BOLLETTINO
UNIONE MATEMATICA ITALIANA

GIOVANNI CIMATTI

Voltage-Current Characteristcs of Varistors and

Thermistors

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 2 (2009),
.3, p. 635 650.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2009_9_2_3_635_0>

L’utilizzo e la stampa di questo documento digitale € consentito liberamente per
motivi di ricerca e studio. Non e consentito 'utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim.eu/


http://www.bdim.eu/item?id=BUMI_2009_9_2_3_635_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2009.



Bollettino U. M. 1.
(9) II (2009), 635-650

Voltage-Current Characteristcs of Varistors and Thermistors

GIOVANNI CIMATTI

Abstract. — The voltage-current characteristics of two classes of nonlinear resistors
(varistors and thermistors) modelled as three-dimensional bodies is derived from the
corresponding systems of nonlinear elliptic boundary value problems. Theorems of
existence and uniqueness of solutions are presented, together with cevtain properties
of monotonicity of the conductance.

1. — Introduction.

Thermistors and varistors are highly nonlinear resistors [4] for which the
electric conductivity cannot be assumed as constant, like in a ordinary resistors,
but it strongly depends from the temperature (in thermistors) or from the
electric field (in varistors). Their physical look does not differ from that of or-
dinary resistors (see figure 1).Thermistors and varistors are widely used as in-
rush current limiters, temperature sensors, for example in digital thermometer,
self-resetting overcurrent protectors and self-regulating heating elements.
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Fig. 1

In this paper we treat thermistors and varistors as three-dimensional bodies
represented by open and bounded subsets Q of R?, mainly with the goal of finding
the voltage-current characteristic of these devices from general constitutive
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Fig. 2

equations. The regular boundary I of Q consists of three parts, I'1, I's and I'y. 'y
and I's represent the electrodes to which a constant difference of potential V is
applied. Iy is the electrically insulated part of the body (see figure 2).

If p(X), X = (x1, 22, x3) denotes the electric potential in Q, then

1) J=—-aVp
relates the electric field —V¢ and the current density J. From (1) and the

equation V -J = 0, expressing the conservation of charges, we obtain problem
P1

(2) V~(0V(p):01n_(2,¢:00nF17¢:VonF27g—7¢;:00nF0.

A second way of applying a difference of potential to a three-dimensional con-
ductor is via an ordinary resistor R as in figure 3.

‘ +

Fig. 3
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This is a more realistic model, since the generator has, however small, an
internal resistance. If ¢ is the unknown constant potential applied to s, we have
the nonlocal elliptic problem P2: to find a function ¢ and a constant ¢ such that

3) V-(cVp)=0inQ, p=00n Iy, p=¢on [,

9
8——00nF0,Rf War—v -

The total current crossing the body is given in both cases by

4) I= f a"’dr

When we are in the situation of figure 2, the functional relation (4) connecting V'
and I, crucial in the applications, is called the voltage-current characteristic of
the device. When ¢ is a positive constant, problem P1 is simply the mixed pro-
blem for the laplacian. In this case the V — I characteristic is the linear relation

(5) 1=KV,
where K is the conductance of the body given by
(6) K = ok.

It is easily seen that
Oy
= | Z=dr
) k rf L

where y is the solution of the problem
. oy
(8) Ay/:Oln.Q,W:Oonfl,y/:lonfz,%:OOnFO.
Thus k depends only on @, I'1, I's and I'y. Equally easy is to verify that problem

P2 has one and only one solution:

v

.
v = g VX = pei

to which corresponds the total current

VK

I=prs1

In varistors [4] the voltage-current characteristic is experimentally found to be
of the form:

(9) I=KV! p>1.
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The constant K is the conductance of the varistor. In this paper we propose a
phenomenological model for three-dimensional varistors based on the nonlinear
Ohm’s law

(10) J = —a([Vp)Ve

where the function o(t) is a property of the material. We assume, on physical
grounds, a(t) continuous, defined on [0, c0) and such that

(11) t— o(t) is positive for ¢ > 0 and ¢(0) = 0.

In Section 2 we give a theorem of existence and uniqueness for problem P2,
which is nonlinear if (10) holds, and prove that the model based on (10) gives
precisely the empirical law (9) if o(f) is suitably chosen. Moreover, certain
properties of dependence monotone of the conductance from the shape of the
electrodes are presented. For thermistors, see [9], the Ohm’s law takes the form

(12) J =—-cu)Ve

where g(u) is a given function of the temperature . To have a closed system, we
need to add to (2) the energy equation

(13) ~V - (k)V) = o(u)|Vol”

and suitable boundary conditions for the temperature. The right hand side in (13)
represents the Joule heating in the conductor. The system (2), (13) has been
throughly investigated in recent years [7], [3], [1] under a variety of boundary
conditions. A typical application of thermistor is as inrush current limiter. On
“switch on” the thermistor limits the current due to its relatively high resistance
at room temperature. As the electric current flows the thermistor heats reducing
the value of its resistance and thus limits the damaging surge of currents to the
load. In Section 6 we show, using a complex variable method, that in two-di-
mensional thermistors the total current is invariant for doubly connected do-
mains with the same modulus.

2. — The Varistor.

If (10) holds Problem P1 becomes: PV1

%:00111“0.

(14) V-(0(Vo))Vp)=0in Q, p=00nI1, p =V on Iy, o

Equation (14) is the Euler equation of the functional

(15) J(p) :f}'(Vgo)doc, where F = F(|z]), z € R? and F(¢) :fta(t)dt.
Q 0
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If we assume (11) and
(16) Jim ct)F P =a>0, p>2
—00

then [5] there exists ¢ € H such that

(17) J(p) = inf{J(w), w € H}
where
(18) H={wecHYP”Q), w=0o0n Iy, w=V on I's}.

Moreover, ¢ is a weak solution of PV1, i.e. satisfies

(19) ¢€eH, fo(|V¢|)Vgo - VodX for all ve H'P(Q), v=0o0n I';, v =0 on I's.
Q

If a(?) is regular, ¢ gives a classical solution to problem PV1. Supposing, in ad-
dition to (11) and (16),

(20) a(t)t strictly increasing

the solution of (19) is unique [11]. A variational formulation is also possible for the
nonlocal problem PV2:

(21) V- (@(|Vo))Ve) = 0 in 2, % ~0on Iy
(22) p=0o0n I, p=¢on Iy,
(23) Rfa(\wp@drzv—gb

7 on

where the unknowns are the function ¢(x) and the constant ¢. (23) plays the role
of a natural condition in the variational formulation. More precisely, let us define
the functional

(24) J(p, ) = I1(p) + Iz(¢) where

hip) = [ FOPIX, @) = o (V ~ 37
Q

which we assume, for the moment, as defined in the class

A= {px) e CLQNC*Q), p=00n Ty, p=¢on I} x{¢ ¢cRY.

LemMA 1. - If (p(x), 4?5) minimizes J (g, ) in A, then (p, g_b) 18 a classical so-
lution of problem PV2.
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PRrROOF. — Let v(X) € CH(Q)NC?*(Q), v=0 on I';, v =7y (a constant) on I's.
Then, from the condition %J (9 +ev, ¢+ &))|,o = 0, we have
e 1 -
(25) [ o9V Vudx + £ G~ Viy=0
)

for all v € CH(Q) N C3(Q), v =0 on I';, v = y on I's and for all y € R'. Choosing
y = 0 in (25) we obtain

(26) [ovapvep - veax =0
Q

for allv € CH(Q) N C?*(Q), v = 0 on I'; U I's. Integrating by parts in (26) we have
(21) and (22). Again from (25) we get, taking into account (21),

_,0p 1 - B
27) y[rfa(|w|)%dr+§<¢—m ~0.
Since y is arbitrary, (23) follows. O

If we assume (16) the lemma motivates the following weak formulation of
problem PV2: To find (¢, $), p € H**(Q2),p >1,p=00nI';,p = pon I's, ¢ € R
such that

1
(28) f (Vo) Vo TodX + =&~ V)y =0
o)
for all v € H'P(Q),v=0o0n I';, v =y on I's and for all y € R!. Under the sole

assumption (11) neither uniqueness nor existence are, in general, to be expected
for problem PV2. However, if we assume (20) in addition to (11) and (16) we have

THEOREM 1. — There exists one and only one solution to problem PV2.

ProoF. — Let us take the functional (24) in the class of admissibles
X={peH"Q), p=00nTy, p=¢on I} x{p ¢cR'}.

X is areflexive Banach space with norm [|¢||y1,(o) + [¢]- By (16) and (20) J (¢, ¢) is
a convex functional, weakly lower semicontinuous and coercive in X'. Moreover, J
is Gateaux differentiable. Therefore (see [5] ) the minimum (p, ;ﬁ) of J(p, §) exists
in X and gives a solution to problem PV2. To prove uniqueness, let (¢, ¢;) and
(@2, @) be both solutions of PV2. Setting in (28) y = ¢;, y = ¢, © = 1,2 and sub-
tracting the resulting equations, we obtain

Bi+ By = 0, where
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1
B :f[a(|V(p1|)V(p1 — (Ve DVesl- (Vo — Veo)dX, Bz = E(¢1 - ¢2)2~
)

By (20) we have (see [11] page 31)

[o(|z1])z1 — 0(]z2])%2] - (21 — 22) > 0

whenever 21, 2o € R?and 2, # z2. Thus By = 0 and B = 0. This implies ¢; = ¢,,
Vo, = Vg, and, by (21), ¢, = ¢5. Therefore PV2 has one and only one
solution. O

REMARK 1. — Under the assumptions of Theorem 1 problem PV2 is strictly
monotonic. This is the reason for the simplicity of the proof of existence and
uniqueness. It would be interesting to study the structure of the set of solutions
under more general hypotheses.

3. — The V-I characteristic of the varistor. Properties of monotonicity of the
conductance.

Throughout this section we assume
(29) o(t) =yP2, p>2 y>0.

Let w(x) be the unique solution of the problem:

30) V-(VylEVy)=0inQ, y =0o0n I';, y =1 on Iy, %:Oonfo.

It is easy to verify that ¢ = Vi solves PV1 and that

_ _o Oy
1 I=KVPl wh =y | |Vy[P2=dr
(31) K , Where K yf[| vl (‘)nd
2

is the corresponding V-I characteristic. Thus (29) predicts the empirical law (9).
The conductance K of the varistor can also be defined via the minimum property

(32) K=y f IVy[PdX = yinf{ f IVolPdX; v e H}

Q Q
where H = {w € H'”(Q), w=0on I'y, w=1on I';}. We note that for a
conductivity o(t) satisfying only (16), (20) and (11) the minimum property (32)
does not apply. Moreover, the voltage-current characteristic is more complex
than (31) and the notion of conductance becomes meaningless. The minimum
property (32) has the following interesting consequences.



642 GIOVANNI CIMATTI

THEOREM 2. — Ifin a varistor for which (29) holds the size of the electrodes s
reduced 1.e.

IyCroy I CTYy
leaving Q unchanged, then the corresponding conductances satisfy

(33) K <K.

PRrROOF. — Let H = {v € H'?(Q); v=0o0n I';,v=1o0n I3} and H = {w €
HY7(Q);w=0o0n I}, w=1on I'y}. We have

K = yinf{f VolPdX, v e H} K = yinf{f VwlPdX, w e H’}.
Q Q
Since H C H' we have (33). O

THEOREM 3. — Ifthe size of Q is diminished, leaving the electrodes I'y and I'y
unchanged the conductance diminishes.

Proor. — Let Q and 2’ be the domains before and after the diminution. Define
H={veHPQ);v=00n I, v=10nTI5}and H = {wec H'?(Q); w=0 on
I'i,w=1onI5}. If v e H,thenw = v|, € H'. By the minimum property of the
conductance we have ' < K. O

These results can be used to estimate the conductance in cases of practical
interest as in the following example. Let a cylinder of arbitrary cross-section G
and length L be contained in 2 with the lower basis contained in I'; and the
upper basis in I'y (figure 4).
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G| |
Lp-1
the two-dimensional measure of G. By Theorems 2 and 3, we have K > ..

The conductance of the cylinder is easily found to be £, = , Where |G| is

4. — Non-homogeneous conductor.

In anisotropic conductors the conductivity is not a scalar but a symmetric
tensor oy which, in general, is also a function of space as e.g. when two pieces of
different metals are soldered together The Ohm’s law reads in this case

(34) Z ol,(X) e7, {e;} a basis of {R®.

By Onsager’s principle and the second principle of thermodynamics [8] o;; sa-
tisfies

(35) 0(X) = 0;;(X)
and
3
(36) > 0X)EE > A|EF for all ¢ € RP, A > 0.
i,j=1

The electric potential ¢ is now determined by the problem

3
(37) Zaz(U(X) )—Oango Oonly, p=Vonls

Z o-L](X) nl =0, n= anez unit vector normal to I's.
i=1

Moreover,
3 Bp
(38) I= Z faij%nidf
tj=17, 7

is the total current. The linear relation / = KV still holds with the conductance

given now by
3

Oy
(39) K= Z folja—xjnidl“
4,J=17,
where y(X) solves
3
0 oy
(40) ;% (o050 =0

w=0on I, v —lonF27Zolj(X) =0.
ij=
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In view of the possible discontinuities of o; j, we write problem (40) in weak form
as follows:

(41) werZal,(X)ay/ade 0,

Q ij=
for all w € H*(2) such that w =0 on I'; U s,

where H = {v € HY(Q), v=0o0n I';, v =1 on I';}, and the conductance as
Oy O
(42) K=Y [o 75X g e X
1,7=1 0

The two definitions (42) and (39) coincide when y and I” are regular. K can also be
characterized by the minimum property

(43) - mf{z f 53020 50 ap Ve H}

Using (43) and reasoning as in Theorems 2 and 3, we can prove

THEOREM 4. — (a) Let oy, a’“ satisfy (35) and (36) and

(44) Z oliAidj > Zavi 4, for all . € R®.
= =1

Then

(45) K'>K.

(b) If in the same conductor Q we make the electrodes smaller 1.e.
I',Croy, I't CIN
then
K'<K.
(c) If the size of Q is diminished leaving the electrodes unchanged, then
K <K.

REMARK 2. — If Q2 is diminished modifying the electrodes in the process, the
conductance can either diminish or increase.

We give a simple application of Theorem 4. Let G be an open, bounded and
connected subset of RZ and Q the cylinder {(x,y,2); 0<z<L, (x,y) € G} with
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the bases of the cylinder as electrodes. Assume oy > g(X) > g, > 0. For the
conductance K of 2 we have the bounds

oulGl - 7lG]
L —  — L

where |G| is the two dimensional measure of G.

5. — The Reyleigh’s method for estimating the conductance.

In his book “The Theory of Sound” J.W. Reyleigh proposed a trick for finding
lower and upper bounds to the natural pitch of acoustical resonators. The method
is based on an electrical analogy, interesting in itself, which permits to compute
an upper bound to the conductance of a homogeneous conductor. Suppose the
conductivity ¢ = 1 and divide 2 with a regular surface y into two parts €' and Q"
with boundary I and I respectively. Define I =1"n1Ij, I'J =I"NTI},
7 =0,1,2 where I'; and ' represent, as usual, the electrodes of the conductor
and Iy the insulated part.

Let a be an arbitrary continuous function defined on y and y be given by the
problem

(46) Ay/:OinF,l//:00nF1,1//:10n1"2,g—Z/L:0,0nF0.
We have
(47) K= f IV 2dX.

Q

Fig. 5
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Determine w' in Q' and w” in Q" with the problems

J
(48) Aw' =0in ', w' =0o0n I}, w =1on Iy, 88—7;{2
a//
on

=0on /) w=aony

(49) A'=0in Q", w'=0o0nI'{, w'=1on Iy, =0on /g, w'=aony

and define in 2, w(X) = W' X) in ', wx) = w"(X) in Q". w is continuous across
y and 6_w discontinuous, but if all the surfaces are regular w € H'(Q). We claim

on
that

(50) K< f IVuwPdX.
Q

Actually, if w = w — y we have

. . ou
(51) Au:Oanandan,u:OonFlandfg,%:OOnFO.
Moreover,  is continuous across y. Therefore

f IVaw2dX = f IV PdX + f IVuldX +2 f Yy - VudX.
Q Q Q Q

Integrating by parts and recalling (46) and (51) we have

ny/-VudX:O
Q

thus (50) follows. The freedom in the choice of y and a can be used to estimate
f|Vw|2dX and, by (50), the conductance K as in the following example. Let
Q

Q={(x,y,2), 0<x<l, O<y<l, 0<z<l}, I'1 ={(x,¥y,2), O0<x<l, O<y<l,
2 =0}, ' ={(x,y,7), 0<x<1/2, O0<y<1, z=1} and y = {(x,y,2), € = 1/2,
0<y<1,0<z<1}. Let a = 2. We have w' = z. Moreover, the solution of (49) can
be computed by separation of variables. In this way we obtain f |Vw| dX and
therefore, by (50), an estimate of K.

6. — The V-I characteristics for the thermistor.

In this section we study the voltage-current characteristics for a thin and
homogeneous thermistor represented by a doubly connected domain Q of the
plane, bounded by two regular curves I'y and I'e, 1N T2 =0, I'=T1UT9). T
and I'y represent the electrodes to which a difference of potential V is applied. A
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constant temperature, assumed as zero in an empirical scale, is kept on the whole
boundary I". The electrical and thermal conductivities o and « are supposed to be
given functions of the temperature «. In many substances, e.g. semiconductors,
this dependence is relevant. We assume ¢ and x to be continuous and positive
functions and to satisfy

oo

K ()
(52) f =
0
We note that (52) is verified by all materials satisfying the Wiedemann-Franz
law. Under steady conditions, by the conservation of charge and energy, the
potential p(x,y) and the temperature u(x,y) are given by the boundary value
problem (PT)

(53) V- (cu)Vp) =01in Q
(54) —V - (k(u)Vu) = o(u)| Vol in Q
(55) p=0onrl1, p=Vonls, u=0o0n/r.

If (52) holds, problem (PT) has one and only one solution [3]. The total current
crossing the lamina is given by

_ [, 9
(56) I —rfaa—nds.
2

We will use the fact that every doubly connected plane domain, as 2, can be
mapped conformally onto the annular domain

D= {z1<z|<r}, 2 =0+ 1.

The number # is called the modulus of 2, [10] and permits to divide the set of all
plane doubly connected domains into equivalence classes {E,}, each of which is
characterized by ». The modulus can be computed by means of the Bergman
function of the domain [2], [6], either exactly or approximately. Precise evalua-
tions of the modulus exist e.g. for nonconcentric annuli, elliptic rings, cofocal
elliptic rings, squares inside circles and squares inside squares. The theorem
below permits to compute explicitly the total current if the modulus of Q is
known.

THEOREM 5. — The total current is mmvariant in the equivalence class E, and
it is given by

& 1= [ ol (G5 o
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where

13

(58) F(t) = f %df.

0

ProOOF. — The equations (563) and (54) are conformally invariant (see [7]).
Moreover, by direct calculations, it is possible to verify the crucial fact that also
the total current (56) is invariant under conformal mapping. Thus we simply need
to solve problem (PT) in the annular region D. Since there is only one solution if
(52) holds, we can search directly for a solution depending uniquely on the radial
variable p. To this end we use the transformation

2

(59) 0=5+Fw.

It is easily seen that 0(p) solves the one-dimensional problem
VZ

(60) (pa)d) =0, 01) =0, 0(r) = 5

We make the “ansatz” of the existence between 0 and ¢ of a linear functional
relation, which, in view of the boundary conditions, can only be of the form

1%
(61) 0= 50
From (59) and (61) we have
[V o>
_ fr 7
(62) u=F <2(p 2).

Therefore ¢ satisfies the problem

2 !
(m( (525 ))) 0 w000 -7

which can be solved setting
14
Vi
J— — -1 _——
(63) v = L(p), where L(p) — Of J(F (2 - )> dt.

We find that y(p) is given by

alnp ‘ Vt 2
_ - r _ -1
w(p) = Ty where a —! O'(F (2 5 )) dt.
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On the other hand, from (63), we have

a(0)y'(r) = MM

thus (57) follows. O

We may treat, with the same method, a second case in which Q is a plane
simply connected domain with boundary I'. If we select four different points
A, B, C, D on I, then Q can be mapped conformally onto a rectangle R:
(0,a) x (0,b) such that A, B, C, D go into (0,0), (a,0), (a,d), (0,b). The con-
formal modulus of Q marked with the points A, B, C, D is a/b. We consider (53),
(54) with the boundary conditions:

dp  Ou

p=0o0n I'yp, (p:VonFCD,%—an—OOHFDAUFBC, u=0on I,

I'pa U I'ge is the part of the boundary electrically and thermally insulated. The
problem in the rectangle can be solved again with the transformation (59). We

find for the total current
1%
=— | o t —— | )dt.
=t fole (5ot

The geometry of the lamina enters, also in this case, only via its modulus a/b.
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