BOLLETTINO UNIONE MATEMATICA ITALIANA

Costantino Capozzoli

Sufficient Conditions for Integrability of Distortion Function Kf 1

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 2 (2009), n.3, p. 699–710.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2009_9_2_3_699_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Sufficient Conditions for Integrability of Distortion Function $K_{f^{-1}}$

Costantino Capozzoli

Abstract. Assume that Ω , Ω' are planar domains and $f:\Omega \xrightarrow{\operatorname{onto}} \Omega'$ is a homeomorphism belonging to Sobolev space $W^{1,1}_{\operatorname{loc}}(\Omega,\mathbb{R}^2)$ with finite distortion. We prove that if the distortion function K_f of f satisfies the condition $\operatorname{dist}_{EXP}(K_f,L^\infty) < 1$, then the distortion function $K_{f^{-1}}$ of f^{-1} belongs to $L^1_{\operatorname{loc}}(\Omega')$. We show that this result is sharp in sense that the conclusion fails if $\operatorname{dist}_{EXP}(K_f,L^\infty)=1$. Moreover, we prove that if the distortion function K_f satisfies the condition $\operatorname{dist}_{EXP}(K_f,L^\infty)=\lambda$ for some $\lambda>0$, then $K_{f^{-1}}$ belongs to $L^p_{\operatorname{loc}}(\Omega')$ for every $p\in \left(0,\frac{1}{2\lambda}\right)$. As special case of this result we show that if the distortion function K_f satisfies the condition $\operatorname{dist}_{EXP}(K_f,L^\infty)=0$, then $K_{f^{-1}}$ belongs to intersection of $L^p_{\operatorname{loc}}(\Omega')$ for all $p\geq 1$.

1. – Introduction.

Recently there is a growing interest in studying properties of homeomorphisms, which can be proved also for the inverse maps (see [16], [13], [12], [10], [9], [8], [11]). For example let Ω and Ω' be planar domains and let $f: \Omega \xrightarrow{\text{onto}} \Omega'$ be a homeomorphism, we have that if f belongs to Sobolev space $W^{1,1}_{\text{loc}}(\Omega, \mathbb{R}^2)$ and the differential Df vanishes almost everywhere on the zero set of Jacobian J_f of f, then also $f^{-1} \in W^{1,1}_{\text{loc}}(\Omega', \mathbb{R}^2)$ and the differential Df^{-1} vanishes almost everywhere on the zero set of Jacobian $J_{f^{-1}}$ (see [9]).

We are mainly concerned with homeomorphisms having finite distortion. Recall that a homeomorphism $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2)$ has *finite distortion* if there is a measurable function $K(z) \geq 1$, finite almost everywhere, such that

(1)
$$|Df(z)|^2 \le K(z)J_f(z) \text{ for a.e. } z \in \Omega.$$

Here |Df(z)| stands for the operator norm of the differential matrix $Df(z) \in R^{2\times 2}$ defined by

$$|Df(z)| = \sup_{|h|=1} |Df(z)h|$$

and the Jacobian J_f belongs to Lebesgue space $L^1_{loc}(\Omega)$ and for every Borel

set $B \subset \Omega$

$$\int_{B} J_{f}(z)dz \le |f(B)|$$

(see [2], Corollary 3.3.6).

Inequality (1) is called distortion inequality for f. Observe that this inequality merely asks that the pointwise Jacobian $J_f(z) \geq 0$ for a.e. $z \in \Omega$ and that the differential Df(z) vanishes at those points z where $J_f(z) = 0$. Geometrically, it means that at almost every point $z \in \Omega$ the differential $Df(z): \mathbb{R}^2 \to \mathbb{R}^2$ deforms the unit disk onto an ellipse whose eccentricity is controlled by K(z). Thus, in particular, the case K=1 results in conformal deformations.

Given a homeomorphism $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2)$ having finite distortion, we define the distortion function of f, K_f , as

(2)
$$K_f(z) = \begin{cases} \frac{|Df(z)|^2}{J_f(z)} & \text{if } Df(z) \text{ exists and } J_f(z) > 0\\ 1 & \text{otherwise.} \end{cases}$$

Notice that K_f is the smallest function $K(z) \ge 1$ for which the distortion inequality (1) holds.

If $K_f \in L^{\infty}(\Omega)$, $K_f(z) \leq K$ for a.e. $z \in \Omega$, we say that f is K-quasiconformal. Clearly, in this case $f \in W^{1,2}_{loc}(\Omega, \mathbb{R}^2)$ and it is well known that also f^{-1} is K-quasiconformal i.e. $K_{f^{-1}} \in L^{\infty}(f(\Omega))$ and $K_{f^{-1}}(w) \leq K$ for a.e. $w \in f(\Omega)$ (see [2], Theorem 3.1.2).

Our results deal with the integrability of the distortion function $K_{f^{-1}}$ of f^{-1} in more general case.

Let $f:\Omega \stackrel{\text{onto}}{\longrightarrow} \Omega'$ be a homeomorphism belonging to $W^{1,1}_{\text{loc}}(\Omega,\mathbb{R}^2)$ with finite distortion, we suppose that its distortion function K_f belongs to $L^1(\Omega)$ at least. In fact, in this case f^{-1} has finite distortion (see [9]) and therefore we can consider the distortion function $K_{f^{-1}}$ of f^{-1} . On the other hand the assumption K_f belonging to $L^1(\Omega)$ is also interesting because Hencl-Koskela obtain a better regularity for the inverse f^{-1} of f and precisely $f^{-1} \in W^{1,2}_{\text{loc}}(\Omega', \mathbb{R}^2)$. Moreover, they show that if K_f belongs to $L^{1-\delta}(\Omega)$, with $\delta \in (0,1)$, then we may have that f^{-1} does not belong to $W^{1,1+\delta}_{\text{loc}}(\Omega', \mathbb{R}^2)$ (see example 1.4 in [9]). On the contrary in [13] the authors prove that if $f \in W^{1,p}(\Omega, \mathbb{R}^2)$, for some $p \in (1,2]$, is a homeomorphism having finite distortion with distortion function K_f satisfying

$$M = \sup_{\delta \in (0,1)} \left(\delta \int\limits_{\Omega} K_f(z)^{1-\delta} \ dz
ight)^{rac{1}{1-\delta}} < \infty,$$

then Df^{-1} belongs to grand Lebesgue space $L^{2)}(\Omega', \mathbb{R}^2)$, i.e

$$\|Df^{-1}\|_{L^{2)}(\Omega',\mathbb{R}^2)}=\sup_{\varepsilon\in(0,1)}\left(\varepsilon\int\limits_{f(\Omega)}|Df^{-1}(w)|^{2-\varepsilon}\;dw\right)^{\frac{1}{2-\varepsilon}}\!<\!\infty.$$

Observe that K_f belonging to $L^1(\Omega)$ does not imply that $K_{f^{-1}}$ belongs to $L^1(\Omega')$, but even if K_f belongs to Orlicz space $EXP(\Omega)$, i.e. there exists $\lambda>0$ for which $\int\limits_{\Omega} e^{\frac{K_f(z)}{\lambda}} dz < \infty$, we may have that $K_{f^{-1}}$ does not belong to $L^1(\Omega')$ (see example in Section 3).

However denoting by $Hom(\Omega, \Omega')$ the set of all homeomorphisms between Ω and Ω' planar domains, we prove the following sufficient conditions for integrability of distortion function $K_{f^{-1}}$.

THEOREM 1. – Let $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2) \cap Hom(\Omega, \Omega')$ having finite distortion. If the distortion function $K_f \in EXP(\Omega)$ satisfies the condition

$$\operatorname{dist}_{EXP}(K_f, L^{\infty}) < 1,$$

then

$$K_{f^{-1}} \in L^1_{\mathrm{loc}}(\Omega').$$

This result is sharp in sense that the conclusion fails if $\operatorname{dist}_{EXP}(K_f, L^{\infty}) = 1$.

THEOREM 2. – Let $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2) \cap Hom(\Omega, \Omega')$ having finite distortion. If the distortion function $K_f \in EXP(\Omega)$ satisfies the condition

$$\operatorname{dist}_{EXP}(K_f, L^{\infty}) = \lambda \ \text{for some} \ \lambda > 0,$$

then

$$\mathit{K}_{\mathit{f}^{-1}} \in L^p_{\mathrm{loc}}(\varOmega') \ \textit{for every} \ \ p \in \left(0, \frac{1}{2\lambda}\right).$$

COROLLARY 1. $-Let f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2) \cap Hom(\Omega, \Omega')$ having finite distortion. If the distortion function $K_f \in EXP(\Omega)$ satisfies the condition

$$\operatorname{dist}_{EXP}(K_f, L^{\infty}) = 0,$$

then

$$\mathit{K}_{f^{-1}} \in \bigcap_{p \geq 1} L^p_{\mathrm{loc}}(\Omega').$$

The definition of $\operatorname{dist}_{EXP}(\varphi, L^{\infty})$ is given in Section 2 and we will prove Theorem 1, Theorem 2 and Corollary 1 in Section 3.

2. – Notations and preliminary results.

Let us first recall that given a square matrix A, the adjugate of A satisfies

$$(3) A \operatorname{adj} A = I \operatorname{det} A$$

where $\det A$ denotes the determinant of A and I is the identity matrix.

An Orlicz function is a continuously increasing function

$$\mathcal{P}:[0,\infty)\to[0,\infty)$$

verifying

$$\mathcal{P}(0) = 0$$
 and $\lim_{t \to \infty} \mathcal{P}(t) = \infty$.

The Orlicz space $L^{\mathcal{P}}(\Omega)$ consist of those Lebesgue measurable functions φ defined in $\Omega \subset \mathbb{R}^2$ and valued in \mathbb{R} such that

$$\int_{\Omega} \mathcal{P}\left(\frac{|\varphi(z)|}{\lambda}\right) dz < \infty$$

for some $\lambda = \lambda(\varphi) > 0$ (see [14]).

We denote by $EXP(\Omega)$ the Orlicz space corresponding to the Orlicz function $\mathcal{P}(t) = e^t - 1$. It consists of those measurable functions $\varphi : \Omega \to \mathbb{R}$ such that

$$\int_{\Omega} e^{\frac{|\varphi(z)|}{\lambda}} dz < \infty$$

for some $\lambda = \lambda(\varphi) > 0$. $EXP(\Omega)$ is equipped with the Luxemburg norm

$$\| arphi \|_{EXP(\Omega)} = \inf \left\{ \lambda > 0 : \int\limits_{\Omega} e^{rac{|arphi(z)|}{\lambda}} dz \leq 2
ight\}$$

where

$$\int\limits_{\Omega}e^{\frac{|\varphi(z)|}{\lambda}}dz=\frac{1}{|\Omega|}\int\limits_{\Omega}e^{\frac{|\varphi(z)|}{\lambda}}dz.$$

Another Orlicz space of interest to us will be the Zygmund space $L^p \log^{\beta} L(\Omega)$ corresponding to the Orlicz function $\mathcal{P}(t) = t^p \log^{\beta} (e+t)$ with $1 \leq p < \infty$ and $\beta \in \mathbb{R}$. It consists of those measurable functions $\varphi : \Omega \to \mathbb{R}$ such that

$$\int_{O} \left(\frac{|\varphi(z)|}{\lambda} \right)^{p} \log^{\beta} \left(e + \frac{|\varphi(z)|}{\lambda} \right) dz < \infty$$

for some $\lambda = \lambda(\varphi) > 0$. Also $L^p \log^{\beta} L(\Omega)$, with $\beta \geq 1 - p$, is equipped with the

Luxemburg norm

$$\|arphi\|_{L^p\log^{eta}\!L(\Omega)} = \inf\Bigg\{\lambda > 0: \oint_{\Omega} igg(rac{|arphi(z)|}{\lambda}igg)^p\log^{eta}igg(e + rac{|arphi(z)|}{\lambda}igg)dz \leq 1\Bigg\}.$$

Notice that both are Banach spaces and that $EXP(\Omega)$ is the dual to the Zygmund space $L \log L(\Omega)$.

Let us recall that $L^{\infty}(\Omega)$ is not dense in $EXP(\Omega)$ and that in [3] (see also [6]) the authors established the following formula of the distance to $L^{\infty}(\Omega)$ for every function φ in $EXP(\Omega)$

$$\text{dist}_{EXP}(\varphi, L^{\infty}) = \inf \left\{ \psi \in L^{\infty}(\Omega) : \|\varphi - \psi\|_{EXP(\Omega)} \right\}$$

$$= \inf \left\{ \lambda > 0 : \int_{\Omega} e^{\frac{|\varphi(z)|}{\lambda}} dz < \infty \right\}.$$

In particular we have that $\mathrm{dist}_{EXP}(\varphi,L^{\infty})=0$, i.e. φ belongs to closure of $L^{\infty}(\Omega)$ in $EXP(\Omega)$, if and only if

$$e^{\frac{\varphi}{\lambda}} \in L^1(\Omega)$$
 for every $\lambda > 0$.

Let $\Omega \subset \mathbb{R}^2$ be a domain. Every continuous open mapping defined on Ω having finite first partial derivatives almost everywhere in Ω , it is differentiable almost everywhere in Ω in the classical sense (see [7]). As every continuous mapping $f \in W^{1,1}(\Omega,\mathbb{R}^2)$ is absolutely continuous on a.e. line parallel to the coordinate axes (see [17]) and therefore has finite first partial derivatives almost everywhere in Ω we have the following

Lemma 1. – Let $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2) \cap Hom(\Omega, \Omega')$. Then f is differentiable almost everywhere in Ω in the classical sense.

Definition 1. – Let $f: \Omega \to \mathbb{R}^2$ be a measurable mapping. We say that f satisfies Lusin's condition $\mathcal N$ if for every measurable set $E \subset \Omega$

$$|E|=0 \qquad \Rightarrow \qquad |f(E)|=0.$$

Recall that if $f \in W^{1,2}_{loc}(\Omega, \mathbb{R}^2) \cap Hom(\Omega, \Omega')$, then f satisfies Lusin's condition \mathcal{N} (see [2], Theorem 3.3.7).

Let $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2) \cap Hom(\Omega, \Omega')$, $B \subset \Omega$ a Borel set and let η a nonnegative Borel-measurable function on \mathbb{R}^2 , we have

$$\int_{B} \eta(f(z))|J_f(z)| \ dz \le \int_{f(B)} \eta(w) \ dw.$$

This follows from [5, Theorem 3.1.8] together with the area formula for Lipschitz

mapping. In particular, if $f \in W^{1,1}_{loc}(\Omega,\mathbb{R}^2) \cap Hom(\Omega,\Omega')$ is an orientation preserving, i.e. $J_f(z) \geq 0$ for a.e. $z \in \Omega$, satisfying Lusin's condition $\mathcal N$ we have

(5)
$$\int_{B} \eta(f(z))J_{f}(z) dz = \int_{f(B)} \eta(w) dw,$$

so

$$\int_{B} J_{f}(z)dz = |f(B)|$$

and

$$J_f(z) > 0$$
 for a.e. $z \in \Omega$.

Combining Theorems 1.3 and 6.1 of [9], Theorem 2.1 of [11] and a result due to Greco-Sbordone-C. Trombetti (see [8]) we can state the following result

THEOREM 3. – If $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2) \cap Hom(\Omega, \Omega')$ has finite distortion with

$$K_f \in L^1(\Omega)$$
,

then

1. $J_f > 0$ a.e. in Ω ; 2. $f^{-1} \in W^{1,2}_{loc}(\Omega', \mathbb{R}^2)$ has finite distortion and

$$\int_{O'} |Df^{-1}(w)|^2 dw = \int_{O} K_f(z) dz;$$

3. $K_{f^{-1}}$ has the form

(6)
$$K_{f^{-1}}(w) = K_f(f^{-1}(w)) \text{ for a.e. } w \in \Omega'.$$

Observe that, since $f \in \text{Hom}(\Omega, \Omega')$, K_f and $K_{f^{-1}}$ defined at (2) and (6), are Borel-measurable functions. Moreover, if we assume only that the homeomorphism f belongs to $W^{1,1}_{loc}(\Omega,\mathbb{R}^2)$, we may have that f^{-1} does not belong to $W^{1,1}_{loc}(\Omega',\mathbb{R}^2)$. Indeed, consider the mapping $f:(0,2)\times(0,1)\to\mathbb{R}$ defined by

$$f(x, y) = (g^{-1}(x), y),$$

where g^{-1} is the inverse map of $g(t) = t + \varphi(t)$, with $\varphi: (0,1) \to (0,1)$ the Cantor ternary function. We have that f is a homeomorphism in $W^{1,\infty}_{\mathrm{loc}}$ whose inverse f^{-1} is of bounded variation, but it does not belong to $W_{loc}^{1,1}$.

Recently, in [1] the authors obtained the following optimal regularity for Jacobian and for differential of a mapping with exponentially integrable distortion function.

THEOREM 4. – Let $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2)$ be a mapping having finite distortion. Assume that the distortion function $K_f(z)$ satisfies the condition

$$e^{\frac{K_f}{\lambda}} \in L^1_{\mathrm{loc}}(\Omega) \ \ for \ some \ \ \lambda > 0.$$

Then we have

$$J_f \log^p(e+J_f) \in L^1_{\mathrm{loc}}(\Omega) \ \ for \ every \ \ p \in \left(0, rac{1}{\lambda}
ight)$$

and

$$|Df|^2 \log^{p-1}(e+|Df|) \in L^1_{\mathrm{loc}}(\Omega) \ \ \textit{for every} \ \ p \in \bigg(0,\frac{1}{\lambda}\bigg).$$

Moreover this result is sharp in sense that the conclusion fails for $p = \frac{1}{\lambda}$ for every $\lambda > 0$.

As a special case of Theorem 4 we have

COROLLARY 2. – Let $f \in W^{1,1}_{loc}(\Omega, \mathbb{R}^2)$ be a mapping having finite distortion. Assume that the distortion function K_f satisfies the condition

$$e^{\frac{K_f}{\lambda}} \in L^1_{loc}(\Omega)$$
 for some $\lambda < 1$.

Then

$$f \in W^{1,2}_{loc}(\Omega, \mathbb{R}^2).$$

Notice that under the same assumptions of Theorem 4, by an easy computation, we have

$$|Df|^2 \log^{-1}(e + |Df|) \in L^1_{loc}(\Omega).$$

Indeed, we may use the elementary inequality

$$ab \le a \log(1+a) + e^b - 1$$
 $(a, b \ge 0)$

together with the fact that $t\mapsto \frac{t}{\log(e+t)}$ is an increasing function and that pointwise $|Df|^2\leq K_fJ_f$ to find that

$$egin{aligned} & rac{\left|Df
ight|^2}{\log(e+\left|Df
ight|^2)} \leq rac{K_fJ_f}{\log(e+K_fJ_f)} \leq \lambda rac{J_f}{\log(e+J_f)} rac{K_f}{\lambda} \ & \leq \lambda igg(J_f rac{\log(1+J_f/\log(e+J_f))}{\log(e+J_f)} + e^{rac{K_f}{\lambda}} - 1igg) \leq \lambda (J_f + e^{rac{K_f}{\lambda}} - 1) \end{aligned}$$

for every $\lambda > 0$. We now integrate the previous estimate to obtain

$$\int_{S} \frac{\left|Df\right|^{2}}{\log(e + \left|Df\right|)} \leq 2\lambda \left(\int_{S} J_{f} + \int_{S} \left(e^{\frac{K_{f}}{\lambda}} - 1\right)\right)$$

for every $S \subset\subset \Omega$.

Finally, by Theorem 4 if $\lambda \in \left(0, \frac{1}{2}\right)$ and therefore

$$\operatorname{dist}_{EXP}(K_f, L^{\infty}) < \frac{1}{2}$$

we have

$$|Df|^2 \log(e + |Df|) \in L^1_{loc}(\Omega).$$

3. – Integrability of $K_{f^{-1}}$.

Let us start with following

PROOF OF THEOREM 1. – By hypothesis in particular K_f belongs to $L^1(\Omega)$, by Theorem 3 we have that $f^{-1} \in W^{1,2}_{loc}(\Omega', \mathbb{R}^2)$, hence f^{-1} satisfies Lusin's condition \mathcal{N} . From (5) we then deduce that

$$J_{f^{-1}}(w) > 0$$
 for a.e. $w \in \Omega'$.

By Lemma 1 we know that f^{-1} is differentiable almost everywhere in Ω' in the classical sense. Moreover, we know that at each point of differentiability of f^{-1} such that $J_{f^{-1}}(w) > 0$ we have

(7)
$$Df(z) = \frac{1}{Df^{-1}(f(z))}$$

By Theorem 3, f^{-1} has finite distortion. Let $T \subset\subset \Omega'$, using (3) we have

$$\begin{split} &\int_T K_{f^{-1}}(w) \; dw = \int_T \frac{|Df^{-1}(w)|^2}{J_{f^{-1}}(w)} \; dw \\ = &\int_T \frac{|\mathrm{adj} Df^{-1}(w)|^2}{J_{f^{-1}}(w)} \; dw = \int_T \frac{J_{f^{-1}}(w)}{|Df^{-1}(w)|^2} \; dw. \end{split}$$

Applying (5) and (7) we obtain

(8)
$$\int_{T} K_{f^{-1}}(w) \ dw = \int_{f^{-1}(T)} \frac{1}{|Df^{-1}(f(z))|^2} \ dz = \int_{f^{-1}(T)} |Df(z)|^2 \ dz.$$

Since $\mathrm{dist}_{\mathit{EXP}}(K_f,L^\infty)\!<\!1$, then there exists $\lambda\!<\!1$ such that $e^{\frac{K_f}{\lambda}}\!\in L^1_{\mathrm{loc}}(\Omega)$, by Corollary $2\,f\in W^{1,2}_{\mathrm{loc}}(\Omega,\mathbb{R}^2)$ and therefore

$$K_{f^{-1}} \in L^1_{\mathrm{loc}}(\Omega').$$

To show that the conclusion of this theorem fails if $\operatorname{dist}_{EXP}(K_f, L^{\infty}) = 1$ we consider the following mapping (see [1]):

$$f(z) = egin{cases} rac{z}{|z|} rac{1}{\sqrt{\log\left(e + rac{1}{|z|}
ight)\log\log\left(e + rac{1}{|z|}
ight)}} & ext{for } z \in \mathbb{D}(0,1) - \{0\} \ 0 & ext{for } z = 0. \end{cases}$$

Indeed

$$f: \mathbb{D}(0,1) \to \mathbb{D}(0,R)$$
.

where $\mathbb{D}(0,1)$ denotes the disk of \mathbb{R}^2 centered at 0 with radius 1 and $\mathbb{D}(0,R)$ denotes the disk of \mathbb{R}^2 centered at 0 with radius

$$R = \frac{1}{\sqrt{\log(e+1)\log\log(e+1)}},$$

is a homeomorphism belonging to $W^{1,1}_{loc}(\mathbb{D}(0,1),\mathbb{R}^2)$ with finite distortion such that the distortion function K_f satisfies

$$\operatorname{dist}_{EXP}(K_f, L^{\infty}) = 1,$$

indeed

$$e^{K_f} \in L^1(\mathbb{D}(0,1))$$
 and $e^{\frac{K_f}{\lambda}} \notin L^1(\mathbb{D}(0,1))$ for every $\lambda < 1$,

while

$$K_{f^{-1}} \not\in L^1(\mathbb{D}(0,R)).$$

Indeed, using the formulas in Chapter 11 of [14], we have

$$K_f(z) = \max \left\{ \frac{|z|
ho'(|z|)}{
ho(|z|)}, \frac{
ho(|z|)}{|z|
ho'(|z|)}
ight\}$$

and

$$J_f(z) = \frac{\rho(|z|)\rho'(|z|)}{|z|}.$$

So

$$(9) K_f(z) = \frac{2(1+e|z|)\log\left(e+\frac{1}{|z|}\right)\log\log\left(e+\frac{1}{|z|}\right)}{1+\log\log\left(e+\frac{1}{|z|}\right)}$$

and

$$(10) J_f(z) = \frac{1 + \log\log\left(e + \frac{1}{|z|}\right)}{2|z|^2(1 + e|z|)\left(\log\left(e + \frac{1}{|z|}\right)\log\log\left(e + \frac{1}{|z|}\right)\right)^2}.$$

By (8), (9) and (10) we conclude that

$$\int_{\mathbb{D}(0,R)} K_{f^{-1}}(w) \ dw = \int_{\mathbb{D}(0,1)} \left| Df(z) \right|^2 \ dz = \int_{\mathbb{D}(0,1)} K_f(z) J_f(z) \ dz$$

$$= \int_{\mathbb{D}(0,1)} \frac{1}{|z|^2 \log \left(e + \frac{1}{|z|}\right) \log \log \left(e + \frac{1}{|z|}\right)} \ dz = \infty.$$

Our aim now is to prove the Theorem 2.

PROOF OF THEOREM 2. – As in Theorem 1 we obtain that $f^{-1} \in W^{1,2}_{loc}(\Omega', \mathbb{R}^2)$ has finite distortion, f^{-1} satisfies Lusin's condition \mathcal{N} , f^{-1} is differentiable almost everywhere in Ω' in the classical sense and

$$J_{f^{-1}}(w)>0 \quad ext{for a.e. } w\in \Omega'.$$

Moreover, we know that at each point of differentiability of f^{-1} such that $J_{f^{-1}}(w)>0$ we have (7) and

(11)
$$J_f(z) = \frac{1}{J_{f^{-1}}(f(z))}.$$

Let $T \subset\subset \Omega'$ and let p > 0, using (3) we have

$$\int_{T} K_{f^{-1}}(w)^{p} dw = \int_{T} \frac{|Df^{-1}(w)|^{2p}}{J_{f^{-1}}(w)^{p}} dw$$

$$= \int_{T} \frac{|\operatorname{adj} Df^{-1}(w)|^{2p}}{J_{f^{-1}}(w)^{p}} dw = \int_{T} \frac{J_{f^{-1}}(w)^{p}}{|Df^{-1}(w)|^{2p}} dw$$

$$= \int_{T} \frac{J_{f^{-1}}(w)^{p-1}}{|Df^{-1}(w)|^{2p}} J_{f^{-1}}(w) dw.$$

Applying (5), (7) and (11) we obtain

$$\int_{T} K_{f^{-1}}(w)^{p} \ dw = \int_{f^{-1}(T)} \frac{J_{f^{-1}}(f(z))^{p-1}}{|Df^{-1}(f(z))|^{2p}} \ dz$$

$$= \int_{f^{-1}(T)} \frac{|Df(z)|^{2p}}{J_f(z)^p} \ J_f(z) \ dz = \int_{f^{-1}(T)} K_f(z)^p J_f(z) \ dz.$$

By inequality

$$K^p J \le J \log^{2p}(e+J) + c(p,\lambda)e^{\frac{K}{\lambda}} \qquad (K,J,p,\lambda > 0)$$

(see [9], Lemma 5.1), we arrive at

$$(12) \qquad \int\limits_{T} K_{f^{-1}}(w)^{p} \ dw \leq \int\limits_{f^{-1}(T)} \Bigl(J_{f}(z) \log^{2p}(e+J_{f}(z)) + c(p,\lambda) e^{\frac{K_{f}(z)}{\lambda}} \Bigr) \ dz.$$

By Theorem 4 we conclude

$$K_{f^{-1}} \in L^p_{\mathrm{loc}}(\mathcal{Q}') \ \ \mathrm{for \ every} \ \ p \in \left(0, \frac{1}{2\lambda}\right).$$

Finally we prove the Corollary 1.

PROOF OF COROLLARY 1. – Since $\operatorname{dist}_{EXP}(K_f, L^{\infty}) = 0$, we have

$$e^{\frac{K_f}{\lambda}} \in L^1_{\mathrm{loc}}(\Omega)$$
 for every $\lambda > 0$.

By (12) and by Theorem 4 we conclude

$$K_{f^{-1}} \in \bigcap_{p \geq 1} L^p_{\mathrm{loc}}(\Omega').$$

REFERENCES

- [1] K. ASTALA J. GILL S. ROHDE E. SAKSMAN, Optimal regularity for planar mappings of finite distortion, Ann. Inst. H. Poincaré Anal. Non Linéaire, (to appear).
- [2] K. Astala T. Iwaniec G. Martin, Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane, Princeton Mat. Ser., 48 (2009).
- [3] M. CAROZZA C. SBORDONE, The distance to L^{∞} in some function spaces and applications, Differential Integral Equations, 10 (4) (1997), 599-607.
- [4] D. FARACO P. KOSKELA X. ZHONG, Mappings of finite distortion: the degree of regularity, Adv. Math., 190 (2005), 300-318.
- [5] H. Federer, Geometric measure theory, Grundlehren Math. Wiss., Band 153, Springer-Verlag, New York, 1969 (second edition 1996).

П

- [6] N. Fusco P. L. Lions C. Sbordone, Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 124 (2) (1996), 561-565.
- [7] F. W. Gehring O. Lehto, On the total differentiability of functions of complex variable, Ann. Acad. Sci. Fenn. Math. Ser. A I, 272 (1959), 1-9.
- [8] L. Greco C. Sbordone C. Trombetti, A note on $W_{loc}^{1,1}$ planar homeomorphisms, Rend. Accad. Sc. Fis. Mat. Napoli, LXXIII (2006), 419-421.
- [9] S. HENCL P. KOSKELA, Regularity of the Inverse of a Planar Sobolev Homeomorphism, Arch. Ration. Mech. Anal., 180 (2006), 75-95.
- [10] S. Hencl P. Koskela J. Malý, Regularity of the inverse of a Sobolev homeomorphism in space, Proc. Roy. Soc. Edinburgh Sect. A, 136 (6) (2006), 1267-1285.
- [11] S. HENCL P. KOSKELA J. ONNINEN, A note on extremal mappings of finite distortion, Math. Res. Lett., 12 (2005), 231-238.
- [12] S. HENCL P. KOSKELA J. ONNINEN, Homeomorphisms of Bounded Variation, Arch. Rational Mech. Anal., 186 (2007), 351-360.
- [13] S. Hencl G. Moscariello A. Passarelli di Napoli C. Sbordone, Bi-Sobolev mappings and elliptic equations in the plane, J. Math. Anal. Appl., 355 (2009), 22-32.
- [14] T. IWANIEC G. MARTIN, Geometric Function Theory and Non-linear Analysis, Oxford Math. Monogr., Oxford Univ. Press (2001).
- [15] O. LEHTO K. VIRTANEN, Quasiconformal Mappings in the Plane (Springer-Verlag, Berlin, 1971).
- [16] G. MOSCARIELLO A. PASSARELLI DI NAPOLI C. SBORDONE, ACL-homeomorphisms in the plane, Oper. Theory Adv. Appl., 193 (2009), 215-225.
- [17] S. RICKMAN, Quasiregular mappings, Ergebnisse der Mathematik und ihrer Grenzgebiete, 26 (3) (Springer-Verlag, Berlin, 1993).

Dipartimento di Matematica e Applicazioni "R. Caccioppoli" Università di Napoli "Federico II", Via Cintia, 80126 Napoli, Italy E-mail: costantino.capozzoli@libero.it

Received July 17, 2009 and in revised form August 10, 2009