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The Dynamics of an Interactional Model of Rabies Transmitted
between Human and Dogs

WEI YANG - JIE Lou

Abstract. — Assuming that the population of dogs is constant and the population of
huwman satisfies the Logistical model, an interactional model of rabies transmitted
between human and dogs is formulated. Two thresholds Ry and Ry which determine
the outcome of the disease are identified. Utilizing the method of Lyapunov function
and the property of the cooperative systems, we get the global asymptotic stability for
both the disease-free equilibrium and the endemic equilibrium. A critical vaccination
rate is obtained, which determines whether the dog rabies dies out or becomes en-
demic. Some suggestions are provided to the prevention and control of rabies ac-
cording to the results of analysis and simulations.

1. — Introduction.

Rabies (Hydrophobia) is a viral disease that affects the central nervous
system of all warm-blooded animals. It can be transmitted through a bite,
scrateh, lick of the infectious animals, or even the seemingly innocuous act of
petting the family dogs. The virus stays in the reservoir’s body fluids, including
saliva. Nowadays in China, the rabies-caused mortality is the highest among the
infectious diseases, nearly 100% once getting infectious [1]. According to the
annual report data from the Ministry of Health of China, the human rabies si-
tuation in China is very severe recent years. We examined the achieved data of
human rabies cases in China from 1950 to 2007 [2] and plotted the figure to show
the situation more clearly (see Figure 1).

The reservoir hosts of rabies in nature could be dogs, cats, rats, raccoons,
bats, and so on. In China, about 80% ~ 90% of rabies transmitted to human is
from the infectious dogs. The latent period of rabies can be less than a week or
more than ten years, and the average is 66.9 days according to the reports in
China. The infected (or exposed) but not infectious dogs, in their latent period,
can also transmit the disease, which makes the prevention and the control of
rabies hard to handle. The symptoms of rabies, once getting affected, can be
divided into two types. One is the furious type, about 80% of the cases, which
appear to be furious, excited and sensible to water; the other is the dumb or the
paralytic type, about 20% of the cases, which don’t have the period of showing
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Fig. 1. — Annual rabies cases reported in China from 1950 to 2007.

excited or sensible to water, however, appear to be dumb or paralytic. Generally,
the cases of the bites of the infectious vampire bats belong to the latter type. The
vaccines against rabies for animals have two types. One is valid for one year and
the other lasts for three years [3]. But when it comes to human, there is no valid
vaccine that can be vaccinated beforehand. When you were likely to get infected,
such as bit or scratched by a dog, you have to get vaccinated immediately, but
this vaccine cannot last any longer immune period. It’s lucky to know that since
the virus does’t change the genes, rabies wouldn’t be transmitted vertically,
namely, the infectious mothers wouldn’t pass the disease to their children.

Mathematical models presenting the transmission dynamics of rabies have
been considered a lot. Anderson et al. [4] formulate a model of rabies transmitted
between foxes, quantitatively study the population dynamics, and conclude that
it is possible to control the disease through vaccination and culling. Rhodes et al.
[5] study the transmission of rabies in Zimbabwe using a compartment model,
and obtain the reproduction number. Kallen et al. [6] study the spatial spread
model. Allen et al. [7] discuss the discrete-time deterministic and stochastic
models for the spread of rabies. Wang and Lou [8] formulate two SI models to
describe the interaction of rabies between human and dogs. But they don’t
consider latent state in their models, which actually plays an important role in
the transmission of rabies, because the infected dogs in latent period can cause
infection.

In this paper, considering the features of the transmission of rabies, an
interactional model of rabies transmitted between human and dogs is for-
mulated. In the model, we assume that the population of the dogs is constant,
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and that the population of human satisfies the Logistical model. Supposed
furthermore that the susceptible dogs and the infected (or exposed) human
would be vaccinated continuously, an interactional SEIV model is formulated
and studied. Discussing the corresponding differential systems, we identify
the thresholds Ry and R;, which determine the existence of the disease-free
equilibrium and the endemic equilibrium. Then utilizing the method of
Lyapunov function and the property of cooperative systems, we obtain the
global asymptotic stability of the equilibria.

The present paper is arranged as follows: in the next section, we establish the
interactional model; in section 3, we do the model analysis and obtain the equi-
libria and their stabilities; in section 4, we get a critical vaccination rate p* and do
the simulations; in the last section, we give some discussion.

2. — The Model.

The population of human is partitioned susceptible, exposed (in the latent
period), infectious, vaccinated, with sizes denoted by S,(t), £,®), I,(t), and
Vy(8) respectively. Similar symbols can be got for dog population. Then ac-
cording to the features of rabies transmitted between human and dogs, an
interactional SEIV model is formulated. The transfer diagram is depicted in
Figure 2.
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Fig. 2. -- Rabies transmitted between human and dogs.
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The transfer diagram leads to the following differential equations:

Si = aly—pBdy+E)Sq —pSq+0Vy,
E; = pdg+Ep)Sq— yEq,
(2.1) Iy = yEq—aly,
Vi = pSq—0Vq,
N, = 0
and
S, = nS,(1=8,/K)—pUy+EyS,+0V,,
E, = ply+E)S, - pE, — k),
(2.2) I, = JE,—al,
V, = pE,—0V,,
N, = 1S, —-8,/K)—al,.

The total populations of human and dog are denoted by

N,@) =S,t) + E,@) + I,(t) + V,(t)
and
Ng@) =8Sq@®) + Eq@) + 1@ + Va@)

respectively.

In this model we assume that the total population of dogs keeps constant in a
local area (such as some city), namely, we assume people will adopt another dog
when the old one dies for some reason.

In the equations of dog population, p denotes the vaccinated rate of the
susceptible dogs, 6 denotes the removal rate of dogs from the vaccinated class to
the susceptible class, f denotes the bilinear incidence rate of dogs, a denotes the
rabies-caused mortality rate of dogs and y denotes the rate at which the exposed
dogs become infectious.

In the equations of human population, p denotes the vaccinated rate of the
exposed human, 0 denotes the removal rate of human from the vaccinated class
to the susceptible class, § denotes the bilinear incidence rate of rabies trans-
mitted from dogs to human, a denotes the rabies-caused mortality rate of hu-
man, 7 denotes the rate at which the exposed human become infectious, # de-
notes the intrinsic growth rate of human and K denotes the environmental
capacity.

Thanks to the improvement of the medical services, human getting affected
(such as bit or scratched by a dog) will be isolated immediately. So we assume
that they couldn’t transmit the disease to others any more.
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3. — Model analysis.

From the model we can see that system (2.1) can be discussed separately.

3.1 — Analysis of system (2.1).

Denote Ny =N and Sy =N — E; — I; — V. System (2.1) is reduced as the
following:
Blg+Eq)N —Eq— 15— V) — yEq,

yEd - alda

By =
(3.1) I, -
Vi = p\N—-E;—-1;—-Vy) -0V,

Its feasible set is @y = {(E 4,14, Va)|Eq > 0,13 >0,V > 0,E;+1;+ Vg < N}.
About the existence and stability of equilibria for system (3.1) we have the
following result.

THEOREM 3.1. — Define

_ ON  Bla+y)
(3.2) e

then
1. one disease-free equilibrium E; <O’O’ppTNB> always exists. It is globally
asymptotically stable when Ry <1 and unstable when Ry > 1.

2. when Ry > 1, there exists a unique endemic equilibrium

) aN 1 N 1 pN
By I V) = (——(1- 5], %) wroR)
2(Bg,13,Vq) <a+y< Ro) a+y( Ro) (p+9)Ro)

Proor. — The existences of equilibria are easy to check. In the following we
prove the global stability of £;.

Letx=Ey, y=14, 2=Vy— pp_N Then system (3.1) is equivalent to the

following system: +0

_ (BON _ BON
= (p+9 Vx+p+9y Pl +y)e+y+2),
(3.3)
= '}/90 - aya
2 = —px—py—(p+0)z,

and the corresponding positively invariant set changes to

pN HN}
Qo = Y, 207 ZOa + SN,—*S <—F0
2 {(“/Z)W y=tetyre pro-""pto
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IfR0<1,theny—@>i>0 Let
p+0 +
PON B 2 S ;
- i ) PP/ Q.
L Vx+<y ey y+2pz in

The derivative of L with respect to ¢ along system (3.3) is
AL _ dL@),y®.20)

dt dt

= y9’c+<y—ﬂ+0)y+y£ 22

BN (. PN

= ! et pety+a) a(y +9>?/
ety + v+ 09

= @R~y —fle+y+2)° - y]/%gzZ

< 0.

Since L = 0 if and only if # = y = z = 0, therefore, the largest invariant set in
E={(x,y,2) € L= 0} is M = {(0,0,0)}. So if Ry<1, then E; is globally
asymptotically stable.

If Ry > 1, the Jacobian matrix of system (3.3) at point (0,0, 0) is

/)’9N BON
J—|P p+0 7 p+0
y —a 0
-p -»p —(@+0)
It’s obvious that the matrix J; exists an eigenvalue 1; = — (p + ) <0. Let
A2, 43 be the other two eigenvalues.
([ PON /)’ON
A2 ig—(ere (—a) 93’—(13’(1 Ry <0.

Namely, the matrix J; exists a positive eigenvalue, then £; is unstable. [

Since the rabies-caused mortality is much larger than the recovery rate of the
vaccinated dogs becoming susceptible again, we suppose that a > 6 in the fol-
lowing discussions.

First we state two useful lemmas as the following.

LEmMA 3.2 [9, 10]. — Let Q C R, be bounded and consider the cooperative
system & = F(x), x € Q. Suppose that every forward (or positive) semi-orbit has
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compact closure in Q, and that there is a unique positive equilibrium P in Q,
which 1s locally asymptotically stable, then P is globally asymptotically stable
m Q.

LEMMA 3.3 [11]. — Assume that

Al) @&, has a global attractor;
A2) there exists an M = {My,---, My} of pair-wise disjoint, compact, and
isolated tnvariant sets on 60Xy, such that
k

a) U o c UM, My={xc dXy|Pwx € 0Xy};

%EM{; i=1
b) no subsets of M forms a cycle on 0Xy;
¢) each M; is isolated in X;
d) Ws(M;) N Xy = ¢ for each 1 <1 < k, W*(M,;) is the stable manifold of M;.

Then @y is uniformly persistent with respect to X,.
About the stability of Ey, we have the following theorem.

THEOREM 3.4. — The endemic equilibrium Es is locally asymptotically stable
i the interior of Q1, if Ry > 1; and, furthermore suppose that p > v, it is globally
asymptotically stable.

Proor. — First, if Ry > 1, we prove the local asymptotic stability of Eo.
Letx =Eq - E;, y =141 z=Vy—V;, the linearized system of system
(3.1) at point Ep is
{ © = (BS;— P&+ 1) —na+ BS; — B + 1))y — P + 1)z,
y = Yx—ay,
2 = —pr—py—(p+0k,

and the corresponding Jacobian matrix is

(ﬁS;}_ﬁ(E;}"'lé)_)} BSy — P& + 1) —ﬂ(E§+1§))
Jo = y —a 0 .

-p -p —(p+0
Let det(Al — Jo) = 22 + ¢24® + ¢1/ + ¢o. Here

c = (a+)0pE" +1),

2
P /?(E'*+I*)(a+9)+<y+aj_

= E 4+ I
c2 PE" + )+p+0+a+y
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If Ry > 1, then cg,c1,co > 0 and cec; > ¢p. Utilizing Hurwitz’'s theorem, we get
the local asymptotic stability of Es.
In the following we prove the global asymptotic stability of s in interior Q;.
Let Ly = Sq + E4, system (3.1) is equivalent to the following system

Li = (a—0I;— @+ 0)Lqg+ 0N + (p — »Ej,
(34) E; = PEs+I1)Lg—Ey) —yE,
Iy = yEq—aly,

The invariant set of system (3.4) changes to Q3 = {(Lgq,Eq,19)|0 < Ly, Eq,1; <
N, Ld~—|— 13 < N,L; > E;} and the equilibria of system (3.4) are E (% ,0, 0)
and Ex(L5, E5,I3) = (S, + E3, E5, I5). b

The Jacobian matrix of system (3.4) is

—(p+0) p—7 a—0
(3.5) Jo=| Uy +Ey) PLg—15—-2E) —y Pg—Ey
0 y —a

Then the Jacobian matrix of the linearized system of system (3.4) at the point
El is
-(p+0 p—-y a-0

he| o pN_ N
p+0 p+0
0 y —a

Obviously, J3 exists an eigenvalue 4y = —(p + 0), and Ag - A3 = ay(1 — Ry). So
when R, > 1, J3 has a positive eigenvalue, then E; is unstable.

Now we prove that every forward semi-orbit has compact closure in £s.
Namely, if By > 1, system (3.4) is uniformly persistent. Following the notation in
Lemma 3.3, we choose X = Q3, Xo = {(Lg,Eq,1q) € X,Eq > 0}, 0Xy = X \ Xo.
We have proved that £ is unstable. And J3 has two negative eigenvalues and one
positive eigenvalue. It’s obvious that Eis stable on 0Xp, then E; isisolated in X.
So My = 0Xy, M = {E’l}. Moreover, all the solution is ultimately bounded in X,
then there admits a global attractor. All the hypotheses in Lemma 3.3 hold, then
system (3.4) is uniformly persistent with respect to Xy,. We have the conclusion
that every forward semi-orbit has compact closure in £s.

From matrix (3.5), we can see that all the off-diagonal elements of the
Jacobian matrix of system (3.4) are non-negative, namely, system (3.4) is a co-
operative system. Noticing that Es is the unique equilibrium in the interior of Q5
and utilizing Lemma 3.2, we get the global asymptotic stability of E5. Since
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system (3.1) is equivalent to system (3.4), the global asymptotic stability of the
endemic equilibrium £ is obtained. O

3.2 — Analysis of system (2.2).

First we state a definition and a lemma, which will be used to analyze system
2.2).

DEFINITION 3.1 [12]. — Consider the non-autonomous system

(3.6) % =ftx), fRxQCR"Y—R"
and the autonomous system

dy v _, pn
3.7) = 9W, Y QACRY) — R

Suppose that both of the solutions of the systems exist uniquely for all t > 0. If
[, x) — g(x) uniformly ast — +oo, then system (3.7) is called the limit system
of system (3.6); and system (3.6) is called the asymptotically autonomous
system with the limit system (3.7).

LeEMMA 3.5[13]. — Letf € C(R x R") in system (3.6) and g € C(R") in system
(8.7) satisfy the local Lipschitz condition with respect to x and y. If every so-
lution of system (3.6) is bounded for all t > 0, and the limit system (3.7) exists a
equilibrium which is globally asymptotically stable, then

lim () =P.
t—+o00

Let g = ﬁ'([; + E7), where I}, E is the value of the globally asymptotically
stable equilibrium of system (2.1). Then the asymptotically autonomous system
(2.2) has the following limit system:

S, = 5S,(1—S8,/K)—gS,+ 0V,
EP = 9Sp — pE), —YE),

I, = JE,—al,

V, = DE,—0V,.

(3.8)

Its positively invariant set is Q4 = {(Sp,E),Ip, Vp)|Sy, Ep, 1, V), > 0,8, +
E,+1,+V, <K}

About the existences and stabilities of equilibria for system (3.8), we can
obtain the following theorem.
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THEOREM 3.6. — Define
Rl = @7
Y

where w = (p + 7)/g. Then

1. when Ry<1, we have g = 0. System (3.8) has two equilibria. Es5(0,0,0,0)
and E4(K,0,0,0). Ej is unstable, and E4 1s globally asymptotically stable.

2. when Ry > 1 and Ry > 1, we have g = B(l; + E%). Two equilibria exist:
the disease-free equilibrium FEg and the unique endemic equilibrium
E5(S;,E’;;7I;;, V;). Es is unstable, and E5 is globally asymptotically stable in
the interior of Q4.

Proor. — The existence of equilibria are easy to check. And we also omit the
proof of instability of E's here. It is easy to arrive using the Hurwitz’s theorem.

Now we begin to prove the stability of the disease-free equilibrium Ej.

Letx =S, — K. Let g = 0. System (3.8) is equivalent to the following system:

& = —;790+@Vp—%x2,
(3.9) Ey = —pE,— k),

I, = 3E,—al,

V, = pE,—0V,

The corresponding Jacobian matrix of the system at point (0,0,0) is

-7 0 0 0

0 —-@+» 0 0
J5 = _ s

0 y —a 0

0 P 0 -0

Obviously, the eigenvalues of the above matrix are —#, —0, —a, —(p + ),
which are all negative, then Ej is locally asymptotically stable.
Solve system(3.9), we have

E, = Ege" ",

Eyy o Q
[,=———"" ¢ @+l [
b @+ —a
Vv, = Eoy _ o=+t 4 Voe*at,

P —0
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therefore

lim B,=0,  lm,=0,  lim V,=0.

t—+o00 t—+o00

So the limit equation of the first equation of system (3.10) is

(3.10) a'c:—mc—%xz ,xel[—K,0l.
Then if x # —K, namely, S, # 0, which means that the solution does’t start from
the disease-free equilibrium Ej, then lim x = 0. Therefore we have the global

t—+o00

attraction of the equilibrium Ej in Q4\{Es}.

In a word, the global asymptotic stability of the disease-free equilibrium £y in
Q4\{Es} is obtained.
Moreover, the Jacobian matrix of system (3.8) is

;7<1—2I‘zp)—g 0 0 0

Jg = g -@+» 0 0
0 7 —a 0

0 P 0 -0

Using the similar technique in Theorem 3.4, we can prove that E5 is globally
asymptotically stable in the interior of Q4. We omit the proof here. O

From Lemma 3.5, we can see that when Ry <1, every orbit of system (2.2)
goes to £y, namely, human rabies dies out; when Ry > 1 and R; > 1, every orbit
of system (2.2) goes to E5, namely, human rabies becomes endemic.

4. — Simulations.

In this section, we present some numerical simulations with different values
of parameters. We will see that the key to control the human rabies is to control
the dog rabies.

Let Ry = 1, there is

. _O0BNG@+yp
e

0.

If p > p*, then Ry <1. Namely, when the vaccination rate of dogs is greater then
some critical value p*, the rabies will die out. When R <1, there is no chance that
human rabies would become endemic.
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Fig. 3. — The critical value p* = 0.224. When p = 0.3 > p*, Ry = 0.7634 < 1; when
p=02<p*, Ry =1.1104 > 1.
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In Figure 3, we choose two pair of parameters, with different vaccination
rates. Fix N =150,y = 0.02,a = 0.5, = 0.005,0 = 0.02. From calculation, we
get p* = 0.224. Then, we choose different vaccination rates. The simulation
shows that once the vaccination rate is larger than p*, the dog rabies will extinct
(for example p = 0.3).

In Figure 4, we fix the parameters for human, and change the parameter .
Namely, we simulate two situations: one is that the dog rabies dies out; the other
is that the dog rabies becomes endemic. When R <1, namely, the dog rabies dies
out, then the human rabies dies out; when Ry > 1 and R; <1, the whole popu-
lation of human would die out, which is biologically meaningless; when By > 1
and Ry > 1, namely, the dog rabies becomes endemic, then the human rabies will
become endemic.

5. — Discussion.

The main results in the paper can be summarized in the following table (DEF
stands for disease-free equilibrium and EE stands for endemic equilibrium).

System | Threshold | Equilibrium Stability
Ry<1 DFE E; FE is globally asymptotically stable
Dog DFE E; E is unstable;
Ry>1 & E, is globally asymptotically stable,
EE E, provided that a > 0, p >y
DFE Ej E5 is unstable;
Ro<1 & DFE E; | E, is globally asymptotically stable
H
tman Ry>1 DFE Ej E5 is unstable;
Ri>1 & EE E5 | Ej5 is globally asymptotically stable

In this paper, the interactional model of rabies transmitted between hu-
man and dogs is formulated and the stability of the equilibria is studied, under
some assumptions. Firstly, the total population of the dogs is supposed to be
constant, namely, the input of the dogs is equivalent to the rabies-caused
death. Actually, although the rabies-caused mortality is extremely high, the
quantity of the disease-caused dead dogs isn’t so much, at the meantime
considering a local area, such as a city, the birth of the dogs and the migration
of the dogs are also not so many, therefore we suppose both of them are
equivalent. Secondly, we suppose the rabies-caused mortality is larger then
the recovery rate of the vaccinated dogs becoming susceptible again. Here,
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since the vaccine of dogs is valid for one year or three years, namely, 0 is
rather small, the assumption is natural. Finally, we suppose p > y to obtain
the global stability of the endemic equilibrium of dogs. It means that once the
vaccination reaches certain standard, the population dynamics of dogs af-
fected can be control at a low standard. In fact, we can see from the endemic
equilibrium of dogs

aN 1 yN 1
E, = 1-— I = 1-—
¢ G+V< Ro)’ ¢ (H‘V( Ro)’
ON  pla+y)
p+0
meantime, £, I; will also decrease. Since the equilibrium is globally asympto-
tically stable, we can see that the population of dogs affected with rabies will be

controlled at a low standard. Maybe this can give some suggestions to the pre-
vention and the control of rabies at a local area.

where Ry =

. Ry will decrease with the growth p, and at the
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