BOLLETTINO UNIONE MATEMATICA ITALIANA

László Zsilinszky

Corrigendum to "On Baireness of the Wijsman Hyperspace"

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 2 (2009), n.3, p. 575–577.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2009_9_2_3_575_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Corrigendum to "On Baireness of the Wijsman Hyperspace"

László Zsilinszky

The last result in [1] (Example 2.5) states the following:

EXAMPLE. -- There exists a separable 1st category metric space with a Baire Wijsman (ball proximal, ball, resp.) hyperspace.

Unfortunately, the construction presented in [1] does not guarantee a key step in the proof; namely, for the u' chosen, one cannot conclude that p(u) = p(u'). It is the purpose of this note to fill this gap and provide a correct proof.

Recall some notation and terminology from [1]: b_d stands for the *ball to-pology* on the hyperspace CL(X) of nonempty closed subsets of a metric space (X,d) having subbasic elements of the form $V^- = \{A \in CL(X) : A \cap V \neq \emptyset\}$ for some open $\emptyset \neq V \subseteq X$, and of the form $(X \setminus B)^+ = \{A \in CL(X) : A \cap B = \emptyset\}$, where B is a closed ball in X. Denote by S(x,r) the open ball about $x \in X$ of radius r, and by B(X) the collection of finite unions of closed X-balls. The Wijsman topology on CL(X) is the weak topology generated by the distance functionals $d(x,A) = \inf\{d(x,a) : a \in A\}$ viewed as functionals of the set argument $A \in CL(X)$. It is shown in [1], that the Wijsman hyperspace is a Baire space iff the ball topology is iff the *ball proximal* (see [1]) topology is.

PROOF OF THE EXAMPLE. – Consider ω^{ω} with the Baire metric

$$e(x, y) = 1/\min\{n + 1 : x(n) \neq y(n)\},\$$

and its 1st category subset $\omega^{<\omega}$ of sequences eventually equal to zero. Then the product $X = \omega^{<\omega} \times \omega^{\omega}$ is a separable, 1st category space endowed with the metric $d((x_0, x_1), (y_0, y_1)) = \max\{e(x_0, y_0), e(x_1, y_1)\}.$

We claim that $(CL(X),b_d)$ is a Baire space: let $p_1:X\to\omega^{<\omega}$ (resp. $p_2:X\to\omega^\omega$) be the projection onto the first (resp. second) axis. Let $\mathscr{G}_1\supset\mathscr{G}_2\supset\dots$ be dense open sets in $(CL(X),b_d)$, and $\mathscr{U}_0\in b_d$. For $i\geq 1$, inductively define a nonempty finite set $F_i\subset X,\ m_i\geq i+1$, and an increasing sequence $B_i\in B(X)$ such that $\left\{S\left(u,\frac{1}{m_i}\right)\colon u\in F_i\right\}$ is pairwise disjoint with a

union missing B_i , and

$$\mathscr{U}_i = (X \setminus B_i)^+ \cap \bigcap_{u \in F_i} S\left(u, \frac{1}{m_i}\right)^- \subseteq \mathscr{G}_i \cap \mathscr{U}_{i-1},$$

moreover, for each $u \in F_i$ there is $u^* \in F_{i+1}$ with $p_1(u) = p_1(u^*)$ and $d(u, u^*) < \frac{1}{i+1}$.

We can clearly find \mathcal{U}_1 and $F_1 \in \mathcal{U}_1$, defined as above, such that $\mathcal{U}_1 \subseteq \mathcal{G}_1 \cap \mathcal{U}_0$. Suppose that F_i, m_i, B_i , and thus, $\mathcal{U}_i \in b_d$ have been defined for some $i \geq 1$. Since \mathcal{G}_{i+1} is dense, we can find a finite set A, a $B_{i+1} \in B(X)$ with $B_{i+1} \supseteq B_i$, and a collection $\{V_a : a \in A\}$ of pairwise disjoint open X-balls such that

$$A \in \mathscr{V} = (X \setminus B_{i+1})^+ \cap \bigcap_{a \in A} V_a^- \subset \mathscr{G}_{i+1} \cap \mathscr{U}_i.$$

Without loss of generality, assume that B_{i+1} is the union of the finite pairwise disjoint collection $\left\{S\left(b_j,\frac{1}{n_j}\right):j\in J\right\}$ of clopen X-balls (remember that, since d is an ultrametric, any two d-balls either are disjoint, or one of them is included in the other).

Pick $u \in F_i$, and $a \in S\left(u, \frac{1}{m_i}\right) \setminus B_{i+1}$. If $u \notin B_{i+1}$, choose $u^* = u$. If $u \in S\left(b_{j_0}, \frac{1}{n_{j_0}}\right)$ for some $j_0 \in J$, and $n_{j_0} \leq m_i$, then $a \in S\left(b_{j_0}, \frac{1}{n_{j_0}}\right) \subseteq B_{i+1}$, which is impossible, so $n_{j_0} > m_i$. Choose some $k \in \omega \setminus \{p_2(b_j)(m_i) : j \in J\}$, and notice that such a k is also different from $p_2(u)(m_i)$, as $u \in S\left(b_{j_0}, \frac{1}{n_{j_0}}\right)$ and $n_{j_0} > m_i$ imply that $p_2(u)(m_i) = p_2(b_{j_0})(m_i)$. Let $u_2 \in \omega^\omega$ be such that

$$u_2(s) = \begin{cases} p_2(u)(s), & \text{if } s \neq m_i, \\ k, & \text{if } s = m_i. \end{cases}$$

Then for $u^* = (p_1(u), u_2)$ we have $p_1(u^*) = p_1(u)$, and $d(u, u^*) = \frac{1}{m_i + 1} < \frac{1}{i + 1}$. Moreover, $u^* \notin B_{i+1}$: indeed, take any $j \in J$, and assume first that $n_j \leq m_i$. Then $j \neq j_0$ (as $n_{j_0} > m_i$), therefore from $u \notin S\left(b_j, \frac{1}{n_j}\right)$ (recall that $\left\{S\left(b_j, \frac{1}{n_j}\right) \colon j \in J\right\}$ is pairwise disjoint and $u \in S\left(b_{j_0}, \frac{1}{n_{j_0}}\right)$) we deduce that for some $s < n_j \leq m_i$

either
$$p_1(u^*)(s) = p_1(u)(s) \neq p_1(b_i)(s)$$
 or $p_2(u^*)(s) = p_2(u)(s) \neq p_2(b_i)(s)$,

П

hence in both cases, $d(u^*,b_j) \ge \frac{1}{s+1} \ge \frac{1}{n_j}$, i.e. $u^* \notin S\left(b_j,\frac{1}{n_j}\right)$. If, on the other side, $n_j > m_i$, then from $p_2(u^*)(m_i) = k \ne p_2(b_i)(m_i)$ we deduce that

$$d(u^*, b_j) \ge e(p_2(u^*), p_2(b_j)) \ge \frac{1}{m_i + 1} \ge \frac{1}{n_i},$$

hence again, $u^* \notin S\left(b_j, \frac{1}{n_j}\right)$.

Define $F_{i+1} = A \cup \{u^* : u \in F_i\}$, and choose $m_{i+1} \ge i+2$ so that

$$\mathscr{U}_{i+1} = (X \setminus B_{i+1})^+ \cap \bigcap_{u \in F_{i+1}} S\left(u, \frac{1}{m_{i+1}}\right)^- \subseteq \mathscr{V}.$$

Now, the sequence $u, u^\star, u^{\star\star}, \ldots$ is a Cauchy sequence in $\{p_1(u)\} \times \omega^\omega$; hence, it converges to some $u^\infty \in S\left(u, \frac{1}{m_i}\right)$. Because the B_i 's are disjoint from the $S\left(u, \frac{1}{m_i}\right)$'s, the set $\left\{u^\infty : u \in \bigcup_{n \geq 1} F_n\right\}$ misses the clopen B_i for each $i \geq 1$. Then

$$\emptyset \neq \overline{\{u^{\infty}: u \in \bigcup_{n \geq 1} F_n\}} \in \bigcap_{n \geq 1} \mathcal{U}_n \subseteq \mathcal{U}_0 \cap \bigcap_{n \geq 1} \mathcal{G}_n;$$

thus, $(CL(X), b_d)$ is a Baire space.

Acknowledgement. The author is grateful for the referee's suggestions which made the proof more transparent and easier to read.

REFERENCES

[1] L. ZSILINSZKY, On Baireness of the Wijsman Hyperspace, Bollettino U.M.I. (8) 10-B (2007), 1071-1079.

Department of Mathematics and Computer Science, University of North Carolina at Pembroke, Pembroke, NC 28372, USA e-mail: laszlo@uncp.edu