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Geometry of Syzygies via Poncelet Varieties

GIOVANNA ILARDI - PAOLA SUPINO - JEAN VALLES

Abstract. — We consider the Grassmannian Gr(k,n) of (k + 1)-dimensional linear sub-
spaces of V, = HO(P, Opi(n). We define Xy, q as the classifying space of the k-di-
mensional linear systems of degree n on P, whose bases realize a fixed number r of
polynomial relations of fixed degree d, say r syzygies of degree d. Firstly, we compute
the dimension of Xy, 4. In the second part we make a link between Xy ,q and the
Poncelet varieties. In particular, we prove that the existence of linear syzygies implies
the existence of singularities on the Poncelet varieties.

1. — Introduction and set up.

In this paper we are interested in linear systems 4 on P! of degree n and
projective dimension k (so, from now we assume that n > k), more particularly in
those having an algebraic limitation, namely the syzygies. A syzygy of degree d
for A is a (k 4 1)-uple of homogeneous forms of degree d, (g, .. ., gk), such that

k
> g fi =0, where ( fo,..., f) is a basis of 4. We say that 4 has r syzygies of

aggree d if there exist 7 linearly independent (k¥ + 1)-uples (g j, - - - , g, j), Where
1<j<n

We define Xy, 4 as the classifying space of the k-dimensional linear systems of
degree n on P! whose basis realize a fixed number » of polynomial relations of
fixed degree d, say r syzygies of degree d. It lives inside Gr(k,n) in a natural
way:

X a: = {4 € Gr(k,n) having
at least r syzygies of degree d}.

The first result of this paper is the computation of the dimension of X}, 4. The
subvarieties X, 4 turn out to be determinantal varieties for a suitable map of
vector bundles on the Grassmannian. This extends the main result (corollary 4.4)
in [3], where the computation was only proved in the » = 1 case. In the second part
we give a geometric interpretation of the varieties X;, 4 in terms of Poncelet
varieties. These varieties were introduced by Trautmann in [6], but, except for the
case of curves, they have not been actually studied. We prove that the existence of
linear syzygies implies the existence of singularities on the Poncelet varieties.



580 GIOVANNA ILARDI - PAOLA SUPINO - JEAN VALLES

2. — The dimension of the varieties X, 4.

Let A be a linear system on P! of degree n and dimension k. We choose
u,v a system of coordinates on P!, and denote by V, the n + 1-dimensional
vector space H°(P, Opi(n)) of binary homogeneous forms of degree n,
otherwise said binary quantics of degree n. A basis for V,, is x, ..., x, where
x; = uivnfi.

Choose a linear subspace A of V,, and let {fy,..., fi} be a basis for A. It
defines a morphism of vector bundles on P!

(1) $1: A®Op — Opin)

which is surjective when A has no base points. The system /A gives a map from P!
to P

(2) fa: PlA — PP,

Its image is a rational curve of degree n when ¢ , is surjective, and less than n
when 4 has base points. For general 4, ¢, is a surjective morphism of vector
bundles on P!, thus there is an exact sequence

3) 0 —FE)— A® Op — Op(n) — 0,

where the kernel is a vector bundle E 4 on P! of rank k and degree — n.
The short exact sequence (3) twisted by O.(d)

0 —E(d) — 42 O0p(d) — Op(n+d) — 0

suggests that 4 has exactly  independent syzygies of degree d if and only if
RY(E 4(d)) = .

Since H(¢ ) is injective one has £y = Opi(—a1) @ --- ® Opi( — ay) for sui-
table positive a; < --- < ay such that a; + - - - + a; = n. Then, one can stratify
the varieties Xy, 4 by all possible splitting of the integer » in k pieces. This point
of view is developed by Ramella in [4] to study the stratification of the Hilbert
scheme of rational curves C' embedded in projective space, by the splitting of the
restriction of the tangent bundle to C, and by the splitting of the normal bundle.
We will use this point of view (in theorem 2.2) in order to prove that the di-
mension is the expected one.

ExaMpPLE 2.1. — When n = 5 and k = 3 the only possible cases for £, are:
EA - O‘pl( - 1) © O])l( - 2) 5) O]Jl( - 2)7
which is the general case, and

EA = Opl( - 1) @ Opl( - 1) EB O]'ll( - 3)
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In the general case h(E 4(1)) = 1, while 2°(% 4(1)) = 2in the second case. Thus the
general stratum is X311 = G(3,5), and the stratum X3 2 is strictly contained in
G (3,5).

Note that if » < 2k the general splitting has the first term ay = 1, hence
hO(E 4(1)) > 1, which implies that X 11 = Gr(k,n), that is, there always exists a
linear syzygy.

THEOREM 2.2. — codim(Xy 4, Gr(k,n)) = (dk + k —n+r)r. Moreover the
varieties Xy, q are Cohen-Macaulay with singular locus X414

Proor. — Consider the universal vector bundle U =Ugyxn on the
Grassmannian

U={(f, M) eV, xCrlkmn)l|feA},
and the canonical map of vector bundles
U=V, @ Ocrpn-
On the product variety Gr(k,n) x P! let p and ¢ be the two projections
Grk,n) L Grk,n) x pt L, pl.
The map p composed with the evaluation map gives on Gr(k,n) x P!
PU— V@O pyxpt — € Opi(n).
For all d we also have a morphism
PURGON) — ¢ Opln+d).
If we take now the direct image p. on the Grassmannian, we obtain
URVs — Vigq
which is just the relative version of our map ¢, in (1) twisted by H 0((’)t[ﬂ (d))
A® HYOp(d) — H(Op(n + d)).
Therefore
Xpya = {4 € Grik,n) | rk(®,) < (k+1)(d+1) —7r}.

Applying Thom-Porteous formula we compute the expected codimension for
Xira as r(n +r—(d+ Dk). It is a classical fact that, when the codimension is
exactly the expected one, the Chow class is det(cn_k(d+1)+1~+j_i(C(d“)(“d“) ®U)).
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We compute now the codimension of the tangent space in a generic point A.
Consider its associated bundle E 4, by genericity we have

Ei=OL(-d)e0i" P (-AHe0h(-A-1)
where A and B are uniquely defined by
m—dr)y=Ak—r)+B, 0<B<k-—r

and, by hypothesis on the syzygy, A > d. The codimension of the tangent space

in the point A is then h'(E 4 ® E"). Since
E,@E;=0%¢"Pd-AHe0id-A-)oR,

where R is a suitable bundle with r'(R)=0, we have R'E,®EY) =

r(n + r — (d + 1)k) which is the expected codimension. |

3. — Geometric description as Poncelet varieties.

At the end of his paper [6], Trautmann has introduced a generalization of
Poncelet curves, namely the Poncelet varieties, in higher dimension. Those are in
bijective correspondence with the points of the Grassmannian. The aim of this
part is to describe the points of X}, 4 as Poncelet varieties. In particular we will
show that Poncelet varieties corresponding to X1 are singular (see theorem
3.9). Following [7], we define the Poncelet varieties as determinant of sections of
Schwarzenberger bundles, therefore we start by recalling the definition of
Schwarzenberger bundle and we describe the zero locus of their section (see
proposition 3.2).

3.1 — Schwarzenberger bundles.

We denote by (x; = w179, (y; = wv"*~17), and (z; = w'v" ') the chosen
basis of Vi1, V,,_x_1 and V,, respectively. The multiplication of homogeneous
polynomials in two variables

¢
Vi1 ® Vi1 — Vi,
el e o
(uinh+ iy 7) itign—i=j

can be relativized on the bundles on PV}, ;. The bundles £, are then defined by
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the following exact sequences

(4) 0 — Vi 4 1@ Opyy,(— 1) =5V, @ Opy,,, — By — 0
where A is the (n +1) x (n — k) matrix such that
o X1 -0 L4

Lo X1 o X4
AT = To 1 o Bkl

Lo rr - Tkt

The bundles £, have rank k£ + 1 and are called Schwarzenberger bundles,
because for n = 2 they were first introduced by Schwarzenberger in [5].

Into the product PV, x PV, the projective bundle PE),, is defined by the
equations

i=k+1
ATZ = Z Yi%ivj = 0
=0 =0, n—k—1

where Z = (zo,...,zn)T are the global sections of E,. The multiplication of
homogeneous polynomials in two variables induces also the following exact se-
quence on P(V)Y), where V¥ means the dual vector space

M
(®) Vi1 ® Opy (=1 — Vkv+1 @ Opyy — F — 0.

Here M is the (k + 2) x (n — k) matrix

20 21 22 T Bp—k-1
zl 2’2 e .. z'ﬂ—k
2
M= z
Zp—1
Bk+1 -0t Rp—1 Zn

The support of coherent sheaf F is the variety X, of k-planes (k + 1)-secant to
the rational normal curve defined by the 2 x 2 minors of the matrix M ([2],
proposition 9.7 p. 103). The blowing up of X, along X (defined by the sub-
minors of M) is embedded in PV} x PV, by the same equation as before,

i=k+1
E Yi%iyj = 0
=0 =0, n—k—1
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(see for instance, [3], corollary 4.4 and theorem 4.9). For this reason the bundle
E,, is sometimes called secant bundle. In fact its fibers are identified by this way
to the k-planes (k + 1)-secant to the underlying rational normal curve. This point
will be crucial to prove the next proposition.

3.2 — Zero locus of a section.

First, let us fix some notations.

We call Cy € P(Vy) the rational normal curve of degree N > 1, image of
P(V1) by the Veronese embedding. We will say that a hyperplane H osculates the
rational normal curve Cy when H N Cy is supported by one single point. In the
dual projective space P(Vy,) = Py, we denote by C4 the rational normal curve of
the osculating planes to Cy. When « is a point of P(Vy) (resp. of ]P(VX,)) we will
denote by H, the corresponding hyperplane in °(Vy) (resp. in P(Vy)). We recall
that a general point in P(Vy) is uniquely defined by the intersection of N os-
culating hyperplanes to Cy (it is the classical polarity related to a rational normal
curve).

DEFINITION 3.1. — Let s € HY(E,) =V, be a non zero section. It corre-
sponds to a hyperplane Hy C P(V,), so it gives an effective divisor H; N C,, of
degree n on the rational curve Cy. By the canonical Veronese isomorphism
P(Vy) =2 C), =2 Cyy1 we obtain an unique divisor of degree n on Cy.1. The n
osculating planes in these points give a divisor on C5. We denote this last
dwisor by D,(s) and call it the divisor corresponding to s.

Let us describe now the zero locus Z(s) C PV}, geometrically.

PROPOSITION 3.2. — Let s € H(E,) be a non zero section and D, (s) be the
corresponding effective divisor of degree n on C}°¢,. Then,

a € Z(s) & H, N CPY C Dy(s).

REMARK 3.3. — In particular when D, (s) is smooth (that is D, (s) consists in n

distinct osculating hyperplanes to C, 1) the section s vanishes along (k _T: 1)

points in P"*1 which are the intersection points of (k + 1) osculating hyperplanes

of Cy,1 chosen among the previous 7 points of D,,(s).

ProoOF. — The section s

S
Hom(E,, Opy,,,) = E;, — Opy,,, — Oy — 0
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induces a rational map P(V}1) — P(E)) which is not defined over the zero-
scheme Z(s). To describe Z(s) we will give explicitely the locus of indetermination
of this map.

Let us consider the canonical projection = : P(E,) — P(Vi,1).
Over a point a € P(V}, 1) the fiber is

1=k+1
7 Ha) = {( > aiziy = 0) } = P(E,(a)) = Pk,
i=0 7=0,....n—k—1

which can be thought as a P* (k + 1)-secant to Cy.

Let H; be the hyperplane in P(V,,) corresponding to s. The rational map in-
duced by the section s:P(Viy;) — P(E)) sends a point a € P(Vj;1) on
H, N 1(a) which is, in general, a space PE1 in P(E,(a)), that is a point in the
dual space P(&} (a)). This map is not defined when nYa) C Hy. The hyperplane
H cuts the rational curve C,, along an effective divisor D of degree n. When this

divisor is smooth, it contains (lc :l_ 1) subschemes of length (k + 1); they gen-

erate the k-planes (k+ 1) secant to C, which are contained in H,. Since
PVy >~ Gy ~ C7 it s clear that D corresponds to a degree n divisor on C7%. We
will denote it by D,,(s).

Since the fiber 77 1(a) is a k-plane (k + 1)-secant to C,, the zero-scheme Z(s) is
the set of points a € P(Vj1) such that the divisor H, N ) of degree (k+ 1)
belongs to D,,(s). When D,,(s) is smooth, we get » osculating hyperplanes of Cj 4
in P(Vi,1). Every subset of (k+ 1) osculating hyperplanes gives a point in
P(Vi,1). These points are the zero-scheme of the section s. O

3.3 — Poncelet varieties.

The group SL(2, C) acts on Gr(k,n) and we have an equivariant morphism
Gk, n) — P(A*1V,). The SL(2)—modules A\*V, and S¥1V,_, are iso-
morphic (see [1], p. 160). Moreover by Hermite reciprocity formula (see [1],
p. 82 and p. 160), we have S**1V,_, =~ S"*V,.;. So the Plucker embedding
becomes

(6) T: Gr(k,m) — PS" *Vi,1).

It associates to 4 = (fp, ..., fi) the hypersurface of degree n — k in PV}, with
equation fy A ... A f; = 0. Since from (4)

HO(EW) = HO(O;pl (n));
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with abuse of notation, we consider f; as section of £,,. We summarize these facts
in the following commutative diagram:

(7) A ® 0pk+1 p— A ® OPIH—I

! !

0 —— Vi1 @ Oprsa (—1) — V,®Oprt1 —— E, — 0

-| l /lz

0 —— V_p1 ® OP}H»I(—:L) —_— ‘/;L/A® Oprs1 ——
where the support of the sheaf £ is given by fo A ... Af;, =0.

DEFINITION 3.4. — The varieties defined as determinant of (k + 1) sections of
Schwarzenberger bundles on P**! are called Poncelet varieties of dimension k.
These varieties have degree c1(E,) = n — k.

We point out that a section of £, corresponds to » points on the rational

normal curve Cj,1, and it vanishes along ( ) points in P! which are

k+1

the intersection points of (kK + 1) osculating hyperplanes of Cy,; in k+1
points chosen among the previous n points. Hence these varieties are
characterized by the nice following geometric fact: they contain the vertices
of polytopes with (k + 1)-dimensional faces osculating Cj,;. The case of
curves is well-known since Darboux, but in higher dimension quite nothing
exists in literature.

PROPOSITION 3.5. — Let A be a linear system in Gr(k,n) with d base points.
Then T(A) is the union of d osculating hyperplanes to Ci.1 C PV and is a
degree (n — k — d) Poncelet variety of dimension k.

REMARK 3.6. — In particular when A is a pencil, a base point corresponds to a
linear syzygy. The morphism 7' sends X; ; 4 on the locus of Poncelet curves which
are union of a Poncelet curve of degree d — 1 with n — d tangent lines to Cs.

PRrROOF. — In the case of curves it is proved by Trautmann (see proposition 1.11
of [6]). In general assume that 4 has d < » base points and let f = 0 be one
equation for this base locus. Then we have a factorization

0 L opm - a) L 0um).
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The first arrow gives the following vector bundle map
4
0— 01[6;5}“1) L’ n—d — K — 07

where K is supported on a Poncelet variety of degree n — k — d. The second
arrow gives

0— Eyq — E, — @, O, — 0

where H; is the osculating hyperplane to Cj.,; which corresponds to a base point
on C;/ ;. Now the result follows from the following commutative diagram

O]P)k+1 O]pk-+1

g ‘|

0 —— En—d _— En - @ii:lOHy — 0

| l -|

0 — K — L —— &L,0g — 0,

where £ is a sheaf supported by the Poncelet variety corresponding to 4. [

The following examples are done as suggested by the commutative diagram

in ((7)).

EXAMPLE 3.7. — In Gr(2,4), X512 = Gr(2,4) and codim X577 = 1.

a) The net A= (u* u?v? v') € Xp12\ X211 corresponds to the smooth
Poncelet quadric

r X
det ™' ™3 ) = w0 — woxs = 0.
Lo X2

b) The net 4 = (u*,u3v,v*) € X211 has associated Poncelet cone

X2
det( "2 ™) =22 — 225 = 0.
X1 X2

EXAMPLE 3.8. — The net 4 = (u?v,ur?,v*) has a base point, its associated
Poncelet quadric is

Xo X2\ .
det( 0 x1> =219 = 0.

This quadric consists in two planes, one of which osculating the rational normal
curve Cs.
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THEOREM 3.9. — The Poncelet variety associated to any element of X 11 is
singular. Moreover the Poncelet variety associated to a general element of X, 11

contains "
k

1\ .. L . -1 . . )
) lines and is singular in the (Z n 1) vertices of this config-

wration.

Proor. — Let 4 have a syzygy of degree one: we can say that
A= {ufvf, fo,..., fx), where f € V,,_;. The curve I' in P! defined by the
determinant of the two sections uf,vf of £, is obtained as follows.

The pencil (uf,vf) defines n — 1 fixed points and a moving point p on the
rational normal curve C¢*,. Therefore, the curve I”in P consists in (";1) lines.
They are the lines of k-planes in P**V" passing through p and each subset of &
points chosen among the fixed ones.

Each (k + 1)-uple of points on C7%¢;, chosen among the (n — 1) fixed one, gives
apoint on I C P**Y_ Tt is the intersection point of (k + 1) lines corresponding to
each choice of k points among the (k + 1). Since the (k + 1) points are distinct on
the rational normal curve C7%¢;, the P! generated by each choice of k points do
not have a common point, dually, the configuration of lines is not contained in an
hyperplane. Then, since the hypersurface defined by A contains the curve I, it

. e -1 . ! . .
has singularities in the (Z n 1) vertices of the configuration of lines I". O

EXAMPLE 3.10. — The net A= (u®+2°, u® —utv+udv? —u?v® +ur?t, u® —0°)
has a syzygy of degree 1. It corresponds to the Poncelet cubic surface

X1+ X2 X+ a3 X3
det | wo+ax1 ®1+a2 ag+az | =0.
Lo X1+ %o X1+ X2

This surface has four singular points, which is the maximum number of ordinary
double points. Thus it is a Cayley cubic.

It could be interesting to explore the link between the sygyzies of higher
degrees and the singularities of the associated Poncelet varieties.
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