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A Regular Threefold of General Type
with p, =0and P, =6

M. CrISTINA RONCONI

Abstract. — The range of the bigenus Py is one of the unsolved problems concerning
smooth complex projective regular threefolds of general type with p, =0. The
examples in the literature have Py < 5. In the present paper we present a non-
singular threefold with p, = q1 = g2 =0, Py = 6; the bicanonical map is stably
birational.

Introduction.

It is well known that the bigenus Py of nonsingular complex surfaces of
general type with p, = 0 satisfies 2 < P, < 10 and examples are known for all
possible values of Ps.

In the case of nonsingular projective regular threefolds X of general type
with p, = 0, defined over the field C of complex numbers, one of the problems
that remain to be solved is the behaviour of the bigenus.

Results concerning this issue are given in [6] and [9], where it is proved that
the bigenus can take on the value Py = 0, as well as in [7], [10] and [1], where
threefolds with P, = 1,2, 3,4 are presented, and in [8], which gives a threefold
with the bigenus reaching P; = 5. All these varieties have the irregularities
q1=q2=0.

Examples of threefolds of general type with p, = 0, as varieties in weighted
projective spaces, are also presented in [3] and [5]; they all have P, < 4.

The problem regarding the bigenus therefore lies in finding an integer n, if
one exists, such that Py < ng for any X, and in establishing by means of examples
whether Py can assume any value less than or equal to .

In order to give a contribution in this direction, we found the nonsingular
threefold X of general type presented here: in addition to p, = ¢1 = g2 = 0, it has
P; = 6 and P3 = 9. The bicanonical map @5k, | is stably birational, i.e. @, is
birational for all m > 2.

The variety X presented here is obtained as a nonsingular model of a degree
six hypersurface in P! endowed with suitable singularities.
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1. — Construction of the example.

Let X be a nonsingular projective threefold of general type defined over the
field C of complex numbers and let Kx be a canonical divisor on X.

As usual, we denote the m-genus dim-H°(X, Ox(mKy)) of X by P,, and the
i-th irregularity dimH'(X, Ox) of X by ¢;, i = 1,2. Moreover, we denote P; as
py and call it the geometric genus of X. We also call P the bigenus of X.

To produce a threefold with the properties listed in the title, we consider in P*
a hypersurface of degree 6 and we put suitable singularities on it, at the vertices
A; of the fundamental pentahedron. To be more precise, at two of them, say A;
and A4, we impose:

e a triple point with a triple point infinitely near and then a double surface in
the subsequent neighbourhood,

and at three of them, say Ay, A3, A5, we impose singularities of the type:
e a triple point with a triple curve infinitely near,

and we place them in a suitable arrangement. It is worth noting that, for the
purposes of obtaining a normal variety with the desired birational invariants, the
position of the infinitely near singularities is just as important as the choice of
their type.

In P* with homogeneous coordinates 1, ..., a5, by imposing these singula-
rities, we obtain hypersurfaces of a (incomplete) linear system depending on 37
parameters, but to obtain the example we can confine ourselves to the hy-
persurfaces of the linear system:

2 2 2 2
a1 %15 5% 4 ap 112 202 3% + ag 2° 05> + ag 1 o w4+

2 3

as 9022 x3 ac42 + agxq 9032 9043 + a7 s x43 + asg 9013 .9022 X5+

a9 96‘12 9022 24 X5 + Q10 L1 9(}32 96‘42 X5 + 011 96'32 96'43 X5 + Q12 96‘12 9022 96'52+

a3 .%'12 L2 X3 9652 + Q14 9(}12 9042 9052 + Q15 X2 X3 .%‘42 9052+

2

a6 3% 4% 5% + arg 1% g 5% 4+ arg vy 4% 5> = 0.

We denote a generic element of the above linear system (corresponding to a
generic choice of the parameters) as V; the threefold X in this paper is a de-
singularization of V.

Other singularities appear on V in addition to those imposed so, to be sure
that the only ones that affect the plurigenera are the five imposed at the vertices
of the fundamental pentahedron, we have to find all the actual singularities and,
by means of the desingularization, all the infinitely near ones.

We can check the actual singularities by using Bertini’s theorem; they belong
to the base point locus of the linear system whose V is a generic element and they
can be found by means of the derivatives of the polynomial ¥ defining V: in
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addition to the imposed triple points, the actual singularities of V' belong to five
double lines: L1 :x1 =%s =24 =0; Lo: 1 =a3 =24 =0; L3 : 21 =3 = 5 = 0;
Ly:xg=x3=u5=0; L5: 2 =24 =25 =0. V is therefore a normal variety.

To solve all the actual or infinitely near singularities that appear on V, we con-
struct, in a classical way, a variety P* by means of appropriate blow-ups, which are
suggested, step by step, by the singularities of V or its strict transforms.

First, we cover P* with the affine open sets U; = {x; # 0} and V with
Vi = U; N V. Then, by means of the blow-ups used to solve the singularities of V,
we determine affine open sets UZ j» 1<1<5, jeJ;, and birational maps
Preiij ° U7 = U 1 (J; being the set of symbols denoting the sequence of the open
sets that we choose in the local representation of the blow-ups adopted). The
open sets U; j that we consider are those in which the strict transform X; ; of V; is
nonsingular.

Finally, we represent IP4 by gluemg the schemes U; ,j by means of ¢, ;; ;.

The birational morphism from 7[34 to IP*, obtained by composing the blow-ups, will

be denoted by a: P* — P*,

The desingularization X of V, the strict transform of V by g, is thus obtained
by pasting the hypersurfaces X;; C [NJM. For the sake of simplicity, we shall
denote the restriction of ¢ ;; ; to X;; and the restriction of ¢ to X again as
(pk,l;i,j 5Xi,j — Xk,l ando: X — V.

2. — Some details of the desingularization of V.

In our case, to bring the desingularization of V to the end, we only need blow-
ups along varieties that are locally linear.

As an example, we describe some blow-ups that have a leading role in com-
puting the plurigenera of X.

For the sake of simplicity, we denote as (x1,...,&;,...,%5) the affine co-
ordinates on U; = {x; # 0} .

e First of all, we consider the blow-up 7y : P — Py = P* at the point Ay, the
origin in U;. By construction, A; is a triple point of V with a triple point infinitely
near and then a double surface in the subsequent neighbourhood.

Since A; belongs only to Uy, Ps is covered by Us, Us, Uy, Us and by nl L)
that, in turn, can be covered by four affine open sets U1 2, U1 35 U14 and Ul 5.

If (o, ., y5), (W, .-, Y8), - dgnotgafﬁne coordinates on ULg, U173, ...Tre-
spectively, the restriction of 7; to Uig, Ui, ...Is given by:

_ / _ !yl _ !yl _ VAP
L2 =Yy, X3 =Y3Ys, X4 =1Y,Ys, X5 =YsYs;
_ ", 0 . 1 _ i . VYN
=Y2Y3, *3=1Y3, X4 =YuY3, X5 =Ys5Y3;
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The exceptional divisor E; of n; is given in INJLZ, U 13, --- by y5=0,
ys =0, ... respectively.

We erte the polynomials that define the strict transform Ws of V; in U, 5
using the previous formulas and we focus our attention on the origin
A;300,0,0,0) € E in the affine open set U; 3. This is a triple point of W, and it is
one of the singularities imposed on V.

We now consider a second blow-up 7z : P3 — P2 at A; 3. We denote the strict
transform of W, with respect to s, as Ws.

Ais belongs only to U 1.3; SO We cover 7, 1(U 1.3) with four affine open sets U 1,325
U1,33, Ui 34 and Uy 35. N

For instance, if (zg, . .. ,25) denote affine coordinates on Uj g3, the restriction
of 7e to it is given by:

1! 1 1 1
Yo = 2273, VY3 =23, Yy = 2423, Y5 = %5%3.

If we write the polynomial that defines W3 in U 133, We can see that it has a
surface Ss as a locus of double points on the exceptional divisor Es, given locally
by z3 = 0: this is the surface given by z3 = zo = 0.

So we need a thlrd blow-up 73 : Py — Ps along thls surface.

We cover r3 (U 1,33) wWith two open sets: U 1332 and U 1.333- If we analyse U1 332,
for instance, where affine coordinates are denoted by (ug, . .., u5), we can see that
the restriction of 73 to this open set is given by

22 = Uz, 23 = U2U3, 24 = U4, 25 =Up

and the exceptional divisor Ej3 is given by ug = 0.

Using Bertini’s theorem and the derivatives of the polynomial 'y 33> defining
the strict transform W, of W3 in U1 332, we see that Wy has no singularities in
U 1332- In fact, the local representation of Wy in U 1332 1s:

X17332 D Qe + ayu2 + asus ug + agug + a5u2 ug ’LL4 + a6u32u43+

a7u2u33u43 + agus + a9u22u32u4u5 + a10u32u42u5 + a11u22u34u43u5+

2 2.2 2 2,2 2 2 4, 2, 2
Q13U3U5" + W22 U3 U5~ + Q14U UL U5~ + A16U2" U U4 U5+

a5tz ug ugus® + arrus®ugus® + argu®usztugPus® = 0.

U 1332 is consequently one of the L~/'1,_,- that give rise to P%.

e As a second example, we check the singularity at the point A2(0,1,0,0,0),
which is the origin in Us. By construction, As is a triple point of V' with a triple
curve infinitely near.

To analyse this singularity, we consider the blow-up 74 : P5 — Py at this point
and the strict transform W of Wy by 7. Among the four open sets Uz 1, Uz, Uz 4
and Uy that cover n;l(Ug), we concentrate on l~]2_4 and we report the corre-
sponding local study.
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After denoting affine coordinates on (7274 as (¥1,Ys3,¥Y4,¥s), the local re-
presentation of 74 is

Y1 =Y1Y4, X3 =Y3Y4, X4 =1Y4, ¥5 = Ys5Y4,

while the exceptional divisor £y is locally represented by y4 = 0.

W5 has a triple curve Cs that is given in Usyg by: 1 =ys =y1=0. We
therefore consider the blow-up 75 : Pg — Ps5 of P5 along Cs.

After coquring Ty 1(5'2,4) with 172741, (72143, l~/'2,44 and denoting affine co-
ordinates on Usa; as (1, ug, u4, Us), we can represent 75 locally as:

Y1 =u1, Y3 =uU1U3, Y4 =U1U4, Y5 = Us.

The exceptional divisor on 57241 isthen E'5 : u; = 0 and the strict transform W of
W5 is locally represented by:

2 2. 2 2 2
Xoar : a1 + agus® + ug(agur + azuz® + agur*us® + agur>us®us®+

2 2.2 2 2. 2
aruPusPus® + agus + asuiis + a11ur 2usZuaus + arovs >usiugius+

ar12t5° + ArsUzUgUs® + arzus 2ugugus® + ajguytug s+

2

2.2 2 2 2,3 2.3
Q16U U~ UL U™ + Qg1 Ua“Us" + Ar7ur “us~us") = 0.

So, for a generic choice of the parameters, W has no singularities in this open
set. Uz 41 is consequently among the U, ; that give rise to P,

For the remaining imposed singularities, we need blow-ups similar to those
just described, i.e. resembling those used at A for A3(0,0,1,0,0) and
A5(0,0,0,0,1), and like those used at A; for 44(0,0,0,1,0).

Finally, to complete the desingularization, we have to consider the other
actual or infinitely near singularities that appear on V. They can all be solved,
however, with two kinds of blow-up: along varieties that are locally double lines of
V (actual or infinitely near), or along varieties that are locally simple planes on V/
(or on its strict transforms) and that contain double curves. Since these singu-
larities have no influence, as we shall see, on the computation of the plurigenera
of X, we can disregard their analysis here.

3. — The canonical class of X.

Let

o n3 T b3 ‘
P =Py 2 By Ty Iy =

be the sequence of blow-ups we use to solve the singularities of V.
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In our case, each 7; is the blow-up of IP; along a (locally linear) subvariety Z; of
dimension j;.

Assuming that W; =V, let W;,; be the strict transform of W; C P; by =;.
W1 is therefore X. After denoting the multiplicity of W; at the generie point of
Z; C W; as m;, 1 <1 <, we have (cf. [2], p. 602, for instance)

(1) Wi+1 = ﬂ:(WZ) —m;kE; and KTPM = ﬂ:(iji) +@3 _ji)Ei7

where E; = m; 1(Z,) is the exceptional divisor of 7; and 7 is the homomorphism
between the Cartier divisor groups = : Div(P;) — Div(Pyyq) .

We remind that K« = —5H and V = W; = 6H, where H is a hyperplane in
Pt If we put n; = j; + m; — 3, then by iteration of (1) we can deduce

K}; +X= ﬂ:{ .- ng{ng{n{(H) — nlEl} — 1’L2E2} —ngks - } —n,E, .

The blow-ups we need to bring the desingularization to the end are of the
following types:

e a blow-up at a triple point; in this case n; =0+ 3 — 3 = 0;

e a blow-up along a triple curve; in this case n; =1+3 -3 =1;

e a blow-up along a double surface; in this case n;, =2+2 -3 =1;

¢ a blow-up along a double curve; in this case n; =1+2 — 3 = 0;

e a blow-up along a simple surface; in this case n; =2+1 -3 =0.
So, in our case, n; = j; +m; — 3 > 0 for any 1.

Since X = W,.,; is nonsingular, we can apply the adjunction formula and
obtain:

KX = [7'5:{ e ng{ng{nf(H) — nlEl} — ang} — %3E3 e } — %TE;»] ‘X
or equivalently

@) Kx=[o"(H) - — 7w (2B, 2)) — w1 Bpy) — moEy] Ix |

Bearing in mind that we present X as a pasting of the affine schemes X ;,
1<i<5,j€J;, we can rewrite Kx as a collection {d; ;,X; ;}.

So, if U;, Vi, U, j are as in section 1, and if o; ; : X; ; — V; denotes the re-
striction of ¢ to X; ; and o} ; : C[V;] — C[X; ;] the homomorphism between the
coordinate rings of V; and X; ;, from (2) we have:

(3) Kx = {o1,00/5:; . Xis},

where: H(aﬁ ;- -+, %3) is an arbitrary linear form, 0; is the canonical projection of 0
in U; and 0; is its image in C[V;]. In our case s; ; belongs to C[U; ;]; so s; ; denotes
its image in C[X; ;].
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If we multiply (3) by the integer m > 1, we obtain:

(4) mKx = {a} (S/55" . Xis),
where: J(x1, . ..,%5) is an arbitrary form of degree m.

REMARK 1. — Since thes; ; € "C[ZN] ;7] appearing in (3) are due to the addendum
— = n:(nifl(nr—ZEﬂr—Z)) - n:(nr—lEr—l) — .l

of (2), we have to pay careful attention to the n; > 0, i.e. to the blow-ups of the
second or third type in the above-mentioned list. As seen when developing the
desingularization, they are only due to the imposed singularities, whereas the
actual or infinitely near unimposed singularities need blow-ups of the fourth or
fifth type, so the corresponding #; are equal to zero. That is why we usually say
that the imposed singularities of V affect the birational invariants of X, while the
other singularities of V' do not. O

REMARK 2. — Since, for any 7;, we know the local equation of its exceptional
divisor E; and the value of the corresponding n;, it is easy to write every
m(y_ (... (1 () . . .)) and consequently every s; ;. All the s; ; here have a
very straightforward expression. For example, referring to the open sets U 332
and Us 4; of the previous section, we have

S1,332 = U2 S2.41 = U1,

bearing in mind that Ej is given by us = 0 in 171‘332, and K5 is given by 41 = 0 in
Uz.a1.

More in general, if (uy,...,%;,...,us) denote affine coordinates on lNJZ j» We
can see that all the s; ;, if they are not constant, are given by s; ; = uy, with
ke{l,...,1,...,5} depending on j. O

4. — How to compute the plurigenera of X.

We denote the form of degree 6 defining V' C P* by F, the polynomials de-
fining V; in U; by F; and those defining X; ; in U; ; by F; ;. As before, let J; be the
canonical projection in U; of a form J(x1, . . ., x5) and let g; j be the restriction of &
to Xzﬂj-

The following proposition is already contained in [6], page 141, but we repeat
the proof here for the reader’s convenience and for the sake of completeness.

PROPOSITION 1. — Let s; ; be as i (3). Then, for any effective divisor
L ={4;, X; ;} linearly equivalent to mKx, there exists a form &(x1, ..., xs) of
degree m such that {; ; = o} j(s_i) /55", for any i and j.
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PrOOF. — The ¢y, ; : X; j — X}, are birational maps; so for any (¢, j) and (k, 1)
(non-empty) open subsets X; j.; and Xj, ;; ; of X; ; and X, ;, respectively, exist such
that the Meiig = Prii.j |Xz:j;k,l: Xi,j;k,l — Xk,l;i,j are isomorphisms.

X, indeed, is obtained by glueing the X; ; along X; ;;; via the isomorphisms
AENT

As usual, we denote as ¢; ., and #; ;. , the isomorphisms ¢; ;. , : C(X; ;) —
CX) and n7 ;) 2 CLXG jeg] — CLXGepi 51

Now, let L = {¢; ;,X; ;} be an effective divisor on X linearly equivalent to
mKyx. Then L —mKx = {{;;5;;"/ o; j(E) , X;;} is the divisor of a rational
function p of C(X); in other words,

(5) @1 (655" 193,80) = a5 /97150,

for any (7, j) and (k, ).
Since, for any (¢, j) and (¢, 1), we have

P
Vi jiig = 055 © Til,

then ¢Zj;i,l(az,j(19i)) = U:l(’ﬂz)

We deduce from (5), in the case of k = 1, that ; j;i,l(€2~7 ;8 =45 In
particular, (1; ;;,))" (€5 5i;") = £i; 5i7". Therefore, by definition of glueing of
schemes, for any arbitrarily fixed ¢, the collection {/; ; 5, ;" }, 7 € J;, gives rise to
an element of I'(X;, Ox), where X; = U X j

Jed;

The domain of regularity of the (dominant) rationalmap o™ : V — Xis V'\ I,
where [ is a closed subset of V with codim(/) = 2. Thus, for any arbitrarily fixed 2,
the collection {(aif })*(&-J 5.7}, J €Ji, leads to an element of I'(V; \ I;, Oy,),
where I, = 1NV,

Since V is a normal hypersurface in P*, C[V;]is an integrally closed domain,
so the collection {(aij_ })*(&-, i Sij")} gives rise to an element of I'(V;, Oy,) (cf. [4],
Theorem 2.15, for instance).

Let us denote as p the image of p by (¢ 1) : C(X) — C(V). We have:

p= @G =0} (057" /07,50 = (@7 ) iy 55 /S,

for any 1 <1 <5,j € J;. The collection {(g; ]1.)*_(&,]- 5.;"),Vi} therefore gives an
effective divisor on V linearly equivalent to {J;, V;}, defined by the form 4.

V is a normal hypersurface in P?, so its homogeneous coordinate ring C[V]is
an integrally closed domain. The effective divisor {(ag })*(&, i 8i;), Vit is thus
defined by a form ¢ of degree m (the same degree of J):

1 _
(@) Wijsij") =5

It follows that ¢; ;s; ;™ = o7 () and this concludes the proof. O
O] 1,]
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REMARK 3. — The divisors ¢ = 0 on P!, where ¢ are forms of degree m such that
o} (81)/81 5., € C[X; ], i.e. that define effective m-canonical divisors on X, are
classmally called m-canonical adjoints to V. Proposition 1 tells us that an iso-
morphism exists between |mKyx| and the linear system of the m-canonical ad-
joints to V, restricted to V. O

REMARK 4. — Let lNJiJ be an open set in which the s; ; € C[[NJL_,-] is not a con-
stant. If, as before, we use (u1, ..., %;, ..., us) to denote affine coordinates on this
open set, for the example presented here we shall have s; ; = u;, for some k
(cf. Remark 2). We can therefore order F; ; by the powers of u,

Fij=q° +u ¢+ ¢? +

and consider the addendum pg)) of F; that corresponds, in the strict transform
F;j, to q«))

For any arbitrarily fixed i, there are several of such open sets (depending on
7), but the polynomial p(O) does not depend on the particular U;; we use to
compute it. Specifically:

P =az w5 w® + @y @ s + ap 0% w4® + ag wo® w5+ aro 25" 0’ w5t
Q13 %2 3 5% + Q14 047 057 + a7 04 57

P =ay 1% + ag a3’ + a5 3% 4% + ag 1% w4 205 + a12 1% 252+
15 X3 9042 9052

pg” = 812 X% + g 22> + @7 4> + 10 %1 X4 X5 + 13 212 o X5+

2.2
Q16 L4~ L5

0
pi ) =0y 9013 9022 +as 9622 9032 + a6 X1 9632 + ag .7012 96‘22 X5 + a1l 9032 X5+

2,2 2 3
Q14 %1" X5" + Q15 X2 X3 X5~ + A18 X1 X5

0
p(5 ) =aug 9023 9033 + ajg 9612 9022 + a13 9012 X2 X3 + A15 L2 X3 9042 + Q16 9032 9042+

2 2
Q17 %17 L4 + Q18 X1 Xy

We can see that all the polynomials p(O) are different from F; and that none of
them is divisible by any of the x; (k € {1,. .,5}). In addition, they have
degree 5 for 1 < ¢ < 4, whereas pg)) has degree 6.

Finally, we should mention that the total transform o} j(pg”) of pgo) is divisible
by u, exactly 8 times in the case of ¢ = 1 or ¢ = 4, and by u;, exactly 6 times in the
case of 1 = 23,5, according to the total transform a;’j(Fi) of F;. O

Computing the m-canonical adjoints to V is generally not so easy, but the
following proposition and Remark 5 make it simpler when m < 6.
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PROPOSITION 2. — Let ¢ be a form of degree m that defines an effective m-
canonical divisor (i.e. g} (82)/ 55" € CLX; ), for any i cmd .

If; for iy and jo, o 20 ]U(em)/slo i does not belong to C[UZO o], then theve is an
addendum of &, (essential and different from 0) that is divisible by the poly-
nomaial pgg) defined in Remark 4.

PRrOOF. — Let ¢; be the canonical projection of ¢ in U, as above. Based on the
hypothesis, for any ¢ and j, there are £; ; and A; ; in C[U; ;] such that
(6) 0; &) = hi 87 + Ai i j.
We also know that there is an open set ZNLO jo Where a7 ]0(810) /si ;, does not belong

to ‘C[ﬁio,jo], ie. s;, j, is not a constant and o;  (¢;,) is lelSlble by si,.;, only f
times, f<m. Since, from Remark 2, s;, ;, = uk, We can rewrite (6) in the form

(7) G, ;0(810) ukmhio,jo +Ai0~]oFio,jo'

If we now order ‘71'0, i (¢;,) and F;, ;, by the powers of wy:

0,J0

(8) a5 i0Eip) = oy + 1) Mg+

0 2
9) Fipjo =4 +we ¢ +ui ¢ +-
on comparing the two members of (7), we can deduce that w; have to be divisible
by q(o) i.e. a polynomial B;, € Cluy,...,%;,...,us] exists such that

_ (0)

(10) a)/; = Bloqzo .

Multiplying (10) by uﬁ we have

(11) uﬁa)ﬁ = ukB@Oqig)
In order to deduce the expression of the addendum e(/ ) (different from 0) of ¢;,

such that % (e(ﬁ )) u/,jw/;, we can apply (0101] )* to the members of (11). So, if we

i0,Jo
bear in mind the expression of o; , , and that p(()) is the addendum of F;, cor-

responding to q(O) in the strict transform F, j, of on, then from (11) we deduce
V)

Cip
(12) 50/3) =(0;,5)" (ufoop) = (07,.5,)" qu(O)) N 1110410 ’
10
where C;, and M;, are a polynomial and a monomial in Clxy,...,Z;,...,x5],
respectively.

As we can see in Remark 4, the factors of M;, cannot divide p(O)' so they have
to divide C;, and then the addendum z-:(.'g ' of &;, is divisible by p(o)

(13) (ﬂ) p(O)D

Dio6\&7[901,...,9?1-\0,...,905]. O
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REMARK 5. — Let ¢ be a form of degree m defining an effective m-canonical
divisor and let o} ; (&) be divisible by s;, j, only g times, f<m. From
Proposition 2, the addendum s(ﬂ )’ of &, 1s divisible by the polynomial p(o).

Recalling that o}, o (plo)) is d1V1Slble by u; 6 times at least (see ﬁnal part of
Remark 4), we deduce ~that 6 < f.So, if ¢ defines an effective m-canonical divisor,
but ;. jo(gio) / SZL, j0¢‘C[UiU, j,] for some ¢y and jo, then 6 <m. O

Whenever m < 6, the computation of the forms ¢ defining effective m-cano-
nical divisors is then simplified and brought back to the computation of forms ¢
such that af’j(ai)/s% € C[U; ;] for any ¢ and j (instead of ajﬁj(ei)/W” e C[X; ;D).
The following Proposition tells us how to do that.

PROPOSITION 3. — Let ¢ be a form of degree m defining an effective m-
canonical divisor. Then o} (ez)/ CAPS CLU;, i} for any i and j, if and only if
the monomials x{zhxsrias of & satzsfy the conditions:

(14) a<2b+d+e, b<a+ec, c<b+d, d<a+2c+e, e<a-+d.

ProOF. — From Remark 2, we know that s; ; = u;, where u;, is one of the affine
coordinates on UZ j- So UL ](m)/sl i € C [UZ ] if and only if all the monomials of

(sl) are divisible by (s

Let M = afabatadat be amonomial of ¢ and M; its canonical projection in U;.

First of all, we analyze 07 33,(M1) = 0] 332(902903904905) By composing the local
expressions of the blow-ups used to solve the singularities of V (compare section
2 for more details), we can write gy 32:

X = ugué, T3 = UU3, X4 = u%uém, X5 = u%u%%,
calculate o} 43,(M;) and therefore see that up appears in it to the power
3b + ¢ + 2d + 2e. Bearing in mind that s; 330 = ug andthatm = a+b+c+d+e,
we deduce that o7 332(/\/11) is divisible by sf" 332 if and only if

a<2b+d+e.

This situation holds, however, as we can easily check, not only on U 1332, but also
on any Uy j, j € J1, where s; ; is not a constant.

Similarly, analysing o} j(Mi) when ¢ = 2,3,4,5, we deduce that:

b<a+c referring to o} (M), j € Jo;

¢ <b+d referring to a}; (M), j € J3;

d < a+2c+e referring to JZJ(MD,j € Jy;

e <a+d referring to a5 ;(Ms), j € J. O

The conditions of Proposition 3 make it easy for us to calculate the vector
space of the forms defining effective m-canonical divisors on X for any m < 6,
according to Remark 5.
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Computation of p,.

The above conditions oblige the polynomials ¢ of degree 1 defining effective
canonical divisors on X to be identically zero, so p, = 0. If we want to express this
result in geometrical terms, we can recall that Ky is given by (3) and that, in
order for it to be effective, the hyperplane 6 = 0 has to pass through the five
vertices A; of the fundamental pentahedron. Since there are no such hyper-
planes, py = 0 here again.

Computation of P, and Ps.

Given the conditions (14), we see that the vector space W; of the forms (of
degree 2) defining effective 2-canonical divisors on X is spanned by

Y1dXe, X1¥4, X1dX5, L2Xk3, X3X4, L4Xs5,

and the vector space Wj of the forms defining effective 3-canonical divisors on X
is spanned by

2
Li¥2, X1X2¥3, L1X2X4, X1X2X5, X1X3X4,
2
L1405, X2X3X4, X3Xy, X3L4Xs5,

so Po = 6 and P3 = 9.

If we want to emphasize the geometrical point of view of the conditions (14),
as before, we must first recall that 2-canonical adjoints belong to the linear
system of hyperquadrics:

b1o1202 + box1s + bg1s + bad125 + bsexs + bekaky + briais + bgazy +

boxsas + bioxais + b11a? + b1l + bigx3 + biaxk + bysxE = 0.

Then, we see that the tangent cone of V at A; is x%(alxz + aqq + agxs) =0
and that the first condition in (14), due to the singularity at A;, obliges the hy-
perquadrics to pass through A; (b1; = 0) and to have their tangent plane at this
point of the type bixs + b3xy + bgs = 0 (b2 = 0).

Finally, referring to a singularity of the second type, we see that the tangent
cone of V at A, is alx‘i’ + Cbgﬁﬂg = 0 and that the second condition in (14) obliges
the hyperquadrics to pass through Az (b12 = 0) and to have their tangent plane at
this point of the type b1x; + bsxg = 0 (bg = by = 0).

It is worth noting that the values of P2 and P3 enable us to deduce, by means
of the Rieman-Roch formula, that a canonical divisor on X, or on any nonsingular
variety birationally equivalent to X, is not numerically effective. To do so, we can
refer to [8], section 17, so we omit the proof here. X therefore cannot have a
nonsingular minimal model.
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Lastly, even if the value of other plurigenera of X is not essential for the
purposes of the present paper, it is worth adding that, in accordance with
Remark 5, the conditions of Proposition 3 help us to compute Py, P5 and Pg just
as easily as before, which are 22, 36 and 66, respectively. To tell the truth, in the
case of the present example, we could use Proposition 2 to prove that the com-
putation of any P,, (even if m > 6) can be brought down to computing forms ¢
such that o} j(ei)/ 87 € C[U; ;] for any 7 and j. We do not provide the proof here,
however, because these considerations go beyond the scope of this paper.

5. — The bicanonical map @ | is stably birational.

In this section we aim to prove that X is of general type and that the rational
maps associated with the linear systems |mKx| are birational for all n > 2.

Bearing in mind the isomorphism between |mKx| and the linear system on V'
of the m-canonical adjoints, let us consider the (incomplete) linear system L,,
defined on V by the hypersurfaces ¢ = 0 that give effective m-canonical divisors,
and let @;, be the rational map defined by L,,.

Let us consider the commutative triangle

Dk
X - — |mF {‘_HP;P,,,A
o
7
7
o -
// ¢L

where we represent the two rational maps @k, and @, by dotted arrows to
emphasize that they are not regular.

Since ¢ : X — V is an isomorphism on an open set of X, and since the above
triangle is commutative, we deduce that

DKy is birational <= @, is birational.

On the other hand, the study previously performed on the forms ¢ to compute
the plurigenera can also be used to analyse @y, .

Let us prove the birationality of ®r, or, equivalently, of @k,

Among the polynomials defining effective 2-canonical divisors on X, we
choose
X1%2, X1¥5, X2d3, X3k, L4d5.

The five polynomials define the rational map 7 : P* — P* given by:

Yi=mxe, Ye=uwm125, Ys=uwow3, Yi=uwx3w4, Y5=a42s.
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It is straightforward to prove that 7 is a birational map. V is not contained in
the indeterminacy locus of 7, so the restriction of 7 to V is also a birational map.
&y, is therefore birational.

It is equally straightforward to prove that @3k, | is birational. Since Pz > 0,
we deduce that @, , and therefore &,k |, is also a birational map for any m > 4.

m?

6. — The irregularities of X.

To verify that the irregularities of X vanish, we can apply the Castelnuovo-
Enriques criterion generalized in [8], section 4.

We consider a generic hyperplane H C P*, the surface H = HNV on V and
the strict transform S C X of H by o. Since the linear system |H| on V is base-
point free, S is nonsingular and the restriction of ¢ to S yields a desingularization
of H.

'H has singular points at the intersections of H with the double lines of V, i.e.
'H has five double points at the intersections of H with £;, 1 <17 <5.

To analyse these singularities, we can look at the restriction of ¢ to S. If we
examine the singularities of V, we find that all the double points of H only have a
finite number of infinitely near double points. So the irregularity q(S) =
dimH(S, Og) and the geometric genus of S are the same as those of a smooth
surface of degree 6 in P3 (cf. [2], p. 636 or [8], sections 3 and 4). It follows that
q(S) = 0 and p,(S) = 10. Thus, from [8], Remark 8, we deduce that

¢ = dim H'(X, Ox) = ¢(8) = 0.
To compute the second irregularity of X, we refer to [8], formula (36):
(15) g2 = py(X) + py(S) — dim Wy,
where W is the vector space of the forms ¢ of degree 2, such that
a;f,j(qbi)/si,j € C[U; ;] for any 7 and j. o
To compute dim Ws, we first consider a monomial M’ = x§ a8 a§xf x¢ of ¢
(@ +b + ¢ +d + ¢ = 2); then, bearing the previously-mentioned local expres-
sions of the ¢; ; in mind and following the method used to prove Proposition 3, we
can see that o; j(qﬁi) /sij € C[U; ;] for any ¢ and j, if and only if
o <20 +d +e+1, UV <a+c+1, <V +d+1, d<a +2d+e +1
e<ad+d+1
for any M’ of ¢.
W is then spanned by
L1h2, X103, X1dg, X1x5, L2d3

Loks, X2k5, X3X4, X3L5, XL4ds
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so dimWs =10. Since p,(X)=0 and p,(S) =10, from (15) we obtain
g2 = dim H?(X, Ox) = 0.
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