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Bollettino U. M. 1.
(9) II (2009), 559-574

Singular Dirichlet Problems with Quadratic Gradient

PEDRO J. MARTINEZ-APARICIO (¥)

Abstract. — We study the existence of solution for nonlinear elliptic problems with sin-
gular lower order terms that have natural growth with respect to the gradient.

1. — Introduction.

In the framework of quasilinear elliptic equations with quadratic growth, we
are concerned about the existence of solutions for the boundary value problem

@) —dwuwaUVuy+99!%;ﬁY%:fm) in ©Q,

u=0 on 09,

where Q is an open, bounded subset of RY (N > 3), 0 <f e L"™Q) with
2N
>
"Nz
Carathéodory i.e. are measurable with respect to x and continuous with respect
to s. We suppose also that M(x, s) is elliptic and bounded, i.e. that there exist
positive constants a, § such that

,f£0in Q, M(x,s) and Q(x,s) are matrices which coefficients are

(1.2) alél? < Mz, 8)¢ - &,

IM(x,9)| <f, Ys,6)eRxRY, ae xeQ,
and Q(x, s) is symmetric, such that, for some a,b > 0 we have
(1.3) alél® < Q, )& < bl

There is a huge literature (see [6, 8] and the references given there) about the
problems with quadratic term in the gradient which is called natural growth. The
classical works do not consider a singularity in the lower order term.

We are interested in finding solutions of boundary value problems with lower

(*) Supported by D.G.E.S. Ministerio de Educacién y Ciencia (Spain) MTM2006-09282
and Junta de Andalucia FQM116.
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order term having quadratic dependence on the gradient and singular depen-
dence on u. As far as we know, it is studied for the first time in [2] the existence of
positive solution for the model problem

Vul®

—adu + f inQ

(14)
u=20 on 02,

for a datum f € L*>°(2) which is strictly positive on every compact subset of Q.
We have to mention that uniqueness of solutions for (1.4) is proved in [3].

Recently, the existence of positive solutions of the more general problem (1.1)
is proved in [4] for data 0 # f € L"™(Q) for some m > 2N /(N + 2) with f > 0 and
a > 2b. A different but related equation with a singularity in the lower order
term is also studied in [10].

In this work, the result in [4] is improved by extending the existence to the
case a > b. Specifically, we prove the following result.

2
THEOREM 1.1. — Let 0 < f € L"™(Q) for some m > Ni\—72 with f # 01in Q and

assume that (1.2), (1.3) and a > b hold. Then there exists u € H(l)(Q), u>01in Q,

with w e LXQ), weak solution of the singular-quadratic Dirichlet

problem (1.1).

The proof of Theorem 1.1 is given in Section 2. Its idea consists in approx-
imating the problem (1.1) by a sequence of nonsingular problems (P,). We em-
phasize that the lower order term blows up as u,(x) is converging to zero and
# = 01in 0. This is the reason why it is not possible to apply the ideas of [6, 8] to
show the strong convergence of Vu,, in L%(Q2) (and thus the strong convergence
of the approximated solutions u,, in H (1)(!2) to a solution of (1.1)). The main point is
to establish that u,, are uniformly away from zero in every compact set in Q (see
Proposition 2.1). To prove this fact it is required that a > b. This improves the
argument in [4] where the author only proves that the limit of u, is strictly
positive in Q. In contrast with the proof of [4] which requieres that a > 2b to pass
to the limit, this improvement allows us to prove the convergence of the ap-
proximated solutions to a solution of (1.1).

Section 3 is devoted to study a more general lower order term. Specifically,
we consider the more general quasilinear Dirichlet problem

(15) { —div (M (x, uw)Vu) + g(e, w)Q@, u)VuVu = f(x) in Q,
’ u=0 on 09,

where ¢ : 2 x (0, + co) — R is a Carathéodory function. It is usual to require
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that g to satisfy the so-called “sign condition”
(1.6) glx,s)s >0, Vs>0.

1 . i . .
Observe that Theorem 1.1 covers the case g(x,s) = > which verifies this condi-

tion. Indeed, using the same arguments of Theorem 1.1 it is easy to extend it to
the case of a general nonlinear term g satisfying the sign condition. Even more,
combining these ideas with those in [1], we prove the existence of solution pro-
vided that, roughly speaking, ¢ is between a positive hyperbola and a negative
hyperbola near to 0 (see hypothesis (3.1) in Section 3).

2. — Proof of the existence result.

Let us denote by #™ = max{u,0}, v~ = min{u, 0} and for k > 0, we will use
the symbols T} and G}, to denote the real functions given by

k, s>k,
Ty(s) .= s, —k<s<k, and Gp(s) :=s—Ti(s), seR.
-k, s< -k,

Proor oF THEOREM 1.1. — Consider the boundary value problems

—div (M (x, wn) V) + L”Q(x, Un)Vu, Vi, = f  in Q,
2.1) Uy +5)

Uy =0 on 02,

2
where f,, = T,(f). Since f € L™(Q) with m > N—ZJ\:Z, then the sequence f,, con-

verges to f in L™(Q). In addition, note that 0 < f,, <f. By applying [14] there
exists a solution u, of (2.1) that belongs to H 3([2) and to L>®(Q) (see [15]).

Taking u,, as test function in (2.1) and using Hélder and Sobolev inequalities
leads to

Vu,V
UnQ@, )Vt Dty < SIFI g

fM(x,un)VunVun +f
Q Q

By the ellipticity condition (1.2) and the positivity of the lower order term, it may
be concluded that the sequence u,, is bounded in H(l)(Q). In fact, up to a sub-
sequence, u, — u for some u € H(l)(Q).

Taking u,, = min{u,,0} as test function in (2.1) we obtain

U Q(, Up) Vly Vi
(w, + 1)

U, = ﬁlun'
Q

fM(m, uy)|Vu,, |2 +
2 o)
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From (1.2), the positivity of the lower order term and of f,,, it follows that

af [V < [ <0
Q

which establishes that u,, > 0.
Now, we are in a position to show that u, are uniformly away from zero in
every compact set in Q.

with f # 0 and

assume that (1.2) and (1.3) hold. If u, is a solution of (2.1), then for every
Q) CC Q there exists a constant cq, > 0 such that

2N
PROPOSITION 2.1. — Let 0 < f € L™(Q) for some m > N2

Up(X) > co,, ae. x €.

PROOF. — Let ¢ € C3°(2), ¢ > 0, take (as in [4]) % as test function in
(2.1) to obtain (wy +1)e

[me, Wy Vd— [# _°
Q

b b
(U, + %)“ ) (U + %)“

b Uy QC, Up)) VU, Vi,
=2 [ MG,w,)v0, V0, ¢1 | < iy
¢ ) (U + %)a ) (U, + %)a
Use (1.2) and (1.3) to get
b M.V, Vi, ¢ [ Qs )Vt Vit 550
’ 142+1 1y2+2
o e} (uy, + ﬁ)" e} Uy, + ﬁ)"

and consequently

¢
(2.2) fM(%‘ un)vunv¢( b+ )a fon (un#r%)g.

We fix L > 0 such that the Lebesgue measure of the level set {x € Q : u(x) = L}
is zero. (Observe that the values L for which this property is false is at most
countable). Thus, thanks to the choice of L, and since u,,(x) — u(x) a.e. x € Q, it
follows that y;, <1, — Zu<z) a-e. © € Q. Therefore, we have

fM(W Un)Vy Vo —-— b —fX{un<L}f
on + 17 S
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S
We consider also P,(s) = [ o1 )b dt and w,(x) = P, (u,(x)). Therefore we can
0o (t+ n g
rewrite the previous inequality in the form

!M(%,Mn)vwnvgb Z!X{uﬂ<[,}fl s ji 1)2

The comparison principle in H}(€2) implies that w,(x) > z,(x), where z, € H}(<2)
is the bounded weak solution of

X{w,<L}

(2.3) —div (M (x, u,,)V2y,) = - fi
(L + 1)

It is easy to see that z, converges strongly in H}(Q) to 2, the solution of

—div (M (e, u)V2) = L=D g
L +1)

2 € H(Q).

The strong maximum principle for weak solutions (see [11]) implies z > 0 in Q
(recall that f > 0 and f # 0 in 2 and so also f).

We claim that the sequence z, is equi-continuous in Q. Indeed, by using
T (Gi(2y)), with m > k, as test function in (2.3), it is easy to see that z,, € L>°(Q)
(for classical lines we refer the reader to [15]). The main idea of the proof is to
take { € C*(Q) with 0 < {(x) < 1 (this construction is adapted from the proof of
Theorem 1.1 of Chapter 4 in [12]), for every x € 2 and compact support in a ball
B, of radius p > 0. Let us denote by A;, = {x € B,NQ:z,(x) > k}. Choose
$= Cz G(zy) as test function in (2.3), and we consider ¢ > N /2 to conclude from
(1.2) and Holder’s inequality that

f q Zn 00 _1
af VP2 < 1Al ool UL @4, 1! ”+2/’)f V2l VECGaten).
Ar,p (L +1y Ay,

Here, to set a bound for the second term, we use Young’s inequality and we have

110l oo 120l 4
flvzn|2C2 < L1(Q) nQL (Q) |Ak,p|1 "+a—/2))f|VC|2Gi(Zn)
Ak‘/? a(L + 1)’1 Ak./)

Now, if we take the function { such that it is constantly equal to 1 in the ball B,_,
of radius p — gp, where ¢ € (0,1) that is concentric with the ball B, in such a way

that |V{| < —, we obtain
ap

1 _1

112_7 o N A, \"n — kpl )

Vaul” < 9| 14— 5y maxa, @ k)2 | |Ay, '
oepT

Ayp—0op
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2 Znll7 45 1 . .
||fl||Lq(Q:1 20l 10 70[5@3\,} with wy denoting the measure of

the unit ball of RY. This means that for 6 > 0 small enough the function z, be-

1
’E) with 2q > N (see [12], pag. 81).
Therefore, applying Theorem 6.1 of [12] we obtain our claim.

where y = max {

longs to the De Giorgi class B (Q,M )7, 0

Hence, since the sequence {z,} is equi-bounded and equi-continuous, by the
Ascoli-Arzeld Theorem, C*(Qy) is compactly embedded into C(Q,) for every
Q) CcC Q, we deduce that the sequence {z, } has a subsequence (supposed to be
itself) that converges uniformly to some z in C(Q). Thanks to that z is continuous
and z > 0 in @, given Qy CC Q there exists lg, > 0 such that z > lg, > 0 for
x € Qp . This clearly forces

1
Wy, > 5 lo,, Yx e, Yn>>0.
S

Observe that the assumption a > b implies that P(s) = [ tlgdt is well-defined.
0 a

Since the real functions P, (s) and P(s) are strictly increasing and P,, < P, then
P,' > P! and we get that

1 1
Uy > P;l <§lgo> > P! (élﬂo) i=cg, >0, V& CCL.
O

Let us prove that, up to a subsequence, the sequence {u,} converges to a
positive solution of (1.1). We divide the rest of the proof in three steps.

STEP 1. For every ¢ € C3°() with ¢ > 0,

(2.4) Jim [ V() — T)Pe =0, k> 0.
Q

STEP 2. For every Qy CC Q, {u,} converges in H'(Qp) to u.

STEP 3. u is a solution of (1.1).

STEP 1. Consider 0 < ¢ € C3°(22) and Q) CC  such that supp¢ C !220. Given
k ) . We will

acq,

denote by &(n) any quantity that tends to 0 as »n diverges. Following [7], take

0,(Tk(uy) — Tr(w))¢ as test function in (2.1) to obtain

k > 0, we define ¢,(s) = sei"”z, where the positive constant 4 > <
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[ M@,V VT — T (T — T
Q

[ M)V, - T 0, (Tytan) — Ty
2.5) ¢

+f UnQ(, Up) Vdy Vi,

2
o) (u" + %)

- f £ 0, (T — Tr(w))g.
Q

0, (T (un) — Tr(w)$

By Proposition 2.1 and (1.3), we derive that

Qa, un)VuanW < b|Vun|27 Vi € Q.
Uy, + n CQO

2.6)

565

We get from this inequality, and by the positivity of both terms

UnQ@, Un) Vtr Vi,
(s +3)*

n

and ¢,(k — Tr(u)), that

Un QX )V, Vi,
1\2
Q (4 +3)
_ f Un Q, Un) Vi, Vi,
- 2
{(un<k} (2 + )
UnQ(, Up) Ve, Vi,

0, (Ti(un) — Tr(w))g

0, (T (un) — Tr(w))$

+ 0(T(at,) — Ty
{unzk} (un + %)2
bk
> =2 [ VT PloTitaw,) — T
CQ, 5

Since Ty (uy,) — Tj(u) weakly in H}(2) and strongly in L2(Q), it follows that

[ fo0Titan) = T — [ M, 0,0V, V&0, (Ttu) — Tyaw) = en),
2 2
and as a consequence of the above inequality and (2.5), we have

f M, un)Vun - V(Ti(un) — T (Th(un) — Tr(u))g

(2.7) 9_ ok

2

IV T ) P9, (Thett) — Tr())|$ < e(n).
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Note that

[ MG 1)V, I T0) = Tl (Tetw) = Tz,
Q
= —fM(oau%)Vun VT, (k — Tk(u))@({unzk} = ¢(n).

Q

Adding the quantity

- f M, u)VT(w) - V(Ti(wn) — T (Tr ) — Tr(u))g = e(n)
Q

in both sides of (2.7), since

[ TPl (T — Tl

Q

< 2 [V(@u) = TPl Titawn) — Tl
Q

2 [ [VTL0)Plp,(Tytaw,) — Ti)lg
Q

=2 f V(T () — Th) 0, (TiCn) — Te(u))|g + e(n),
Q

2
> shows that a¢’,(s) — 2 Cb—k lp, ()] > %, we obtain

Q

using (1.2) and that 1 > < bk
acQ,

o 19Tk — T P6 < [ IV(Tyau) — TP [ag) (Tt — Tew)
Q Q

bk
2 |, (Ti(u) — Tyl | < o)
CQ,
which establishes that (2.4) holds.

STEP 2. Let us choose Gy (u,,) as test function in (2.1) to obtain
Un Q0 ) Vit Vi,
2
(un +1)

Using that the term that involves the lower order term is positive (see (1.3)) and
taking into account (1.2), and Hdélder and Sobolev inequalities, we have

1+%
) S a)
(28) Qf Ve <5 ([ )

{uy >k}

]M(oc,un)VunVGk(un) +f Gk(un) :fﬁ7Gk(un)
Q Q Q
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Since meas({x € Q : u,, > k}) converges to zero, uniformly with respect to n,
when k goes to +oo we obtain that the last integral in the above inequality tends
to zero as k goes to +oo. Therefore, for all ¢ > 0 there exists k such that

DO ™

f |VGIC0 (un) ‘2 >
Q

Taking into account that T}, (u,) is strongly compact in H} (), it follows that
Vu,, is equiintegrable in (Lloc(.Q))N . Hence, by Vitali theorem

(2.9) wy, —u  in Hy (Q).

STEP 3. The procedure is to pass to the limit in the equation satisfied by the
approximated solutions u,, i.e., in

v [ ”"Q‘”E “ﬁvi‘"w”qs [#4. weecr@.
Un T3,

First of all, the weak convergence of u, to # and the x-weak convergence of
M(x,uy) to M(x,u) in L>(Q) implies that

Jim [ M@, )V, v = f M, u)Vuve, Vé e CX(Q).
Q Q

On the other hand, if we fix 2y, CC Q and we consider £’ CC Q,, we deduce, using
(2.6), that

fu%Q(ac, U)V Uy Vg,
2
7 (24 +7)
UnQ(, Uy) Vly Vil N U Q(, U) Vg Vil

_E'm{ungk} (2 + %)2 En{u, >k} (et + %)2

(2.10)

b n 9 v v n

T c 1\2
2 Bfu,<k} {un >k} (2 +3)

Let ¢ > 0 be fixed. Observe that if, for £ > 1, we use T1(Gj_1(u,,)) as test function
in (2.1) and drop positive terms, it follows that

funQ(% un)VunVun f £ < f 2

{un>k} (un + {un>k 1} {un>k—1}

Thus, since the right hand side tends to 0 uniformly in » as k diverges, we obtain
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the existence of ky > 1 such that

N2 é, VI{JZIC()7 Vn € N.
(un >k} (4 +3)

IN

f U Q(, Up) Vly Vi, 9

Moreover, since T}, (u,,) is strongly compact in H;..(£2), there exist n;, J, such that

for every £ CC Q with meas (F) < J, we have

loc

|VTk0(un)| 220 s Y > n,.
Eﬂ{ungko}

In conclusion, by (2.10), taking k > ky we see that meas (F) < J, implies

fu%Q(x, )V, Vb,
2
g (wt3)

Uy, QU Uy ) VU, Vi,
2

<eg  Vn 2> mn,

i.e., the sequence

is equiintegrable. This, together with its

(v +3)
a.e. convergence to w, implies by Vitali theorem that
lim U, Q(e, un)Vu;Vun Qe, u)VuVu s,
n—+00 e (un 4 1) u

It follows that, passing to the limit as »n goes to infinity in the equation satisfied
by u,, we deduce that

f Qx, w)VuVu
U

[ M@ wvuve + o=[re wecr@.
Q Q Q

ie. u € H)(Q) is a solution of

—div (M (e, u)Vu) +

Q(x,u;VuVu: f e

O

REMARK 2.2. — Using v = T\ (u,)/k as test function in (2.1), taking into ac-
count that f;, < f in Q, we have

T () n QC, )Vt Ve, Tk(uw)unQ(ac un)Vun Vi, f 7
oy © (10 +3)° (e + -

If we take the limit as k tends to zero, and we use that u,, > 0 in Q, we get

U Qx, Un) VU, Vi, Uy Q(e, un)vunvun
= < | f@).
g[ (s +2)° {u,[O} (e + 3 f
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By applying Fatou lemma in the above inequality it follows that
Qx, u)VuVu
- <
f U _j f@).
2 Q

REMARK 2.3. — Now, we analyse the role of the parameter a > 0. For this,
consider the model problem (1.4) and the function

a

a 5
h(s) = a—1’
log (s), a=1.

a#1,

Making the change of variables w(x) = h(u(x)), it is proved in Section 5.1 of [4]
that u satisfies the differential equation in (1.4) if and only if w is a solution of
—Aw = f(x)g,(w) in 2, where

1(la—1] —|w
gw)=< a\ «a

m? (l# 17
e v, a=1.

Observe that in the case a > 1, the boundary condition in (1.4) means that w = 0
on 0. Therefore (1.4) is equivalent to the b.v.p.

w>0 in Q,
1
1 — D\ 1
— 4w :f(m)_ ((a )> 1 in Qa
a a waT
w =0, on 09,

which has been studied at least with bounded f (see [9] and [13]). Remark ex-
plicitly that from this point of view the assumption a > 2 (observe that the hy-
pothesis a > 2 is crucial for the existence result in [4]) implies that the above
problem can be seen as the Euler-Lagrange equation of the coercive functional

J@) ::é Il |va|2§<$>”ff<x>ﬁ, F@) > 0.
Q Q

However, if 1 < a < 2 (remind that Theorem 1.1 handle this case) J(v) is not well-
defined in H}(Q).

We also point out that if a < 1, formally the boundary condition becomes

¢ luat_?(x) = w(x) — — oo as dist(x, 02) — 0. This explains that the nature of

problem (1.4) changes depending whether a > 1 or a < 1.
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3. — A more general lower order term without sign condition.

In this section, combining the above ideas with those in [1], we extend
Theorem 1.1 to cover the general problem (1.5) with a nonlinearity g which can be
negative or changing of sign. Specifically, we assume that the function g(x, s)
verifies

(3.1) —u/s < glx,s) < h(s), Vs>0, ae xeQ,

where £ : (0, +00) — (0, +00) is a function such that si(s) is increasing an

: 7§ft h(r)dr
(3.2) lim [ et

s—0+

dt < + o0

and u > 0. Since sh(s) may be every nondecreasing function, we remark that no
condition on the growth of g(x,s) as s tends to infinity is imposed. Notice that
(3.2) is a condition about the behavior of & near to 0. Consequently, if we take

1
h(s) = p then (3.2) holds if and only if y < 1 or if y = 1 and a > b. Therefore, if

we assume that g(x,s) is bounded in Q x [¢, M] for every M > ¢ > 0, then a
simple example in which (3.1) and (3.2) are satisfied is that, for B > 0 and a > Rb,
the condition

R
—g <glx,s) < s for s in a neighborhood of 0 a.e. x € Q,

holds. We are thus led to the following strengthening of Theorem 1.1.

2N . )
THEOREM 3.1. — Let 0 < f € L"™(Q) for some m > Nio with f £ 0in Q and

assume that (1.2), (1.3), (3.1) and (3.2) hold. If a > au, then there exists a solution
u € HY(Q) of (1.5) i.e. u satisfies u > 0 in Q, gz, w)Q(x, w)VuVu € L (Q), and

loc

fM(W, w)VuVe +f 9@, w)Q, u) VuVueg :ff¢,
2 2 )
for all ¢ € HY(Q2) N L>(Q).

REMARK 3.2. — Observe that we improve the result in [1] because:

1)We do not assume that f is strictly positive in every compact subset of Q.

2) A more general class of operators (not only linear like in [1]) is considered
in the principal part of the equation and we deal with slightly more general lower
order terms (in [1] it is assumed that @ is the identity matrix).
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Outline of the proof of the Theorem 3.1. We approximate the function g by
continuous functions g,,: Q x (0, +00) — R (n € IN) defined by

0 if s <0,

gn(@,s) = S s2g(ax,s)
(s+1)°

if 0 <s.

N——+00

Observe that g, verifies g, (x, s) mar g(x, s), and, by (3.1), we have

(3.3) gn@,8)s+u>0 ae xeQ VseR,

for every n € N,
We consider

—div (M(Oﬁ, un)vun) + gn(xy un)Q(oc, un)vunvun :fn in Q7

34
(34) u, € HY(Q).

If £, = T, (f), using [14] there exists a solution u,, € H(l)(.Q) of (3.4) that belongs
to L>®(Q) (see [15]).
Let us take u,, as test function in (3.4) to conclude

fM(xyuanunF +fgn(x7 un)Q(xvun)vunvunun :ffnun-
o Q 7]
Hence, by (1.2) and (1.3) we get
(lf |Vu7,|2 +f009n(90, un)|vun|2un Sfﬁzuna
?) o) o)
or, equivalently,
(a — aw) f [V, [* + f [agn(x, )|Vl P10 + aﬂIVunlz] < f Foton-
Ie) ?) o)

Observing that, by (3.3), sgn(ac,s)|é\2 —|—,u\é|2 >0, ae. x € Q, for every s € R,
¢ € RY we have
(3.5) asg, (@, )| + aulZ® > 0.

According to (3.5) and by the definition of f,, we have

2
(a = allnl® < [ fuona < 11 2, 10l @ < SN V2l
Q

Since a > au we obtain that the sequence u,, is bounded in H, (1)(9). Therefore,
up to a subsequence, we have that u,, — u in H(l)(.Q).
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On the other hand, taking «,, = min{u,,0} as test function in (3.4) and using
the same ideas as before (thanks to that a > ax) we obtain that u, > 0.

Taking into account (38.1) we can proceed analogously to the proof of
Proposition 2.1 to show that u,, are uniformly away from zero in every compact

1
un+y

—5 [ hed o
set in Q. Indeed, let ¢ € C3°(Q2), ¢ > 0. Takee "1 ' r¢ as test function in (3.4),
to get
z¢7;+% w,ﬁ»,l—l
=L [ h(rydr =L [ h(rydr
[ MGV, vge [ e
Q Q
Lm,+%

b 1\ - | hdr
= fM(x, W)V Vbl <un + —) e lf )
a’J n

un+%

=2 [ h)dr

- f I, ) Q@ Un) Vit Vitye -~ 1
Q

Using (1.2) and (3.1), we have

un+ % un+ %
b

~L [ e —L [ hedr
f M, u,)Vu, Ve * i > f fue T o]
Q

Q

which is (2.2) with (s) = 1 .
s 5 L[ hr)dr
From (3.2), we deduce that the function P(s) = f e i dt is well-defined.

Consequently, if we fix L > 0 such that y;,, -7, — x {Oug 1} a.e.x € Q, we can follow
the arguments of the Proposition 2.1 to conclude that «,, are uniformly away from
zero in every compact set in Q.

We proceed to show that, up to a subsequence, the sequence {u,, } convergestoa
positive solution of (1.5) by following the ideas of the proof of Theorem 1.1. The main
difference consists in proving a similar inequality to (2.8) without using the sign
condition (1.6). To make that, let us choose Gy (u,,) as test function in (3.4) to obtain

fM(ﬁ(I, u’l’b)vu’i’LVGk(un) +fgn('%'a un)Q(xa un)vunvunGk(un) :ffnGlc(un)
Q Q Q
Using (1.2), (1.3) and adding and substracting fa,u|VGk(u%)\2 we have
Q

(=) [ IVG@)F + [ ag,@, )V PGiu) + au| VG,
Q {un>k}

< [ f1Gatun).
Q
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Thanks to (3.3) we deduce that agn(x,un)|VGk(un)|2Gk(un) + a,u|VGk(un)|2 >0,
and therefore we get

@—an) [ VG < [ fiGrtaw,).
Q Q

Since a > au we derive from the Holder and Sobolev inequalities that
1+%

[wer <—>— [ [

2
2 (@ =™ \ (=

which plays the role of (2.8). Therefore, |VG;c(un)|2 is equiintegrable. Moreover,
since

—div(M (x, un) Vttr) = fro — gn2, un)Q@, Uy) Ve, Vi,

and the right hand side is bounded in L] (Q), we can apply Lemma 1 of [5] to
deduce that, up to (not relabeled) subsequences, Vu,, converges to Vu a.e. in Q.
Hence, by Vitali theorem Gy(u,) — Gi(u) in H(l)(Q). Now, the convergence in
HIIOC(Q) of Ty (u,) to Tj(u) is proved in a similar way to Step 1 of Theorem 1.1.

Finally, we conclude the proof as in Step 3 of Theorem 1.1. O

REMARK 3.3. — If N = 2 (which implies 2N /(N + 2) = 1), then the results are
also true provided that we strength the assumption f € L¥%(Q) by assuming
f e L™Q) for m > 1.
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