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Sufficient Conditions for Integrability
of Distortion Function K.

COSTANTINO CAPOZZOLI

Abstract. — Assume that Q Q' are planar domains and f: Q onto @ is a home-

omorphism belonging to Sobolev space Wﬁ;cl(Q, R?) with finite distortion. We prove
that if the distortion function K, of f satisfies the condition distgxp(Kr, L) <1, then
the distortion function Ky of f~! belongs to L} (). We show that this result is sharp
1 sense that the conclusion fails if distgxp(Kr, L) = 1. Moreover, we prove that if the
distortion function Ky satisfies the condition distgxp(Ky,L>®) = A for some A > 0, then

loc ’ 22
that if the distortion function Ky satisfies the condition distgxp(Ky, L) = 0, then Ky
belongs to intersection of LY (&) for all p > 1.

loc

1
K;-1 belongs to Lt () for every p € (O —>. As special case of this result we show

1. — Introduction.

Recently there is a growing interest in studying properties of home-
omorphisms, which can be proved also for the inverse maps (see [16], [13], [12],
[10], [91, [8], [11]). For example let Q and @ be planar domains and let

f:Q M be a homeomorphism, we have that if f belongs to Sobolev space

WENQ, R?) and the differential Df vanishes almost everywhere on the zero set of

loc

Jacobian J; of f, then also f~1 € W,1(€2', R?) and the differential Df ! vanishes

loc
almost everywhere on the zero set of Jacobian J;1 of f —1 (see [9]).
We are mainly concerned with homeomorphisms having finite distortion.
Recall that a homeomorphism f € Wllo’i(Q, R?) has finite distortion if there is a
measurable function K(z) > 1, finite almost everywhere, such that

(1) IDf@)]F < K(2)Js(2) for ae.z e Q.
Here |Df (2)| stands for the operator norm of the differential matrix Df (z) € R?*?
defined by
|Df (2)| = sup |Df 2)|
h|=1

1
loc

and the Jacobian J; belongs to Lebesgue space L, .(€2) and for every Borel
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set BC Q
[ stz < B
B

(see [2], Corollary 3.3.6).

Inequality (1) is called distortion inequality for f. Observe that this in-
equality merely asks that the pointwise Jacobian J¢(z) > 0 for a.e. z € 2 and
that the differential Df(z) vanishes at those points z where J;(2) = 0.
Geometrically, it means that at almost every point z € Q the differential
Df(z) : R? — R® deforms the unit disk onto an ellipse whose eccentricity is
controlled by K(z). Thus, in particular, the case K =1 results in conformal
deformations.

Given a homeomorphism [ € WhlQ, R?) having finite distortion, we define

loc

the distortion function of f, Ky, as

IDf )]
(2) Kix)={ Jr(@
1

if Df(2) exists and J¢(z) > 0
otherwise.

Notice that Ky is the smallest function K(z) > 1 for which the distortion in-
equality (1) holds.

If Kr € L>*(Q), K¢(2) < K for a.e. z € Q, we say that f is K-quasiconformal.
Clearly, in this case f € Wllof(Q, R?) and it is well known that also fis K-
quasiconformal i.e. K1 € L>(f(2)) and Ky1(w) < K for a.e. w € f(Q) (see [2],
Theorem 3.1.2).

Our results deal with the integrability of the distortion function K of f~! in
more general case.

onto

Let f: Q — Q' be a homeomorphism belonging to Wllo'é(Q, R?) with finite
distortion, we suppose that its distortion function K belongs to L!(Q) at least.
In fact, in this case f~! has finite distortion (see [9]) and therefore we can
consider the distortion function Ky of f ~1. On the other hand the assumption
Ky belonging to L'(Q) is also interesting because Hencl-Koskela obtain a
better regularity for the inverse f~! of f and precisely f~! ¢ WllOf(Q’ ,R?).
Moreover, they show that if Ky belongs to L79(Q), with J € (0,1), then we
may have that f~! does not belong to Wll()"cl”(.()’, R?) (see example 1.4 in [9]).
On the contrary in [13] the authors prove that if f € WiP(Q, Rz), for some
p € (1,2], is a homeomorphism having finite distortion with distortion fune-

tion K; satisfying

ﬁ
M = sup (5fo(z)1‘S dz) <00,
3€(0,1)

Q



SUFFICIENT CONDITIONS FOR INTEGRABILITY OF DISTORTION FUNCTION K/ 701

then Df ! belongs to grand Lebesgue space L?(2, R?), i.e

b
||Df_l||L2)(g71[{2> = sup Sf ‘Df_l(w)|2_€ dw <o0.
COUN sl

Observe that Ky belonging to L}(2) does not imply that K1 belongs to LY(Q),
but even if K; belongs to Orlicz space EXP(Q), i.e. there exists 2 > 0 for which

Ke(2)
e dz < 00, we may have that Kia does not belong to L'(€') (see example in

Q
Section 3).

However denoting by Hom/(, ') the set of all homeomorphisms between Q
and @ planar domains, we prove the following sufficient conditions for integr-
ability of distortion function K.

THEOREM 1. — Let f € WEH(Q, R?) N Hom(Q, Q') hawing finite distortion. If

loc

the distortion function Ky € EXP(Q) satisfies the condition
distgxp(Kr, L>) < 1,
then
Ki1 € Li ().

This vesult is sharp in sense that the conclusion fails if distgxp(Kr, L) = 1.

THEOREM 2. — Let f € W(Q, R®) N Hom(Q, Q') hawving finite distortion. If

loc

the distortion function Ky € EXP(Q) satisfies the condition
distgxp(Ky, L) = A for some 7 >0,
then

1
Kp1 € L (Q) for every p € (0,5).

COROLLARY 1. — Letf € WhH(Q, R?) N Hom(Q, Q) having finite distortion. If

loc

the distortion function Ky € EXP(Q) satisfies the condition
distgxp(Kr, L>) = 0,
then
K € (LY, (@),

loc
p>1

The definition of distgxp(p, L) is given in Section 2 and we will prove Theorem
1, Theorem 2 and Corollary 1 in Section 3.
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2. — Notations and preliminary results.

Let us first recall that given a square matrix A, the adjugate of A satisfies
(3) A adjA =1 detA

where detA denotes the determinant of A and [ is the identity matrix.
An Orlicz function is a continuously increasing function

P :[0,00) — [0, 00)
verifying
PO)=0 and tlim P(t) = oco.

The Orlicz space L”(Q) consist of those Lebesgue measurable functions ¢ de-
fined in @ c R? and valued in R such that

[P(#) e
Q

for some 1 = A(p) > 0 (see [14]).
We denote by EXP(Q2) the Orlicz space corresponding to the Orlicz function
P(t) = ¢! — 1. It consists of those measurable functions ¢ : 2 — R such that

le@)|
f et dz<oo

Q

for some 4 = A(p) > 0. EXP(L2) is equipped with the Luxemburg norm

ol zxp) = inf{;» >0: few?‘dz < 2}

Q

where

Another Orlicz space of interest to us will be the Zygmund space L? log’L(Q)
corresponding to the Orlicz function P(t) = tplogﬂ (e+1t) with 1 < p<oo and
p € R. It consists of those measurable functions ¢ : 2 — R such that

P
f('gﬂ(f)') log[‘ <e+|c'ﬁ'2')|>dz<oo
J .

for some /. = A(p) > 0. Also L?log’L(Q), with > 1 — p, is equipped with the
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Luxemburg norm

p
101 2o tog 10 = inf{/l >0: f(@) log” (e |(p(z)|)d < 1}
Q

Notice that both are Banach spaces and that EXP(Q) is the dual to the Zygmund
space L log L(Q).

Let us recall that L>°() is not dense in EXP(Q) and that in [3] (see also [6])
the authors established the following formula of the distance to L>°(Q2) for every
function ¢ in EXP(Q)

(4) distgxp(p, L) = inf{y € L¥(Q) : o — wllgxpe) }

:inf{/l >0 fe‘”i dz<oo}

In particular we have that distgxp(p, L) =0, i.e. ¢ belongs to closure of
L>(Q) in EXP(Q), if and only if

¢l € LNQ) for every 1> 0.

Let Q c R? be a domain. Every continuous open mapping defined on Q
having finite first partial derivatives almost everywhere in Q, it is differentiable
almost everywhere in Q in the classical sense (see [7]). As every continuous
mapping f € Wh1(Q, R?) is absolutely continuous on a.e. line parallel to the co-
ordinate axes (see [17]) and therefore has finite first partial derivatives almost
everywhere in 2 we have the following

LEMMA 1. — Let f € WEYQ, R®) N Hom(Q, Q). Then f is differentiable al-

loc
most everywhere in Q in the classical sense.

DEFINITION 1. — Let f : @ — R? be a measurable mapping. We say that f
satisfies Lusin’s condition N if for every measurable set E C Q

El=0 = If ()| = 0.
Recall that if f € Wr2(Q, R?) N Hom(Q, ), then f satisfies Lusin’s condition

loc
N (see [2], Theorem 3.3.7).
Letf € wk 1(.Q Rz) N H om(Q ), B C Q a Borel set and let 5 a nonnegative

loc
Borel-measurable function on R we have

f’?(f(z))uf(z’)\ dz <f17(w) dw.
f(B)

This follows from [5, Theorem 3.1.8] together with the area formula for Lipschitz
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mapping. In particular, if f € WELQ, R?) N Hom(Q, ) is an orientation pre-

loc
serving, i.e. Js(z) > 0 for a.e. z € Q, satisfying Lusin’s condition N we have

(5) [ ntr@nis@ dz= [ new) du,
B f(B)

SO

f Jr(2)dz = |f(B))
B

and

Jr(2) >0 for ae.zc Q.

Combining Theorems 1.3 and 6.1 of [9], Theorem 2.1 of [11] and a result due to
Greco-Sbordone-C. Trombetti (see [8]) we can state the following result

THEOREM 3. — Iff € W1 (@, R?) N Hom(Q, ) has finite distortion with
Ky € LY(Q),
then

1.Jr>0ae in
2.1 e WHA(@Q, R?) has finite distortion and

loc

f \Df ~(w)|2dw = f Ky (2)dz;
Q Q

3. K1 has the form
(6) Kp(w) = Kf(f‘l(w)) forae we Q.

Observe that, since f € Hom(Q, ), K; and Ky defined at (2) and (6), are
Borel-measurable functions. Moreover, if we assume only that the home-
omorphism f belongs to W1(2, R?), we may have that ! does not belong to

loc

Wl"l(Q’, Rz). Indeed, consider the mapping f : (0,2) x (0,1) — R defined by

loc

f@y) =g @,y),

where ¢! is the inverse map of g(t) = t + p(t), with ¢ : (0,1) — (0,1) the Cantor
ternary function. We have that f is a homeomorphism in Wllogc whose inverse 1
is of bounded variation, but it does not belong to V[/'lloc1

Recently, in [1] the authors obtained the following optimal regularity for
Jacobian and for differential of a mapping with exponentially integrable dis-

tortion function.
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THEOREM 4. — Let f € WENQ, R?) be a mapping having finite distortion.

loc
Assume that the distortion function K¢(2) satisfies the condition

Ky
et e L (Q) for some /> 0.

Then we have
Jrlogl(e + Jp) € Li, (Q) for every p € (0,%)
and

1
\Df [ log? (e + |Df|) € L. (Q) for every p € (O, i)'

. . . . . 1
Moreover this result is sharp in sense that the conclusion fails for p == for
every 4 > 0. &

As a special case of Theorem 4 we have

COROLLARY 2. — Let f € WENQ, R?) be a mapping having finite distortion.

loc
Assume that the distortion function K satisfies the condition

K,
et € Ll (Q) for some A<1.
Then
f e W@, RY.

loc

Notice that under the same assumptions of Theorem 4, by an easy compu-
tation, we have

IDfFlog (e + |Df]) € L}, ().
Indeed, we may use the elementary inequality

abgalog(l—i—a)—i—eb—l (a,b>0)

together with the fact that ¢— _t is an increasing function and that
log(e + 1)

pointwise |Df|* < K¢Js to find that

DFF By, T K
log(e + [Df?) ~ log(e + KpJy) — “log(e +Jp) 4

< (Jf log(1 +J¢/log(e + Jr)) . ex/_{» .

](./.
< T _
log (e + J¢) ) < Mprer=1)
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for every / > 0. We now integrate the previous estimate to obtain

_orP
J Togle+ oy =% (f"f e 1))
for every S CcC Q.

Finally, by Theorem 4 if 1 € (0, %) and therefore

1
diStEXP (Kf, LOO) < E

we have
IDf Plog (e + Df]) € Li ().

3. — Integrability of Ky 1.
Let us start with following

PROOF OF THEOREM 1. — By hypothesis in particular K; belongs to L!(Q), by
Theorem 3 we have that £~ € W2(, R?), hence f~! satisfies Lusin’s condi-

loc

tion A. From (5) we then deduce that
Jra(w) >0 forae we Q.

By Lemma 1 we know that f~! is differentiable almost everywhere in €' in the
classical sense. Moreover, we know that at each point of differentiability of £~
such that :]f—l(’ll}) > 0 we have

1
7 Dfz) = ————.
(7) f () DI G@)
By Theorem 3, f~! has finite distortion. Let 7' CcC €, using (3) we have
1 2
[ K0y do = D wF g,
; J 1 (w)

|adj Df ~(w)? I (w)
= = | 2
s ] i

Applying (5) and (7) we obtain

8 Kowdw= | ———— dz= | |Df2))* dz.
®) ff<w> w !T>|Df1<f<z»| zf!T)lﬂz) :
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Since distgxp(Kr, L*) <1, then there exists 41<1 such that e e L}OC(Q), by
Corollary 2 f € Wllocz(Q, R?) and therefore
Ki1 € Li (). 0

To show that the conclusion of this theorem fails if distgxp(Kr,L>) =1 we
consider the following mapping (see [1]):

2 1

[l 1
f(z) = log (e + E |> log log (e + m)

0 forz = 0.

for z € D(0,1) — {0}

Indeed

f:1D00,1) — D, R),
where (0,1) denotes the disk of R? centered at 0 with radius 1 and DO, R)
denotes the disk of R? centered at 0 with radius

1
- V/1og(e+ Dloglog(e + 1)

is a homeomorphism belonging to Wi-(D(0,1), R?) with finite distortion such

loc
that the distortion function K; satisfies

distgxp(Kr, L>) =1,
indeed

K,
& ¢ LMD(0,1)) and eF ¢ LY(D(,1)) for every i<1,

while
K ¢ LN(D(O, R)).

Indeed, using the formulas in Chapter 11 of [14], we have

(R p<|z|>}
Kf(z"m”‘x{ D RIP D

and
So

2(1 + e|z|) log <e + > log log (e + 1 )
©) K@) = d i

1+ log log (e+| |)



708 COSTANTINO CAPOZZOLI

and

1+ log log (e +|—1|>

5.
20221 + e|z|)(log(e + 2 |) log log (e + |1|>>

By (8), (9) and (10) we conclude that

(10) Jr(2) =

[ &rwaw= [ DrePd= [ K@ d
D(O,R) D(0,1) D(0,1)

1

- f 1
DO, |2] log<e+| |>loglog <e+| |>

Our aim now is to prove the Theorem 2.

dz = oo.

PROOF OF THEOREM 2. — As in Theorem 1 we obtain that f~1 € W2, R%)

has finite distortion, f~! satisfies Lusin’s condition A/, f~! is differentiable
almost everywhere in €' in the classical sense and

Jra(w) >0 forae we Q.

Moreover, we know that at each point of differentiability of f~! such that
Jr1(w) > 0 we have (7) and

1
(11) Jr(@) = TAF@)

Let T cc € and let p > 0, using (3) we have

\Df 1 (w) [

e

[ Koy dw =
T

ladjDf ‘w)[* f I (w)?
S (w)’ _T \Df 1 (w)[?”

Jra(w)’™
f|Df ™ )|2p Jra(w) dw.
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Applying (5), (7) and (11) we obtain

J 1(f(2'))p_1
Kl dw= | “L22
f e !T>|Df P
2p
7f%$¥4wm:f@@www
i fm

By inequality
KPJ < Jlog?(e +J) + c(p, er (K, J,p, 7> 0)

(see [9], Lemma 5.1), we arrive at

(12) fo H(w)” dw < f (Jf(z)l()gzp(e + J¢(2)) + c(p, e~ e >) 2.
fUD)

By Theorem 4 we conclude
1
Kp € L () for every p € (O 3 ))
Finally we prove the Corollary 1.

Proor oF COROLLARY 1. — Since distgxp(Kr, L) = 0, we have

K
¢t e LL.(Q) for every ) > 0.
By (12) and by Theorem 4 we conclude
K € (L}, (@).

p>1
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