BOLLETTINO UNIONE MATEMATICA ITALIANA

Maurizio Chicco

Generalized Maximum Principle for Divergence Form Elliptic Equations in Unbounded Domains

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 2 (2009), n.3, p. 711–718.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2009_9_2_3_711_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Generalized Maximum Principle for Divergence Form Elliptic Equations in Unbounded Domains

Maurizio Chicco

Dedicated to the memory of prof. Guido Stampacchia.

Abstract. – In this note I extend some previuos results concerning a generalized maximum principle for linear second order elliptic equations in divergence form, to the case of unbounded domains.

1. - Introduction.

In two previous works ([1], [2]) I have studied a generalized maximum principle for linear second order elliptic partial differential equations in divergence form and in bounded domains. In particular I have proved that if there exists a positive supersolution w in Ω , then every supersolution non negative on $\partial\Omega$ is also non negative in Ω , and conversely.

The aim of the present note is to extend, at least partially, these results to the case in which the domain Ω in \mathbb{R}^n is unbounded. In this situation the complete continuity of the immersion of $H^1(\Omega)$ in $L^2(\Omega)$ is no longer true, so that many of the proofs already used in [1], [2] must be completely changed.

2. – Notations and hypotheses

Let Ω be an open connected subset of \mathbb{R}^n , not necessarily bounded (for simplicity we suppose $n \geq 3$, although the results could be easily extended to the case n = 2). We refer, for example, to [5], [8] for the definition of the spaces $H^{1,p}(\Omega)$, $H_0^{1,p}(\Omega)$; in $H^1(\Omega) := H^{1,2}(\Omega)$ we put, by definition,

$$\|u_x\|_{L^2(\Omega)}^2 := \sum_{j=0}^n \|u_{x_j}\|_{L^2(\Omega)}^2$$

where we assume as a norm, for instance, the quantity

$$\|u\|_{H^1(\Omega)} := \left\{\|u\|_{L^2(\Omega)}^2 + \sum_{j=0}^n \|u_{x_j}\|_{L^2(\Omega)}^2
ight\}^{1/2}$$

Definition 1. – Let
$$p \geq 1$$
, $\delta > 0$, $f \in L^p_{loc}(\Omega)$; we define
$$\omega(f,p,\delta) := \sup\{\|f\|_{L^p(E)}: \ E \ \text{measurable}, \ E \subset \Omega, \ \text{meas} \ E \leq \delta\}$$

$$X^p(\Omega) := \{f \in L^p_{loc}(\Omega): \ \omega(f,p,\delta) < +\infty \ \forall \delta > 0\}$$

$$X^p_o(\Omega) := \{f \in X^p(\Omega): \ \lim_{\delta \to 0^+} \omega(f,p,\delta) = 0 \ \}$$

For further properties of these spaces see [3].

Suppose now $a_{ij} \in L^{\infty}(\Omega)$ (i, j = 1, 2, ..., n), $\sum_{i,j=1}^{n} a_{ij}t_it_j \geq v|t|^2 \ \forall t \in \mathbb{R}^n$, with v a positive constant; b_i , $d_i \in X^p(\Omega)$, p > n (i = 1, 2, ..., n), $c \in X^{p/2}(\Omega)$. Then we define

$$a(u,v) := \int_{O} \left\{ \sum_{i,j=1}^{n} a_{ij} u_{x_{i}} v_{x_{j}} + \sum_{i=1}^{n} \left(b_{i} u_{x_{i}} v + d_{i} u v_{x_{i}} \right) + c u v \right\} dx$$

We note that this expression, for the hypotheses on the coefficients and Theorem 1 of [3], is a bilinear form on $H_o^1(\Omega) \times H_o^1(\Omega)$.

3. - Preliminary lemmata.

LEMMA 1. – Suppose $w \in H^1_{loc}(\Omega)$ such that $w_x \in X^n(\Omega)$ and ess $\inf_{\Omega} w > 0$. If $u \in H^1_o(\Omega)$ it turns out $u/w \in H^1_o(\Omega)$ and

(1)
$$||u/w||_{H^1(\Omega)} \le K_1 ||u||_{H^1(\Omega)}$$

where K_1 is a constant depending on n, ess $\inf_{\Omega} w$ and $\omega(w_x, n, 1)$.

PROOF. – It is not a restriction to suppose $u \in C_o^1(\Omega)$ since this space is dense in $H_o^1(\Omega)$ by definition (provided the constant K_1 does not depend on the support of u). Let Q be a cube in \mathbb{R}^n , with side length 1. First of all we have trivially

(2)
$$||u/w||_{L^2(\Omega \cap Q)} \le (\text{ess inf}_{\Omega} w)^{-1} ||u||_{L^2(\Omega \cap Q)}$$

As what concerns the derivatives, it turns out

$$(u/w)_{x_i} = u_{x_i}/w - uw_{x_i}/w^2$$

and therefore

П

We now use Hölder and Sobolev inequalities (in the form of Lemma 2 of [4])

$$||uw_{x}||_{L^{2}(\Omega\cap Q)}^{2} \leq ||u||_{L^{2^{*}}(\Omega\cap Q)}^{2^{*}} ||w_{x}||_{L^{n}(\Omega\cap Q)}^{2}$$

$$\leq 2K_{2} [||u||_{L^{2}(\Omega\cap Q)}^{2} + ||u_{x}||_{L^{2}(\Omega\cap Q)}^{2}] ||w_{x}||_{L^{n}(\Omega\cap Q)}^{2}$$

where $2^* := 2n/(n-2)$ and K_2 is the constant of Lemma 2 of [4] (which depends only on n).

Let us consider now a family of cubes $\{Q_j\}_{j\in\mathbb{N}}$ with side length 1 such $Q_i\cap Q_j=\emptyset$ when $i\neq j$ and $\bigcup_{j=1}^{+\infty}\overline{Q_j}=\mathbb{R}^n$. Let us rewrite (4) by replacing Q by Q_j and sum with respect to j (the function u can be defined equal to zero outside Ω). By remembering that by hypothesis it is $w_x\in X^n(\Omega)$, we get

(5)
$$||uw_x||_{L^2(\Omega)}^2 \le 2K_2\omega(w_x, n, 1) [||u||_{L^2(\Omega)}^2 + ||u_x||_{L^2(\Omega)}^2]$$

From (2), (3), (5) we easily reach the assertion (1).

The following lemma may be understood as a partial extension of Theorem 1 of [1] to the case of unbounded domains; the proof also is similar but it must be adapted to the new situation.

LEMMA 2. – Suppose that the hypotheses listed in Section 2 are verified, and furthermore: there exists a function $w \in L^{\infty}(\Omega) \cap H^1_{loc}(\Omega)$ such that ess $\inf_{\Omega} w > 0$, $w_x \in X^2(\Omega)$, and w is a solution of the inequality $a(w,v) \geq 0 \ \forall v \in H^1_o(\Omega), \ v \geq 0$ in Ω . Then if $u \in H^1(\Omega)$ is such that $u \leq 0$ on $\partial \Omega$ in the sense of $H^1(\Omega)$ and $a(u,v) \leq 0 \ \forall v \in H^1_o(\Omega), \ v \geq 0$, it turns out $u \leq 0$ in Ω .

PROOF. – It is not a restriction to suppose, for simplicity, that $\operatorname{ess\,inf}_{\Omega}w=1$. In order to reach the conclusion, suppose by contradiction that $m:=\operatorname{ess\,sup}_{\Omega}u>0$. Since $w\in L^{\infty}(\Omega)$ by hypothesis, for any k>0 sufficiently small it is $\operatorname{ess\,sup}_{\Omega}(u-kw)>0$. Define now

$$k_o := \sup\{k \in \mathbb{R} : \operatorname{ess\,sup}_{\Omega}(u - kw) > 0\}$$

I state that

(6)
$$\lim_{k \to k_0^-} \max \{ x \in \Omega : \ u(x) - kw(x) > 0 \} = 0$$

This is obvious if $k_o = +\infty$; if $k_o \in \mathbb{R}$ it turns out

(7)
$$\lim_{k \to k_0^-} \operatorname{meas}\{x \in \Omega: \ u(x) - kw(x) > 0\}$$
$$= \operatorname{meas}\{x \in \Omega: \ u(x) - k_0w(x) = 0\}$$

(In fact note that, by definition of k_o , it is meas $\{x \in \Omega : u(x) - kw(x) > 0\} = 0$ if $k > k_o$). But the function $u - k_o w$ is solution of the inequality

$$a(u - k_o w, v) \le 0 \ \forall v \in H_o^1(\Omega), \ v \ge 0 \text{ in } \Omega$$

If it were $\max\{x\in\Omega: u(x)-kw(x)=0\}>0$, since it is also clearly $u(x)-k_ow(x)\leq 0$ a.e. in Ω , we should have $u-k_ow=0$ in Ω by Corollary 1 of [1] (clearly valid also for unbounded domains). This is impossible since $w\not\in H^1_o(\Omega)$, therefore (7) and then (6) are proved.

We now want to use $\max\{u-kw,0\}$ as a test function, with $0 \le k \le k_o$, therefore we need to prove that this (non negative) function belongs to $H^1_o(\Omega)$. For simplicity we consider only the case k=1, i. e. we prove that $\max\{u-w,0\} \in H^1_o(\Omega)$ (this is not a restriction). Define $u^+ := \max\{u,0\}$; since by hypothesis $u \in H^1(\Omega)$ and $u \le 0$ on $\partial \Omega$ in the sense of $H^1(\Omega)$, it is easy to verify that $u^+ \in H^1_o(\Omega)$. Let $\{u_j\}_{j \in \mathbb{N}}$ be a sequence in $C^1_o(\Omega)$ such that $\lim_j \|u^+ - u_j\|_{H^1(\Omega)} = 0$ and define $\overline{u_j} := \max\{u_j - w, 0\}$; since by hypothesis $w \in H^1_{loc}(\Omega)$, we have $\overline{u_j} \in H^1_o(\Omega)$ ($j = 1, 2, \ldots$). Define $A_j := \{x \in \Omega : u_j(x) > 1\}$, it turns out $\overline{u_j}(x) = 0$ in $\Omega \setminus A_j$ (since w > 1 in Ω), therefore

(8)
$$\|(\overline{u_j})_x\|_{L^2(\Omega)} \le \|(u_j)_x\|_{L^2(\Omega)} + \|w_x\|_{L^2(A_j)}$$

$$\le \|(u_j)_x\|_{L^2(\Omega)} + \omega(w_x, 2, \text{meas}A_j)$$

and also trivially

(9)
$$\|\overline{u_j}\|_{L^2(\Omega)} \le \|u_j\|_{L^2(\Omega)} \ (j=1,2,\ldots)$$

Furthermore, since

$$\max\{u-w,0\} = \max\{u^+-w,0\} = \lim_j \overline{u_j} \ \text{ a.e. in } \varOmega$$

we deduce also

$$\lim_{j} \mathrm{meas} A_j = \mathrm{meas} \{x \in \Omega: \ u(x) > 1\} < +\infty$$

From (8), (9), (10) we get that the sequence $\{\overline{u_j}\}_{j\in\mathbb{N}}$ is bounded in $H^1_o(\Omega)$; from known results a sequence of convex means of functions chosen from $\{\overline{u_j}\}_{j\in\mathbb{N}}$ converges strongly in $H^1_o(\Omega)$. This proves that $\max\{u-w,0\}\in H^1_o(\Omega)$.

By the same proof we may verify that

(11)
$$\max\{u - kw, 0\} \in H_o^1(\Omega) \ \forall k > 0$$

Now define, for brevity, $u_k := \max\{u - kw, 0\}$. We can choose this function u_k as the test function v in the inequality

$$a(u - kw, v) \le 0 \ \forall v \in H_o^1(\Omega), \ v \ge 0$$

obtaining

$$a(u_k, u_k) \le 0 \ \forall k > 0$$

At this point we can proceed as in [1], Theorem 1. From (6), when $k < k_o$ is sufficiently near to k_o , the measure of $\{x \in \Omega: u_k(x) > 0\}$ is arbitrarily small. Taking into account the hypotheses made on the coefficients a_{ij}, b_i, d_i, c of a(.,.), we can find some $k < k_o$ such that (from (12)) $u_k = 0$ a.e. in Ω , a contradiction.

4. - Main result.

Theorem 1. – Suppose that the hypotheses listed in Section 2 are verified, and furthermore: there exists a function $w \in L^{\infty}(\Omega) \cap H^1_{loc}(\Omega)$ such that ess $\inf_{\Omega} w > 0$, $w_x \in X^p(\Omega)$ with p > n, and w is a solution of the inequality $a(w,v) \geq \int_{\Omega} v \, dx \, \forall v \in H^1_o(\Omega)$, $v \geq 0$ in Ω . Then for any $T \in H^{-1}(\Omega)$ there exists one and only one solution u of the Dirichlet problem

(13)
$$\begin{cases} a(u,v) = \langle T, v \rangle_{H_o^1(\Omega)} \ \forall v \in H_o^1(\Omega), \\ u \in H_o^1(\Omega) \end{cases}$$

and there exists a constant K_3 , depending on the coefficients of a(.,.), n, Ω but not depending on T, u, such that

$$||u||_{H^{1}(O)} \le K_{3}||T||_{H^{-1}(O)}$$

PROOF. – It is evidently sufficient to prove that the a priori inequality (14) is valid for the solution u of the Dirichlet problem (13). For what proved in [4] (Lemma 4), it is sufficient to prove (14) in the particular case in which $\langle T,v\rangle:=\int\limits_{\Omega}fv\,dx$ with $f\in H^1_o(\Omega)$ or, more generally, $f\in L^2(\Omega)$. Therefore let u be the solution of the Dirichlet problem

(15)
$$\begin{cases} a(u,v) = \int_{\Omega} fv \, dx \, \forall v \in H_o^1(\Omega), \\ u \in H_o^1(\Omega) \end{cases}$$

where f is a given function in $L^2(\Omega)$; we need to prove the existence of a constant K_3 such that the a priori inequality

(16)
$$||u||_{L^2(\Omega)} \le K_3 ||f||_{L^2(\Omega)}$$

is valid (this is sufficient as in [4]).

Given $f \in L^2(\Omega)$, we can write $f = \max\{f, 0\} + \min\{f, 0\}$. If we denote by u_1, u_2 the solutions of the Dirichlet problems

(17)
$$\begin{cases} a(u_1, v) = \int_{\Omega} \max\{f, 0\} v \, dx \, \forall v \in H_o^1(\Omega), \\ u_1 \in H_o^1(\Omega) \end{cases}$$

(18)
$$\begin{cases} a(u_2,v) = \int\limits_{\Omega} \min\{f,0\} v \, dx \, \forall v \in H^1_o(\Omega), \\ u_2 \in H^1_o(\Omega) \end{cases}$$

we have, for the uniqueness of the solution (Lemma 2), $u = u_1 + u_2$. Therefore it is sufficient to prove inequalities of the type

$$||u_1||_{L^2(\Omega)} \le K_3 ||\max\{f,0\}||_{L^2(\Omega)}$$

$$||u_2||_{L^2(\Omega)} \le K_3 ||\min\{f, 0\}||_{L^2(\Omega)}$$

in order to reach (16). By proceeding in this way in conclusion it is not a restriction to suppose, in order to prove (16), that $f \ge 0$ in Ω .

To this end, let z be the solution of the Dirichlet problem

(21)
$$\begin{cases} \int_{\Omega} \left\{ w \sum_{i,j=1}^{n} a_{ij} z_{x_{i}} \phi_{x_{j}} + w \sum_{i=1}^{n} (b_{i} - d_{i}) z_{x_{i}} \phi \right. \\ \left. - \sum_{i,j=1}^{n} a_{ij} w_{x_{i}} z_{x_{j}} \phi + z \phi \right\} dx = \int_{\Omega} f \phi dx \ \forall \phi \in H_{o}^{1}(\Omega) \\ z \in H_{o}^{1}(\Omega) \end{cases}$$

We remark that, for the hypotheses made on the function w and on the coefficients a_{ij} , b_i , d_i , the Dirichlet problem (21) satisfies the hypotheses of Theorem 1 of [4], therefore there exists one and only one solution z of problem (21) and it turns out

$$||z||_{L^2(\Omega)} \le K_3 ||f||_{L^2(\Omega)}$$

where the constant K_3 depends only on the coefficients of a(.,.), n and Ω . Furthermore, since we have supposed $f \geq 0$ in Ω , it is also $z \geq 0$ in Ω (Lemma 1 of [4]).

Now we follow a procedure already used in [7], [6] for elliptic equations in non divergence form, i.e. the use of the function u/w as a solution of another

equation. In fact we have

(23)
$$\int_{\Omega} \left\{ w \sum_{i,j=1}^{n} a_{ij} (u/w)_{x_{i}} \phi_{x_{j}} + w \sum_{i=1}^{n} (b_{i} - d_{i}) (u/w)_{x_{i}} \phi - \sum_{i,j=1}^{n} a_{ij} w_{x_{i}} (u/w)_{x_{j}} \phi \right\} dx + a(w, u\phi/w) = a(u, \phi) \ \forall \phi \in H_{o}^{1}(\Omega)$$

This equation can be proved by a simple calculation (recall that $u/w \in H_o^1(\Omega)$ for our hypotheses and Lemma 1). By hypothesis we have also

(24)
$$a(u,v) = \int_{\Omega} fv \, dx \, \forall v \in H_o^1(\Omega)$$

(25)
$$a(w,v) \ge \int_{\Omega} v \, dx \, \forall v \in H_o^1(\Omega), \ v \ge 0$$

therefore from (21), (23), (24), (25) we deduce

(26)
$$\int_{\Omega} \left\{ w \sum_{i,j=1}^{n} a_{ij} (z - u/w)_{x_i} \phi_{x_j} + w \sum_{i=1}^{n} (b_i - d_i) (z - u/w)_{x_i} \phi - \sum_{i,j=1}^{n} a_{ij} w_{x_i} (z - u/w)_{x_j} \phi \right\} dx \ge 0 \ \forall \phi \in H_o^1(\Omega), \ \phi \ge 0$$

From (26) and Lemma 1 of [4], it follows

(27)
$$u/w \le z \text{ a.e. in } \Omega$$

But it is also, for the same Lemma, $u \ge 0$ a.e. in Ω , so from (27) we get easily

$$||u||_{L^{2}(\Omega)} \le ||w||_{L^{\infty}(\Omega)} ||z||_{L^{2}(\Omega)}$$

from which and (22) the conclusion (16) is attained.

REFERENCES

- M. CHICCO, Principio di massimo generalizzato e valutazione del primo autovalore per problemi ellittici del secondo ordine di tipo variazionale, Ann. Mat. Pura Appl. (4), 87 (1970), 1-10.
- [2] M. CHICCO, Some properties of the first eigenvalue and the first eigenfunction of linear second order elliptic partial differential equations in divergence form, Boll. Un. Mat. Ital. (4), 5 (1972), 245-254.
- [3] M. CHICCO M. VENTURINO, A priori inequalities in $L^{\infty}(\Omega)$ for solutions of elliptic equations in unbounded domains, Rend Sem. Mat. Univ. Padova, 102 (1999), 141-151.

- [4] M. CHICCO M. VENTURINO, Dirichlet problem for a divergence form elliptic equations with unbounded coefficients in an unbounded domain, Ann. Mat. Pura Appl., 178 (2000), 325-338.
- [5] E. GAGLIARDO, Proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 7 (1958), 102-137.
- [6] M. H. PROTTER H. F. WEINBERGER, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs (1968).
- [7] M. H. Protter H. F. Weinberger, On the spectrum of general second order operators, Bull. Am. Math. Soc., 72 (1966), 251-255.
- [8] G. STAMPACCHIA, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, Grenoble, 15 (1965), 189-258.

Dipartimento di Ingegneria della Produzione, Energetica e Modelli Matematici Facoltà di Ingegneria, Università di Genova E-mail: chicco@diptem.unige.it

Received August 3, 2009 and in revised form August 10, 2009