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Algebraic Surfaces and Their Moduli Spaces: Real,
Differentiable and Symplectic Structures

FABRI1Z1I0 CATANESE

Abstract. — The theory of algebraic surfaces, according to Federigo Enriques, revealed
‘riposte armonie’ (hidden harmonies) who the mathematicians to undertook their
mvestigation. Purpose of this article is to show that this holds still nowadays; and
point out, while reviewing recent progress and unexpected new results, the many
faceted connections of the theory, among others, with algebra (Galois group of the
rational numbers), with real geometry, and with differential and symplectic topology
of 4 manifolds.

1. — Riposte armonie?

At the onset of the theory of algebraic surfaces (ca. 1870-1895) Noether,
Enriques and Castelnuovo said that while algebraic curves had been made by
God, algebraic surfaces were made by the devil.

But Enriques, in the final page 464 of his famous book ‘Le Superficie
Algebriche’ ([45], published posthumously in 1949), says that really God created
for algebraic surfaces a higher level order of ‘hidden harmonies’, where an in-
credible beauty shines. The richness and beauty of their properties, which were
only after a long time and hard work revealed, should inspire not only a sense of
awe in the contemplation of this divine order, but also the hope for researchers
that difficulties, doubts and contradictions which pave their way to discovery are
eventually to fade away and uncover this divine light of harmony.

What does it mean that everything goes ‘right’ for curves? In order to explain
this, we must first of all recall the basic definition of a complex projective variety.

But why ‘in primis’ do we need complex projective varieties?

The point is that in general, in ‘real life’ (i.e., in applied science), one wants to
solve polynomial equations with real coefficients, and find real solutions. But since
by the fundamental theorem of algebra every ‘univariate’ polynomial P(x) € Clx]
(a polynomial in a single variable x) of degree n has exactly » complex roots
(counted with multiplicity), the simple but basic approach is to view the real
numbers as the subset of the complex numbers fixed by complex conjugation, hence
the first approach is to start to look at the complex solutions, and only later to look
at the action of complex conjugation on the set of complex solutions.
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Given moreover a system of polynomial equations in several variables
(21,...,2y), in order to have some continuity of the dependence of the solutions
upon the choice of the coefficients, one reduces it to a system of homogeneous
equations,

fi®o,21,...,2)=0,2=1,... 7
defining an algebraic set or a projective Variety
X cPLX :={z:=@pz21,....,2)[i(1 =0Vi=1,...,7}

(one finds then the solutions originally sought for by setting 2y = 1).

We assume throughout here that X is a smooth complex projective variety,
i.e., that X is a smooth compact submanifold of I’ := P{. of complex dimension d,
and that X is connected.

Observe that X is a compact oriented real manifold of real dimension 2d, so,
for instance, a complex surface gives rise to a real 4-manifold.

For d =1, X is a complex algebraic curve (a real surface, called also Riemann
surface) and its basic invariant is the genus g = g(X).

The genus g is defined as the dimension of the vector space H O(Q}() of rational
1-forms

n=>_ ¢z

which are homogeneous of degree zero and are regular, i.e., do not have poles on
X (the ¢;(2)’s are here rational functions of 2).

It turns out that the genus determines the topological and the differentiable
manifold underlying X: its intuitive meaning is the ‘number of handles’ that one
must add to a sphere in order to obtain X as a topological space.

Actually, as conjectured by Mordell and proven by Faltings ([46], [47], see
also [17] for an ‘elementary’ proof), it also governs the arithmetic aspects of X: if
the coefficients of the polynomial equations defining X belong to Q, or more
generally to a number field & (a finite extension of ), then the number of so-
lutions with coordinates in Q (respectively: with coordinates in k) is finite if the
genus g = g(X) > 2.

The rough classification of curves is the following:

e g=0:X = PL, topologically X is a sphere S? of real dimension 2.
e g=1: X~ C/I', with I" a discrete subgroup = 7% X is called an elliptic

curve, and topologically we have a real 2-torus S* x S.

e g > 2: then we have a ‘curve of general type’, and topologically we have a
sphere with g handles.

Moreover, X admits a metric of constant curvature, positive if g = 0, negative
ifg>2 zeroifg=1.
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Finally, we have a Moduli space ){;, an open set of a complex projective
variety, which parametrizes the isomorphism classes of compact complex curves
of genus g. I, is connected, and it has complex dimension (3g — 3) for g > 2.

Things do not seem so devilish when one learns that also for algebraic sur-
faces of general type there exist similar moduli spaces ¢, , (by the results of
[16], [54]).

Here, ), , parametrizes isomorphism classes of minimal (smooth projective)
surfaces of general type S such that y(S) = «, K§ =.

Again, these two numbers are determined algebraically, through the di-
mensions of certain vector spaces of differential forms without poles, namely, we
have x(S) :=1 — q(S) 4—)0‘(,(S),K2 = Po(S) — x(S), where:

¢(S) := dime HUQY), py(S) = dimc- HAE), Po(S) = dime H(Q2™),

As does the genus of an algebraic curve, these numbers are determined by
the topological structure of S.

BAD NEWS : WE SHALL SEE THAT THESE TWO NUMBERS DO
NOT DETERMINE THE TOPOLOGY of S!

GOOD NEWS : ¥, HAS FINITELY MANY CONNECTED
COMPONENTS!

The above finiteness statement is good news because the connected compo-
nents of I, parametrize

Deformation classes of surfaces of general type, and, by a classical theorem of
Ehresmann ([44]), deformation equivalent varieties are diffeomorphic.

Hence, fixed the two numerical invariants y(S) = x, K2 = ¥, which are de-
termined by the topology of S (indeed, by the Betti numbers of S), we have a
finite number of differentiable types.

In the next section we shall accept the bad news, trying to learn something
from them.

2. — Field automorphisms, the absolute Galois group and conjugate varieties.

Let ¢ : C — C be a field automorphism: then, since
P@) = ¢(1 - x) = §(1) - $(w),

it follows that ¢(1) = 1, therefore ¢(n) = n Vn € N, and also ¢|, = Idq.

We recall the first algebra exercises, quite surprising for first semester
students: the real numbers have no other automorphism than the identity, while
the complex numbers have ‘too many’.
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LeEmMA 2.1. — Aut(R) = {Id}

PRrOOF. — For each choice of x,a € R, ¢(x + a?) = ¢(x) + qb(a)Z, thus ¢ of a
square is a square, ¢ carries the set of squares R, to itself, ¢ is increasing. But ¢
equals the identity on Q: thus ¢ is the identity. Q.E.D.

On the other hand, the theory of transcendence bases and the theorem of
Steiniz (any bijection between two transcendence bases B; and B; is realized a
suitable automorphism) tell us:

LEMMA 2.2. — |Aut(C)| = 22°

REMARK 2.3. — Paolo Maroscia informed me, after the lecture, that the
above result is the content of a short note of Beniamino Segre ([92]) published
60 years ago.

Observe now that the only continuous automorphisms of C are the identity
and the complex conjugation g, such that g(z) :=z = « — 1y. All the others are
impossible (just very hard?) to visualize!

2) The field of algebraic numbers O is the subfield of C, Q := {z € C|3P €
Qlals.t. P(z) = 0}. It is carried to itself by any field automorphism of C.

The fact that Aut(C) is so large is essentially due to the fact that the kernel of
Aut(C) — Aut(Q) is very large.

The group Aut(Q) is called the absolute Galois group and denoted by
Gal(Q, Q). Tt is one of the most interesting objects of investigation in algebra and
arithmetic.

Even if we have a presentation of this group, still our information about it is
quite scarce. A presentation of a group G often does not even answer the
question: is the group G nontrivial? The solution to this question is often gotten if
we have a representation of the group G, for instance, an action of G on a set M
that can be very well described.

For instance, M could be here a moduli space.
To explain how Gal(Q, Q) acts on several moduli spaces M we come now to
the crucial notion of a conjugate variety.

REMARK 24. -1) ¢ € Aut(C) acts on Clzp,...,2,], by sending P(z) =
n n
> ad PR = $a)z.
i=0 i=0

R 2) Let X be as above a projective variety
X c PLX = {z|fi(z) = OVi}.

The action of ¢ extends coordinatewise to P{, and carries X to another
variety, denoted X?, and called the conjugate variety. Since f;(z) = 0 implies
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(1) (@(2)) = 0, we see that
X? = {w|¢(f)w) = 0¥3}.

If ¢ is complex conjugation, then it is clear that the variety X? that we obtain
is diffeomorphic to X, but in general, what happens when ¢ is not continuous?

For curves, since in general the dimensions of spaces of differential forms of a
fixed degree and without poles are the same for X? and X, we shall obtain a curve
of the same genus, hence X¢ and X are diffeomorphic.

But for higher dimensional varieties this breaks down, as discovered by Jean
Pierre Serre in the 60’s ([93]), who proved the existence of a field automorphism
¢ € Gal(Q/Q), and a variety X defined over Q such that X and the Galois con-
jugate variety X? have non isomorphic fundamental groups.

In work in progress in collaboration with Ingrid Bauer and Fritz Grunewald
([14]) we discovered wide classes of algebraic surfaces for which the same phe-
nomenon holds.

Shortly said, our method should more generally yield a way to transform the
bad news into good news:

CONJECTURE 2.5 — Assume that ¢ € Gal(Q/Q) is different from the identity
and from complex conjugation. Then there is a minimal surface of general type
S such that S and S¢ have non isomorphic fundamental groups. In particular, S
and S¢ are not homeomorphic.

Hence the absolute Galois group Gal(Q/ Q) acts faithfully on the set of connected
components of the (coarse) moduli space of minimal surfaces of general type,

WM o= Uy g1V

Concerning the above two statements, we should observe that, while the
absolute Galois group Gal(Q/Q) acts on the set of connected components of IR, it
does not act on the set of isomorphism classes of fundamental groups of surfaces
of general type: this means that, given two varieties X, X’ with isomorphic fun-
damental groups, their conjugate varieties X?¢ X’ ? do not need to have iso-
morphic fundamental groups. Else, not only complex conjugation would not
change the isomorphism class of the fundamental group, but also the minimal
normal subgroup containing it (which is very large) would do the same.

Let me end this section giving a few hints about the main ideas and methods
for our proposed approach, which depends on a single general conjecture about
faithfulness of the action of the absolute Galois group Gal(Q/Q) on the iso-
morphism classes of unmarked triangle curves.

An elementary but key lemma describes our candidate triangle curves for the
above conjecture.

Fix a positive integer g € N, g > 3, and define, for any complex number
ac C\{-29,0,1,...,29 — 1}, C, as the hyperelliptic curve of genus g given by
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the equation

29—-1

w=@E-a)e+29 [[ -9
=0
We have then:

LEMMA 2.6. — Consider two complex numbers a,b such that a € C\ Q: then
Cy = Cy if and only if a = b.

Through the above lemma algebraic numbers are therefore encoded into
isomorphism class of curves.
We use then the method of proof of the well known Belyi theorem:

THEOREM 2.7. — (BELYI) An algebraic curve C can be defined over Q if and
only if there exists a holomorphic map f : C — PL with branch set (set of critical
values) equal to {0,1, co}.

Assume now that a is algebraic, i.e., that & € Q: take a Belyi function for C,
(ie.,f, : C, — PL with branch set {0, 1, 00}) and its normal closure D, — IPL.. We
have then constructed a triangle curve D, according to the following

DEFINITION 2.8. — D is a« TRIANGLE CURVE fif there is a finite group G
acting effectively on D and with the property that D/G == P};;, and the quotient
map f : D— PL = D/G has {0,1, 00} as branch set.

A MARKED TRIANGLE CURVE is a triple (D,G,1) where D,G are as
above, and where we have fixed an embedding i : G — Aut(D).

Two marked triangle curves (D, G, 1), (D', G, 1) are isomorphic iff there exists
isomorphisms D = D', G = G' which transform 1 into 7.

Let us explain now the basic idea which lies behind our new results: the
theory of surfaces isogenous to a product, introduced in [25] (see also [26]), and
which holds more generally also for higher dimensional varieties.

DEFINITION 2.9. — 1) A surface isogenous to a (higher) product is a compact
complex surface S which is a quotient S = (C1 x C2)/G of a product of curves of
resp. genera > 2 by the free action of a finite group G.

2) A Beauville surface is a surface isogenous to a (higher) product which is
rigid, i.e, it has no nontrivial deformation. This amounts to the condition, in
the case where the two curves Cy; and Cq are nonisomorphic, that (C;,G) is a
triamgle curve.

For surfaces isogenous to a product holds the following ([25], [26]):
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THEOREM 2.10. — Let S = (Cy x Cs)/G be a surface isogenous to a product.
Then any surface X with the same topological Euler number and the same
Jundamental group as S is diffeomorphic to S. The corresponding subset of the
moduli space E)Zfégop = ZIRZW , corresponding to surfaces homeomorphic, resp,
diffeomorphic to S, is either irreducible and connected or it contains two con-
nected components which are exchanged by complex conjugation.

If S is a Beauville surface this implies: X =~ S or X = S. It follows also that a
Beauville surface is defined over Q, whence the Galois group Gal(Q, ) operates
on the discrete subset of the moduli space It corresponding to Beauville sur-
faces.

Work in progress with the same coauthors (Ingrid Bauer and Fritz
Grunewald) aims at proving also the following

CONJECTURE 2.11 — The absolute Galois group Gal(Q, Q) operates faithfully
on the discrete subset of the moduli space M corresponding to Beauville
surfaces.

Already established is the following ([14])

THEOREM 2.12. — Beauwville surfaces yield explicit examples of conjugate
surfaces with nonisomorphic fundamental groups whose completions are iso-
morphic (the completion of a group G 1is the inverse limit

G= l'iWZK<G normal of finite index (G/ K)

Our candidate triangle curves C, determine now a family 9, consisting of all
the possible surfaces isogenous to a product of the form S := (D, x D')/G, where
the genus of D' is fixed, and G acts without fixed points on D'

Using the theory of surfaces isogenous to a product, referred to above,
follows easily that:

1) N, is a union of connected components of ¢

2) ¢(Sﬁa) = éTa<,§(a)- o

Assume that for each ¢ € Aut(QQ) which is nontrivial we can find @ such that,
setting b := ¢(a):

3) @ # b and I, and I, do not intersect.

The desired conclusion would then be that, since ¢(9t,) and 9, do not
intersect by 2), 3), hence ¢ acts nontrivially on the set of connected components
of .

The condition that 9, and i, intersect easily implies, by the structure
theorem for surfaces isogenous to a product, that the two triangle curves D,
and D are isomorphic. There is thus an isomorphism F : D, — D, which
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transforms the action of G, on D, into the action of G, on Dy. Identifying G,
with G under the transformation ¢, one sees however that F' is only ‘twisted’
equivariant. This means that there is an isomorphism y € Aut(G) such that
F(g(x)) = y(g)(@).

If (Dy,@G,1,) and (Dy, G,1p) are isomorphic as marked triangle curves (for
instance, if  is inner), then it follows that C, is isomorphic to C;, and we derive a
contradiction, that ¢ = b. In other words, our previous lemma shows that the
absolute Galois group Gal(Q/Q) acts faithfully on the set of isomorphism classes
of marked triangle curves.

The main point is to find such an a # b = ¢(a) with the above property that
the group G has only inner automorphisms.

Indeed, the only crucial property which should be proven amounts to the
following

CONJECTURE 2.13 — The absolute Galois group Gal(Q/Q) acts faithfully on
the set of isomorphism classes of (unmarked) triangle curves.

There are other interesting open problems:

QUESTION 1. — Existence and classification of Beauville surfaces, i.e.,

a) which finite groups G can occur?

b) classify all possible Beauville surfaces for a given finite group G.

We have made a substantial progress ([11], [12]) on question a) which leads for
instance to substantial evidence in the direction of the following

CONJECTURE 2.14 — Every finite nonabelian simple group occurs except Us.

3. — Surfaces of general type, DEF= DIFF? and beyond.

Let S be a minimal surface of general type: then we saw that to S we attach
two positive integers > 1

x=y(Oyg), y= Kg

which are invariants of the oriented topological type of S (they are determined by
the Euler number e(S) and by the signature 7(S)).

The moduli space ), , of the surfaces with invariants (x, %) is a quasi-pro-
jective variety defined over the integers, and it has a finite number of irreducible
components.

For fixed (x, %) we have thus a finite number of possible differentiable types,
and a fortiori a finite number of topological types.
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Michael Freedman’s big Theorem of 1982 ([48]) shows that there are indeed
at most two topological structures if moreover the surface S is assumed to be
simply connected (i.e., with trivial fundamental group).

Topologically, our 4-manifold is then obtained from very simple building
blocks, one of them being the K3 surface, where:

DEFINITION 3.1. — A K3 surface is a smooth surface of degree 4 in Pt

Observe moreover that a complex manifold carries a natural orientation
corresponding to the complex structure, and, in general, given an oriented dif-
ferentiable manifold M, M°P denotes the same manifold, but endowed with the
opposite orientation. This said, we can explain the corollary of Freedman’s
theorem for the topological manifolds underlying simply connected (compact)
complex surfaces.

There are two cases which are distinguished as follows:

e Sis EVEN, i.e.,, its intersection form on H2(S,7) is even: then S is a con-
nected sum of copies of P{. x Pl and of a K3 surface if the signature 7(S) is
negative, and of copies of PL. x Pl and of a K3 surface with reversed or-
ientation if the signature is positive.

e Sis ODD : then S is a connected sum of copies of P% and P2
We recall that the connected sum is the operation which, from two oriented

manifolds M; and M,, glues together the complements of two open balls

B; C M;, having a differentiable (resp. : tame) boundary, by identifying together

the two boundary spheres via an orientation reversing diffeomorphism.

Kodaira and Spencer defined quite generally ([68]) for compact complex
manifolds X, X’ the equivalence relation called deformation equivalence: this,
for surfaces of general type, means that the corresponding isomorphism classes
yield points in the same connected component of the moduli space 9. The cited
theorem of Ehresmann guarantees that DEF = DIFF:

REMARK 3.2. — Deformation equivalence implies the existence of a diffeo-
morphism carrying the canonical class Kx to the canonical class Ky

In the 80’ s, groundbreaking work of Simon Donaldson ([36], [37], [38], [39],
see also [43]) showed that homeomorphism and diffeomorphism differ drastically
for projective surfaces.

REMARK 3.3. — A refinement of Donaldson’s theory, made by Seiberg and
Witten (see [98], [40], [90]), showed then more easily that a diffeomorphism
¢ : S — S’ between minimal surfaces of general type satisfies ¢"(Kg) = + K.

Based on the successes of gauge theory, the following conjecture was made
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(I had been writing five years before the opposite conjecture, in [65], but almost
no one believed in it):
FRIEDMAN-MORGAN’S SPECULATION (1987) (see [51]): DEF = DIFF
(Differentiable equivalence and deformation equivalence coincide for surfaces).
However, finally the question was answered negatively in every possible way
([83], [66], [26], [28], [11], see also [31] for a rather comprehensive survey):

THEOREM 3.4. — (Manetti 98, Kharlamov -Kulikov 2001, C. 2001, C. -

Wajnryb 2004, Baver- C. - Grunewald 2005 )

The Friedman- Morgan speculation does not hold true.

o (1) Manetti used (7,/2)"-covers of blow ups of the quadric Q := P} X P};‘, his
surfaces have by = 0, but are not simply connected.

o (2) Kharlamov and Kulikov used quotients S of the unit ball in C2: the
surfaces they use are rigid but with infinite fundamental group.

o (3) I used non rigid surfaces isogenous to a product S = (Cy x Cs)/G, thus
with by > 0 and a fortiori the surfaces have infinite fundamental group.

o (4) The examples given with Bauer and Grunewald are Beauville surfaces,
again the surfaces are rigid, thus they have by = 0 but infinite fundamental
group.

o (5) The examples obtained with Wagnryb are instead simply connected, 1.e.,
they have trivial fundamental group.

Common feature of (2), (3) and (4) : we take S and the conjugate surface S
(thus S, S are diffeomorphic), and if S and S were deformation equivalent,
there would be a self-diffeomorphism y of S with y*(Ks) = —Kg. If w exists, it
should be antiholomorphic (by general properties of these surfaces). The
technical heart of the proof is to construct examples where this cannot
happen, and the fundamental group is heavily used for this issue.

After the first counterexamples were found, the following weaker conjectures
were posed:

4. — Weakenings of the conjecture by Friedman and Morgan.

e () require a diffeomorphism ¢ : S — S’ with ¢"(Kg) = K.
e (IT) require the surfaces to be simply connected (1-connected).

Even these weaker conjectures were disproven in my joint work with Bronek
Wajnryb ([28]), which I will now briefly describe.

The simply connected examples we used, called abc-surfaces, are a special
case of a class of surfaces which I introduced in 1982 ([19]), namely, bidouble
covers of the quadric and their natural deformations.
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Bidouble covers of the quadric are smooth projective complex surfaces S
endowed with a (finite) Galois covering 7 : S — @ := P! x P! with Galois group
(ZJ27)".

More concretely, they are defined by a single pair of equations

2% = fioa26)(@0, 15 Y0, Y1)
WP = Geae2a) (@0, 15 Y0, Y1)

where a,b, ¢, d € N=* and the notation fea2p) denotes that f is a bihomogeneous
polynomial, homogeneous of degree 2a in the variables x, and of degree 2b in the
variables y.

These surfaces are simply connected and minimal of general type, and they
were introduced in [19] in order to show that the moduli spaces EDEX_, 2 of smooth
minimal surfaces of general type S with K§ = K2, 4(S) := x(Og) = x need not be
equidimensional or irreducible (and indeed the same holds for the open and
closed subsets 21732?1{2 corresponding to simply connected surfaces).

Given in fact our four integers a,b,c,d € NES considering the socalled nat-
ural deformations of these bidouble covers, defined by equations (*)

2% = fioa2m) @0, 215 Y0, Y1) + W Dog_c25-a) @0, 215 Yo, Y1)
WP = e (@0, 015 %0, Y1) + 2 P 2e—a.2d—)(@0, 15 Yo, Y1)

one defines a bigger open subset N :J/,b,c‘d of the moduli space, whose closure
N'opea is an irreducible component of WM, g2, where y =1+ (a —1)(b — 1)+
(c—1d—-1)+@+c—1b+d-1),and K2 =8(a+c —2)(b+d —2).

The abc-surfaces are obtained as the special case where b = d, and the up-
shot is that, once the values of the integers b and a + ¢ are fixed, one obtains
diffeomorphic surfaces.

In other more technical words the abc-surfaces are the natural deforma-
tions of (Z/Z)Z—covers of (P' x P, of stmple type (2a,2b), (2c, 2b), which means
that they are defined by equations

(* * *) Zil) = f2a.2b(907 ?/) + wc,b¢2a_c7b('fx;7 y)
ey = G2e20@,Y) + ZasWoeap@,Y)

where f,g ,¢,w, are bihomogeneous polynomials, belonging to respective vector
spaces of sections of line bundles:

f e H' P! x P, O 11(2a,2b)),

¢ e HO(P! x P, Opr, p1(2a — ¢, b)) and

g € H'(P' x P*, 0, 11(2c,2d)),

w € H'P' x P, O 1(2c — a,b)).

(*) In the following formula, a polynomial of negative degree is identically zero.
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The main new result of [28] is the following

THEOREM 4.1. — (C. -Wajnryb) Let S be an (a,b,c) - surface and S’ be an
(a +1,b, ¢ — 1)-surface. Moreover, assume that a,b,c —1 > 2. Then S and S’ are
diffeomorphic.

This result couples then with a more technical result:

THEOREM 4.2. — (C.-Wajnryb ) Let S, S’ be simple bidouble covers of P! x P!
of respective types ((2a, 2b),(2¢, 2b), and (2a + 2k, 2b),(2c — 2k, 2b), and assume
e (I) a,b,c, k are strictly positive even integers with a,b,c —k > 4
e (I)a >2c+1,

e (III) b > ¢ + 2 and either
e (IV)b>2a+2k—1or
IvV2)a>b+2

Then S and S" are not deformation equivalent.

The second theorem uses techniques which have been developed in a long
series of papers by the author and by Marco Manetti in a period of almost 20
years.

They use essentially

i) the local deformation theory a la Kuranishi, but for the canonical models,

ii) normal degenerations of smooth surfaces and a study of quotient singu-
larities of rational double points and of their smoothings.

A detailed expositions for both theorems can be found in the Lecture Notes of
the C.ILMLE. courses ‘Algebraic surfaces and symplectic 4-manifolds’ (see
especially [31]).

The result in differential topology obtained with Wajnryb is based instead on
a refinement of Lefschetz theory obtained by Kas ([64]).

This refinement allows us to encode the differential topology of a 4-manifold
X Lefschetz fibred over PL. (i.e., f : X — PL has the property that all the fibres
are smooth and connected, except for a finite number which have a nodal sin-
gularity) into an equivalence class of factorization of the identity in the Mapping
class group Map, of a compact curve C of genus g.

The mapping class group, introduced by Max Dehn ([35]) in the 30’s, is de-
fined for each manifold M as

Map(M) := Diff (M) /Diff* (M),

where Diff’(M) is the connected component of the identity, the so called sub-
group of the diffeomorphisms which are isotopic to the identity.
A major advance in our knowledge of Map, was made by Hatcher and
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Thurston ([61]), and the simplest known presentation of this group is due to
Wajnryb ([95], [96]).

Verifying isotopy of diffeomorphisms is a difficult and very geometric task,
which is accomplished in [28] by constructing chains of loops in the complex curve
C, which lead to a dissection of C into open cells. One has then to choose several
associate Coxeter elements to express a given diffeomorphism, used for glueing
two manifolds with boundary M; and M; in two different ways, as a product of
certain Dehn twists. This expression shows that this diffeomorphism extends to
the interior of Mj, hence that the results of the two glueing operations yield
diffeomorphic 4-manifolds.

I would like to finish in the next section commenting on some very interesting
open problems.

To discuss them, I need to explain the connection with the theory of sym-
plectic manifolds.

5. — Symplectic manifolds.

DEFINITION 5.1. — A pair (X, w) of a real manifold X, and of a real differential
2- form w is called a Symplectic pair if

1) w is a symplectic form, i.e., w is closed (dw = 0) and w is nondegenerate at
each point (thus X has even real dimension).

A symplectic pair (X, w) is said to be integral iff the De Rham cohomology
class of w comes from H*(X, 7.), or equivalently, there is a complex line bundle L
on X such that w is a first Chern form of L.

An almost complex structure J on X is a differentiable endomorphism of
the real tangent bundle of X satisfying J> = —1. It is said to be

ii) compatible with w if

o(Jv, Jw) = (v, w)
iii) tame if the quadratic form w(,Jv) is strictly positive definite.

Finally, a symplectic manifold is a manifold admitting a symplectic form w.

For long time (before the celebrated examples of Kodaira and Thurston, [72],
[94]) the basic examples of symplectic manifolds were given by symplectic sub-
manifolds of the flat space C" and of Kéhler manifolds, in particular of the
projective space ]P]LY , Which possesses the Fubini-Study form

DEFINITION 5.2. — The Fubini-Study form is the differential 2-form
wps = iBglog 2|7,
2n

where z is the homogeneous coordinate vector representing a point of PV,



550 FABRIZIO CATANESE
In fact the above 2-form on CN1\ {0} is invariant
1) for the action of UN + 1, C) on homogeneous coordinate vectors
2) for multiplication of the vector z by a nonzero holomorphic scalar function
f@) (z and f(2)z represent the same point in Py ), hence
3) wps descends to a differential form on PN, being C*-invariant.

I recently observed ([27], [30]):

THEOREM 5.3. — A minimal surface of general type S has a symplectic
structure (S, w), unique up to symplectomorphism, and invariant for smooth
deformation, with class(w) = Kg. This symplectic structure is called the cano-
nical symplectic structure. A similar result holds for higher dimensional
complex projective manifolds with ample canonical divisor Kx.

The above result is, in the case where Kg is ample, a rather direct con-
sequence of the famous Moser’s lemma ([91]).

LEMMA 54. — Let f : & — T a proper submersion of differentiable manifolds,
with T connected, and let (w) be a 2-form on = whose fibre restriction w; := | X,
makes each X; a symplectic manifold.

If the class of (wy) in De Rham cohomology is constant, then the (X, wy)’s are
all symplectomorphic.

In the above theorem, when K is ample, it suffices to pull-back 1/m of
the Fubini-Study metric by an m-canonical embedding.

In the case where Kg is not ample, the proof is more involved and uses
techniques from the following symplectic approximation theorem

THEOREM 5.5. — Let Xy C PN be a projective variety with isolated singula-
rities each admitting a smoothing.

Assume that for each singular point xj, € X, we choose a smoothing com-
ponent Ty in the basis of the semiuniversal deformation of the germ (X, xy,).

Then (obtaining different results for each such choice) X can be approxi-
mated by symplectic submanifolds Wy of PN, which are diffeomorphic to the
glueing of the ‘exterior’ of Xy (the complement to the union B = U,B), of suitable
(Milnor) balls around the singular points) with the Milnor fibres M, glued
along the singularity links KCp, .

An important consequence is the following theorem ([27], [30], see also [31]
for a survey including the basics concerning the construction of the Manetti
surfaces)
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THEOREM 5.6. — Manetti’s surfaces yield examples of surfaces of general type
which are not deformation equivalent but are canowically symplectomorphic.

QUESTIONS: 1) Are there (minimal) surfaces of general type which are or-
ientedly diffeomorphic through a diffeomorphism carrying the canonical class to
the canonical class, but, endowed with their canonical symplectic structure, are
not canonically symplectomorphic?

2) Are there such simply connected examples ?

3) Are the diffeomorphic abe-surfaces canonically symplectomorphic (thus
yielding a counterexample to Can. Sympl = Def also in the simply connected
case)?

I am currently working with Wajnryb and Lonne on the very difficult pro-
blem of understanding the canonical symplectic structures of abe-surfaces ([32]).
To explain our result, let us go back to our equations

(k) 22y = fona ) + oo @)
WEy = Goo2u(@, Y) + ZasWarap (@, Y)

where f, g are bihomogeneous polynomials as before, and instead we allow ¢, y, in
the case where for instance the degree relative to « is negative, to be an anti-
holomorphic polynomial in x. In other words, we allow ¢, to be sections of
certain line bundles which are dianalytic (holomorphic or antiholomorphic) in
each variable x, .

In this way we obtain a symplectic 4-manifold which (we call a dianalytic
perturbation and) is canonically symplectomorphic to the bidouble cover we
started with. But now we have gained that, for general choice of f,g, ¢, v, the
projection onto P! x P! is generic and its branch curve B (the locus of the critical
values) is a dianalytic curve with nodes and cusps as only singularities.

The only price one has to pay is to allow also negative nodes, i.e., nodes which
in local holomorphie coordinates are defined by the equation

(y—o)(y+x) =0.

Now, projection onto the first factor P! gives a movement of 7 points in a fibre
P!, which is encoded in the so called vertical braid monodromy factorization.

The first result that we have achieved is the computation of this vertical braid
monodromy factorization of the above branch curve B c P! x PL.

The second very interesting result that we have obtained, and which is too
complicated to explain here in detail, is that certain invariants of these vertical
braid monodromy factorizations allow to reconstruct all the three numbers a, b, ¢
and not only the numbers b, a + ¢, which determine the diffeomorphism type.

This result represent the first positive step towards the realization of a more
general program set up by Moishezon ([86], [87]) in order to produce braid
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monodromy invariants which should distinguish connected components of the
moduli spaces I, k2.

Moishezon’s program is based on the consideration (assume here for sim-
plicity that Kg is ample) of a general projection y,, : S — IP* of a pluricanonical
embedding y,, : S — PP»=1 and of the braid monodromy factorization corre-
sponding to the (cuspidal) branch curve 4,, of y,,.

An invariant of the connected component is here given by the equivalence
class (for Hurwitz equivalence plus simultaneous conjugation) of this braid
monodromy factorization. Moishezon, and later Moishezon-Teicher calculated a
coarser invariant, namely the fundamental group m;(P* —B,,). This group
turned out to be not overly complicated, and in fact, as shown in many cases
in [8], it tends to give no extra information beyond the one given by the topo-
logical invariants of S (such as y, K?).

Auroux and Katzarkov showed instead ([5]) that, for m > 0, a more general
equivalence class (called m-equivalence class, and allowing creation of a pair of
neighbouring nodes, one positive and one negative) of the above braid mono-
dromy factorization determines the canonical symplectomorphism class of S, and
conversely.

The work by Auroux, Katzarkov adapted Donaldson’s techniques for proving
the existence of symplectic Lefschetz fibrations ([41], [42]) in order to show that
each symplectic 4-manifold is in a natural way ‘asymptotically’ realized by a
generic symplectic covering of P2, given by almost holomorphic sections of a
high multiple L®™ of a complex line bundle L whose class is the one of the given
integral symplectic form.

The methods of Donaldson on one side, Auroux and Katzarkov on the other, use
algebro geometric methods in order to produce invariants of symplectic 4-mani-
folds.

For instance, in the case of a generic symplectic covering of the plane, we get
a corresponding branch curve 4,, which is a symplectic submanifold with sin-
gularities only nodes and cusps.

To 4,, corresponds then a factorization in the braid group, called m-th braid
monodromy factorization: it contains only factors which are conjugates of ¢}, not
only with j = 1,2, 3 as in the complex algebraic case, but also with j = —2 (here g,
is a standard half twist on a segment connecting two roots, the first of the
standard Artin generators of the braid group).

Although the factorization is not unique (because it may happen that a pair of
two consecutive nodes, one positive and one negative, may be created, or dis-
appear) one considers its m-equivalence class, and the authors show that this
class, for m > 1, is an invariant of the integral symplectic manifold.

In the case of abe-surfaces, consider now again the quadric Q := P! x P!, and
let p : S — IP% be the morphism obtained as the composition of 7 : S — @ with the
standard (Segre) embedding Q—I"* and with a general projection P®-->PZ2,
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In the special case of those particular abe-surfaces such that a + ¢ = 2b, the m-
th pluricanonical mapping v, : S — P! has a (non generic) projection given by
the composition of p with a Fermat type map v, : P2 — p? (given by v,(xg, 1, 22) =
(g, 1, 25) in a suitable linear coordinate system), where r := m/(a + ¢ — 2).

Let B” be the branch curve of a generic perturbation of p: then the braid
monodromy factorization corresponding to B” can be calculated from the vertical
and horizontal braid monodromies put together.

The problem of calculating the braid monodromy factorization corresponding
instead to the (cuspidal) branch curve 4,, starting from the braid monodromy
factorization of B” has been addressed, in greater generality but in the special
case m = 2, by Auroux and Katzarkov ([9]). Iteration of their formulae should
lead to the calculation of the braid monodromy factorization corresponding to the
(cuspidal) branch curve 4,, in the case, sufficient for applications, where m is a
sufficiently large power of 2.

Whether these formidable calculations will yield factorizations whose m-
equivalence is for us decidable is still an open question: but in both directions the
result would be extremely interesting, leading either to

i) a counterexample to the speculation DEF = CAN. SYMPL also in the
simply connected case, or to

ii) examples of diffeomorphic but not canonically symplectomorphic simply
connected algebraic surfaces.
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