspondence with quasisymmetric changes of variables on S!. Also, the same
results remain true for complex algebras A(SY), see Remark 3.4 at the end of
Section 3.

2. — Preliminary results. Properties of an isomorphism 7T : ASH — ASH.

Let us first give the Proof (of Proposition 1.1).
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ProOF. — Since the harmonic extension w = %v minimizes the energy,

Juvl| = llowl] + (f i |v<dv>|2>

D

1
2

<l + (f / |v<m>|2) .

D
Now, let us observe that
V@) = (Va) - v+ u - (Vv),

and by the inequality |l <[] |7«

ool < el ool + (f | |<vm-@+a-<w>2)
D

Sl ollolloe + 10V - 9| 2y + (12 - (VO 2()-

1
2

By the maximal principle for the harmonic functions % and v we obtain

luv|| < [lwll 1Vl + 101l L@y IV 2oy + 1)l Lo ) VO 220
< (Jlufl + HV@HB(D)) (Il + HV@”LZ(D))

= [lull[[vl

This completes our proof. O

The next two lemmata list some properties of an isomorphism 7T : A(S) —
A(SY) that will be useful in the sequel. We will employ the following observation:
an element f € A(SY) is invertible (i.e. it has a multiplicative inverse) if and only
if f(w) # 0 for every w € S'. The necessity is obvious, and in order to deduce the
sufficiency we employ the Douglas condition characterizing boundary functions
whose harmonic extension have finite Dirichlet energy (see [4] and [2, p. 595]).
In particular,

2 2 2
AT ~ Az + I e < o0,

where

B , 1/2
21) e = (f I %|dw||dy|)

Stxst
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stands for the Douglas seminorm. If f does not vanish anywhere, the continuity
of f implies that |f| > ¢ > 0 on S', and it follows that 1/f € A(S') by observing
that [1/f@) — 1/f@]? < ¢4 f@) —f@).

LEMMA 2.1. — Let T : A(S') — A(S) be an isomorphism. Then

1. T(c) = ¢, for any constant c. Especially, T : ASY — A(SY) is a continuous
linear operator.

2. (TH(SH = £(SY) for any f € ASY).

3. Let ¢ € R; then, Yv € ASY), v=c = Tv=c In particular, Tv preserves
non-negativity (or non-positivity) of v.

PROOF. — To prove 1. let us observe that T(1) = T(1%) = (T(l))z. This means
that

(2.2) T(1) € {0, 1}.

By continuity either 7'(1) is identically zero or takes the constant value 1. The first
case is ruled out since T'(1) = 0 should imply for every v € A(SY that T(w) = 0.
Hence T'(1) = 1, and since by induction T'(nf) = »Tf for any f and n € Z, we have
T(c) = c for all ¢ € Q, which generalizes for all ¢ € R by continuity.

Equality 2. is deduced by using 1. as follows:

L e f(SY<=f — A is not invertible <= T(f) — . is not invertible
=2 e (TF)SH.

In turn, statement 3. is an immediate consequence of part 2. O

3. — Proof of Theorem 1.3.

Assume that T : ASY) — ASY is an isomorphism. We start by complex-
ifying both T and A(S'). The elements of the complex algebra A(S!) (with abuse
we denote the complexification by the same symbol) are complex valued and
complex functions on S! such that the norm (1.1) is finite. Then the function
f:S! — C belongs to the complex algebra if and only if both the real and ima-
ginary part of f belong to (real) A(SY).

The isomorphism 7' is extended to the complexified algebra by setting for any
real valued u,v € ASH

T +w) = Tu +1Tv.

Let us remark that in this way we preserve the additivity and the multiplicativity
of T'. Indeed we have
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T(uy + w1 + us + we) = Ty + ug) + 17wy + v2)
= T(u1) + T(uz) +o[T(v1) + T(v2)]
= T(uw) +1T(1) + T(uz) + +T(v2)
= T(u1 +w1) + T(ug + w2).

Moreover

T((ur + wi)(ug +w2)) = T(urug — v1v2 + U1z + ugv1))
= T(uyuz — v1v2) + 1T (U102 + ugv1)
= Tui1Tus — Tv1Tvs + (Tu1Tvs + TusTv1)
= (Tuy + 2Tv1) (Tug + 2 Tv2)

= T(uy + w1)T (ug + ws).

It is obvious that the extended T yields an isomorphism of the (complex) algebra
AGSD.
Now, let us denote by e the embedding of S* in C, i.e.

z=¢" e s'—e? e C.

We have ¢ € A(SY) so that Te? € A(SY). Moreover, T(e"’) = (Tcost) + «(T sin 0)
where (Tcosf) and (T sin ) are real functions in A(SY). Let us define f as the
image by T of e’

fle) = (Te“’)(z), vz € Sh.

By definition f € A(S') and, obviously, it is the only candidate for the map-
ping satisfying (1.5).
We continue with several lemmata.

LEMMA 3.1. — 1. The complexified algebra and the isomorphism T satisfy
(Tg)SY) = g(8Y) for any g € ASH.

2. The function f is unimodular: |f(w)| =1 for all w e S'. Moreover, if
N

g : S! — C is a trigonometric polynomial, g(u) = > anu”, we have
n=—N

(To)w) = g(fw)), we S
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ProoF. — The proof of part 1. is identical with the proof in the real case
(Lemma 2.1.2.). Since ¢ takes values in S!, by part 1. the same holds for
f = T(e"). Especially, f is unimodular. Since 1 = ¢’’¢~" an application of T yields
that 1 = ff,i.e.f = 1/f. Part 2. follows immediately by the isomorphism property
of g. O

We next observe that a suitable density argument allows us to replace the
trigonometric polynomial g in part 2. of the previous lemma by an arbitrary
element from A(S).

LEMMA 3.2. — 1. Let g € A(SY) have the Fourier series gw)= > guw" for
w e S'. Then =m0

- 1/2
gl ~ gl + ( > %§n|2>

N=—00

2. Finite trigonometric polynomials are dense in A(S!).
3. For arbitrary g € A(SY) it holds that (Tg)(w) = g(f(w)) for all w e S'.

ProoF. — Part 1. is well-known, but for readers convenience we sketch a proof.
Letg € A(SY) with the Fourier series

(3.1) gaw) = > guw".

N=—00

Since g is continuous on S!, the harmonic extension of in D is
o0 o0
~ ~ k ~ _k
9@ => G+ 57"
k=0 k=1

We may then compute using ortogonality

Il (5

-+ff )

=23 gl [ 1o 2> gl [
k=1 D k=1 D

ouf* |01
0z 0z

2
+

i k‘?}\kzk*I
k=1

i k/g\,kﬁk_l
k=1

o0

=2ﬂzk<|§k|2 + |§—k|2>7

k=1
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47

o This clearly yields the

1
where we observed that [ [z|* 2 = 2r [ 1% Ldr =
claim. D 0

In order to treat part 2. assume again that given g € A(SY has the Fourier

series (3.1) and consider then its N:th partial Fejer sum

N

g (w) := 1- Yy w"
N n;N N+l

on S!. By part 1. of the Lemma and dominated convergence theorem it is obvious
that |lgx — gllz1/2(51) — 0 as N — oo. On the other hand, it is well-known that the
Fejer partial sums also converge in C(SY) (see e.g. [6, Thm 2.12]), whence
lgn = gl — 0. Hence A;llrolo lgn — gll 41y = 0, which yields the stated density.

Finally, in order to treat claim 3 assume that g € A(S') is arbitrary and pick
by part 2. a sequence (gy) of trigonometric polynomials with the property
A}im lgn — gl 41y = 0. By continuity of the isomorphism 7' we also have

—00

Z\}im 17(gn) — T(@)|| 41y = 0. By invoking part 2. of Lemma 3.1 we especially see
that

The uniform convergence of gy to g on S' enables us to conclude immediately
that Z\lrim lgn of — g ofllgety = 0. As we combine this with (3.2) it follows that

T(g) = g o f, which was to be shown. O

Observe that the last part of the previous Lemma shows that the isomorphism
T actually is a composition operator with symbol f. Next we verify that f is one to
one, i.e. T is induced by a homeomorphic change of variables.

LEMMA 3.3. — The function f : S' — S! is a homeomorphism.

PROOF. — Since the function e takes all the values on S', also
f =T(") : S' — S'issurjective by part 1. of Lemma 3.1. In turn, if f would not be
injective, we could find distinet wq, we € S? such that f(wy) = f(ws). According to
part 3. of the previous Lemma this yields that T'(g)(w;) = g(f(w1) = g(f(ws)) =
T(g)(wy) for all g € A(Sl), which is impossible as 7' is surjective. Since St is com-
pact, the bijective and continuous map f : S! — S! is a homeomorphism. O

We have now established Equality (1.5). Finally, what remains to verify is
that f is quasisymmetric. Assume that the homeomorphism f: T — T is not
quasisymmetric. We may assume that f is sense-preserving. Since f and f~! are
simultaneously quasisymmetric, there are adjacent intervals I, I}, C St of the
same length such that |I;| — 0 as k — oo and such that | f~1(Z})|/|f~1(})| is not
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bounded. It is enough to construct a sequence of test functions g, € A(S!) that
are supported on 2(/;; U I}) with ||gx||, =1 for all k£ and such that

195 0 fll 2/ gkl gz — 00 as ke — o0

Since the situation and our computations below are local, we may do the
computations on the real axis. Moreover, by picking a subsequence and em-
ploying the scaling, reflection, and translation invariance of both (2.1) and qua-
sisymmetry on the real line, we may arrive at the following situation: functions
fi.f, ... are dilated and translated (perhaps also suitably reflected) copies of a
suitable restriction of f in such a way that

Jel=1,0D =[-1,0], fi([0,&]) =1[0,1] for each k> 1,

where ¢, — 0 as k — oco. In this situation it is enough to find a fixed compactly
supported function g € H/2(R) N C(R) that satisfies

lg Ofk”Hl/Z/Hg”Huz — o0 as k— oo.

We define our test funection as follows:

0 for x< -2

r+2 for 2<r<-1
(3.3) gx)=<1 for —1<x<0

1—-x for O<x<1

0 for x>1

Clearly g € H'2(R) N C(R), and it suffices to show that the Douglas seminorm of
Fi:=gof; blows up as k — oo. For that end one just needs to observe that
Fyj—10 = 1 and Fyp,, 1) = 0. Namely, this leads to

2 |[Fi(x) — Fi(y)|
”FkHA(xl ff( |.’)C y| ) da dy

>cf<f i — 9] 2dac)dy~log<l)

-1 &k

which proves the claim.

REMARK 8.4. — Theorem 1.3 remains valid for any isomorphism of the complex
algebra A(S') as well. The proof remains unchanged. In particular, the counter-
parts of parts 1. and 2. of Lemma 2.1 remain valid. In a similar way one shows that
T() = + @ (recall that we did not assume an isomorphism to be complex linear).
Especially, from part 2. it follows that an isomorphism keeps real things real,
whence any (complex) isomorphism 7' is simply obtained as the complexification
(or its conjugate) of the restriction of 7' on real functions.
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