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Bollettino U. M. 1.
(9) II (2009), 509-528

A Global Uniqueness Result for an Evolution Problem Arising
in Superconductivity

ED0OARDO MAININI

Abstract. — We consider an energy functional on measures in R* arising in super-
conductivity as a limit case of the well-known Ginzburg Landaw functionals. We
study its gradient flow with respect to the Wasserstein metric of probability measures,
whose corresponding time evolutive problem can be seen as a mean field model for the
evolution of vortex densities. Improving the analysis made in [AS], we obtain a new
existence and uniqueness result for the evolution problem.

1. — Introduction.

Let Q be a bounded open connected region in R? with smooth boundary, and
denote with P(Q) the space of probability measures over Q. We are concerned
with the following evolution problem:

d :
(1) 37 1O = V(o Viyeu®) = 0 in D0, +00) x R

with the initial datum u(0) = i, € P(Q) N H-1(2). We look for a solution u(t)
which is a measure in P(Q) N H-1(Q). For every t the velocity field —y,Vh, and
are coupled by

@) { —Ahy +hy, =p inQ

hy,=1 onoQ.

Clearly, H-1(Q) is the natural ambient space for the problem, so we are working
with measures on Q in order to treat masses in 2 which vary during the evolu-
tion. Masses on Q are also normalized to 1 without loss of generality.

Let M, (22) be the space of nonnegative measures on 2, and consider, for
i€ M (Q), the functionals

p 1
(3) () =5 Q)+ f Vh[2 + b, — 1P, 7> 0.
Q

For measures u on Q we will write u = ji + i, where i = you and i = ypo i
Functionals (3), defined in M (), will be understood to be defined as @;( 1) for
u € P(Q). So, they depend only on the internal part of the measures.
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It is shown in [AS] that equation (1), with the coupling described by (2), can be
viewed as a gradient flow of functionals (3) with respect to the structure induced
on P(Q) by the 2-Wasserstein distance Wa(-, ) (see Section 2 below). So in [AS]
the problem is studied exploiting the techniques of gradient flows in metric
spaces developed in [AGS], and a global existence result is proved making use of
the following, classical time discretization: given u¥, ;/**! is chosen among the
minimizers of
(4) min @;(v) + lsz(y’;, V).

veP(Q) 2t
Here 1 = 11y and 7 stands for the step of the scheme (see [JKO, AGS)).

In particular, once the sequence of minimizers of the discrete scheme is
found, then a family of measures (%) is built as the limit of some subsequence of
interpolations (it is a generalized minimizing movement, see [AGS, Chapter 2]).
The general theory of gradient flows ensures that this limit satisfies a continuity
equation with a suitable velocity field. Finally, this velocity field is shown to be
the same as in problem (1), by means of suitable Euler-Lagrange equations as-
sociated to problem (4).

In [AS], thanks the introduction of some “entropies” which are shown to
decrease along the flow, a regularity result is also obtained, that is, if the initial
datum g is such that j, € LP(Q), p > 4/3, then there exist a global solution (%)
such that [|i«(?)]],, is uniformly controlled by the L norm of .

Finally, in the case p = + oo, a short time uniqueness theorem is established
in [AS, Theorem 3.6]. The argument therein cannot deal with the presence of
mass on 0L, so that it holds until some mass reaches the boundary during
evolution, preventing the result to be global in time.

Main theorem.

In this paper we study further properties of minimizers of (4), in order to
obtain global uniqueness for measures with L interior part and complete a well-
posedness picture. Our main result, which will be proven in the last section (see
Theorem 4.2), reads as follows:

let Q be convex, [y € L>*(Q) and T > 0. Problem (1)-(2) possesses a unique
solution satisfying ||@)| ., € L>0,T) and, fort c (0,T],

(5) (Vhua(@),y — ) >0 for all (x,y) € supp (u(?)) x Q.

We stress that we allow () to have a nonzero boundary part.

Concerning the new condition (5), we will show later in Section 3 that it is a
byproduct of our Wasserstein variational approach. In Theorem 3.1 we will indeed
prove the analogous property for discrete minimizers of (4), in the case 1 = 0.
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Notice that, since the domain is supposed to be convex, (5) can be interpreted
as follows: the gradient of %, on the boundary (whenever some mass is there
present) points towards the interior of the domain. This is in fact reminiscent of
the nondecreasing boundary mass condition appearing in [AS, Definition 3.1],
which is meaningful since a gradient flow of @;, at least for 4 > 0, is expected to
enjoy such a behavior (see the energy comparison argument in [AS, Section 3]).

Plan of the paper.

In Section 2 we briefly discuss the physical relevance of the functionals. We
then recall some definitions and already known properties, also in connection
with the Wasserstein structure, that we introduce. Moreover, we formally show
that equation (1) represents the gradient flow of @;. In Section 3 we perform our
variational argument, which allows us to obtain the discrete version of (5). In
Section 4 we prove the existence of solutions satisfying (5) and the main un-
iqueness result.

2. — The functionals.
The well known Ginzburg-Landau energy functional is

1 2 2 1 242
(6) J(u,A>—§Qf|vAu| b= heal® + 55 (1 P,

where @ ¢ R? is the section of the superconductor, k., represents the intensity
of an external magnetic field, constant and orthogonal to the section, A is the
potential vector of the magnetic field / induced in the material (h = V x A and
Va =V —1A), and ¢ is a parameter depending on the material. The function u
takes complex values and its modulus (|u| < 1) accounts for the density of su-
perconducting electron pairs, so that a value close to 1 indicates a significant
presence of the superconducting phenomenon.

Different behaviors are observed for different values of the applied magnetic
field intensity h., with respect to the parameter ¢. Let, as in [SS1],

o |logel
7 =1i .
(7) e A

When 1 is finite and positive or zero (in the latter case with a not too large
magnetic field, that is k.. < ¢72), we are in the so called ‘mixed phase’, char-
acterized by the classical vortex structure.

It is shown in [SS1] (see also [SS2]) that our functional (3), with 1 as in (7), is
the I'-limit as ¢ — 0 of the Ginzburg Landau functional defined by (6), and the
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measure u represents the density of vortices, whereas , is the induced magnetic
field. So, this is the physical interest of this kind of energy functionals.
Inequalities about the functional.

Now we introduce some basic results that will often be useful in the sequel.
LEMMA 2.1. — For all u,v € M () there hold

(8) D)) — gu«?) > @,(v) — gv(g) + Qf (hy — 1) d(u — v)
and

A 1
9) D) — D;(v) = (é - 1) (W) — v(Q)) + 5 f (B + hy)d(p — v)
Q

PRrOOF. — See Proposition 2.2 and (28) in Proposition 3.1 of [AS]. O
Moreover, we have
LEMMA 2.2. — For all u,v € P(Q) there hold

(10) D;(v) — D (1) > g(f;(g) — () +fhﬂd(v — 1)
Q

and

) 0= 200 = (5 1)@~ @)+ 5 [ G+ )G~ .
Q

PrOOF. — These are straightforward consequences of Lemma 2.1, taking into
account that, since the solution of problem (2) does not depend on the boundary
part of u, we have h; = h, and that i,|,, = 1. O

The Wasserstein structure.

We now recall some definitions about the Wasserstein structure, which has
proved to be an important tool for studying different evolution problems (see for
instance [01, AGS, VI]). For u,v € P(Q) let I'(u,v) denote the set of transport
plans between them, i.e. measures y € P(Q x Q) whose first and second mar-
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ginals are respectively x and v. We let P(Q) be endowed with the Wasserstein
distance, defined by

1/2
(12) Walu, v) = ( inf f @ — o dye, y)) .
yel(wy) _J_
QxQ
Here the infimum can be shown to be a minimum, and we let I"(x, v) be the class
of optimal plans, where this minimum is attained. A transport plan is a
generalization of a transport map from u to v, that is, a map ¢ such that tyu =v
(i.e. ,u(t’l(A)) = v(A), for A Borel). Indeed, to any transport map ¢ we can as-
sociate the transport plan y = (I, &) 4.

Formal gradient flow.

Here we relate the functionals (3) to a time evolutive problem (the Chapman-
Rubinstein-Schatzman mean-field model for superconductors. See [CRS]). We
can show that such a problem is the formal gradient flow of @, with respect to the
Wasserstein structure, that is, Vi, is the gradient of &y at u along transport
maps. The Wasserstein (sub)gradient VW @(u) is a vector & € L2(u; R?) defined
by the subdifferential relation

Plsp) — D) > [ (6~ D+ ollls — 1|3,

Now consider the functional (3), and by the representation (see [AS,
Proposition 2.1])

1 1
(13) @0 =50u(@+IQ)+ sup { [a-vau- [ |Vh|2+h|2},

1
h-1eHY Q) | o )

being the supremum attained for h = &,, we are led to

A
D510 — D0 = 5 (5(2) = (@) + [ U = Dills e~ )
Q

D] >

(58D — (@) + [ (o) — @) dp.

Q

Since

[ thutste) — @) du ~ [ Vi, @) - 56 ~ ) dp
Q Q
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as ||s — Iz — 0, if A=0, the formal Wasserstein gradient of ®; at u (if
u=[1)is yoVh,. The argument works also with 1 > 0 if we consider transports
which do not increase the mass on 9Q.

3. — Variation.

Consider the discrete problem

. 1
(14) min &,;(v) + > W22(,u, V).
veP(@Q) T

Recalling Proposition 5.4 of [AS], we have

LEMMA 3.1. — Let p € (1,00], p € P(Q) with 1 € LP(Q). Then there is a
minimizer u, of problem (14) such that ji, € LP(Q). Movreover, the LP norm of
i, is uniformly bounded in t. In particular, if p=oco we have ||, <
max{1, || }-

Now we state the result about minimizers of (14) in the case 4 = 0. Mind that,
by Lemma 3.1, if 1 € LP(Q) in (14), a minimizer can be found with L? interior as
well.

THEOREM 3.1. — Let v = u, be a minimizer of (14), with 2 =0, such that
v € LAQ). Let Q be convex. Then

(15) (Vhy(),y —x) >0 V(x,y) € supp () x Q.

We need a measure theoretic lemma before proceeding with the proof. We
recall also that, given two measures x and v in M (R?) with same mass, if x is
absolutely continuous with respect to the Lebesgue measure £, then there exists
a unique optimal transport plan between u and v (for which the infimum in (12) is
achieved), and such plan is induced by a transport map (see [AGS, Section 6]).

LEMMA 3.2. — Let ii,v € P(Q), 0 < L2 Q, with a(Q) = v(0Q), and let T be the
optimal transport map between o and V.

Then there existy € I'o(v, w), yr € I'(a, uy), where y is the second marginal of
Xs0xo V> Such that

Wi, = Wi < [ [ly = S@F — Iy = T@P |y, )

QxQ

forall S : Q—Q, where vg =V + Suo.
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ProOF. — Let us introduce a sequence of auxiliary measures v,, with equi-
compact supports contained in R2\Q, such that Vn(]Rz\Q) =a(Q), v, < L2 and
vy — Vv as m— oo. Let T, be the optimal transport maps between ¢ and v,.
Moreover, let y,, be optimal transport plans between v,, and u, where v,, = ¥ + V.
As an optimal transport map between absolutely continuous measures, T, is es-
sentially invertible for every » (i.e. its restriction to the complement of a g-neg-
ligible set in Q is injective, see [AGS, Remark 6.2.11]). So we can define

7, =S o T;l, I)#X(RZ\Q)XE In T Xoxa I
I, = (TJIJ)#X(RZ\Q)@ Tn-

Clearly, 7, € I'(vs, ) and y;, € I'(g, u,) for every n, where we introduced g,
as the second marginal of LR\ Vn- So with the change of variablesz = T, L),
for every n we have

Wis, ) < [ |y —alds,

oxQ
= [ w-aPd@So 1 D)+ [ Iy - aldy,
(RA\Q)xQ QxQ
= [ 1= s@Pdy, )+ [ 1y —aldy,.
QxQ QxQ
and
Wi = [ ly—aPdy, + [ ly—aPdy,
22 ><_ ><_
(16) (RA\Q)xQ xQ
:f \?/—Tn(z)\deTﬂ(Z,y)-Ff |y_x|2dyn'
QxQ QxQ

We get, for every n,

(A7) Wi, 00— W00 < [ [ly = S@P — ly — Tu@P |y, @, .

oxQ

Now we have to pass to the limit asn — oo. Asv,, — , for the stability property of
optimal transport maps, we have that T, — T strongly in L2(Q),1 < p < oo, where
T is the optimal transport map between ¢ and v. Moreover, y,, has a weak limit
point in P(R2 x Q) which is an optimal plan y € I'y(v, 1) (see [AG, Lemma 3.3]). We
will not relabel the sequence for simplicity.
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We can also show that
(18) Xoxa’n — Xoxa V-

In fact, let #(x) be a smooth cutoff function approximating y,, with #(x) = 0 on
R®\Q and

[ e —11dv<e.
Q
Let f € CO(R? x Q), with M = ||f|| finite. Then

f S @, o0 Ay, — 9@, y)

RZxQ

= [ £ lra@) — 1)+ 1@ldG, — e.y)

RZxQ

< f £, yn@)d, — ), y)

RZxQ
+M f 20(@®) — n@)|d(y, + @, y)
RZ2xQ
= [ r@.pm@do, - .y +2M [ |1 - y@)di
RZxQ Q

< f S, yn(e)d(y,, — e, y) + 2Me.

RZxQ

Now the first integral tends to zero, since f7 is continuous, and by arbitrariness
of ¢ we get the convergence. Here we used the fact that the measures y, 57, and
Xoxo v have v as first marginal. In the same way one can prove that o e
X\ g - This implies 4, — p, since y, := ﬂi(;{(]iiz\())xﬁ 7,,)- Besides, u, is also
the second marginal of y;, , which by tightness has a limit point y; (again we avoid
relabeling the sequence). The first marginal of y; is o for every =, and as a
consequence yp € I'(a, uy).

Now consider the first integral in the second member of (17). We have the
weak convergence of y, to yy, and we can pass to the limit even though the
integrand is not continuous. Indeed, reasoning exactly as in the proof of (18), we
can approximate it with continuous functions (in the Lusin sense) and use the fact
that both the first marginal of y;, and of y; are equal to the absolutely continuous
measure g.
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Finally, consider the last term in (17). We have

[ =1y, = [ [ly=1P+ 1y = TP~ ly = 71|,

QxQ QxQ
< [ 1y —1Pan,
QxQ
+K [ 1@ - T@ldyy,
oxQ
< [ 1y - TPdy, + K [ 1T,) — T@]do,
QxQ Q

with K being a suitable positive constant depending on Q2. Now the second term
goes to zero for the strong convergence of 7', and the first one can be treated as
before and shown to converge to

[y = r@rdy .y,
OxQ
We have all what is needed to pass to the limit in (16) and (17) and obtain
(19) Wi, - W < [ [ly = S@P — ly — T@P]dyote, )
OxQ

as desired. O
We also state a slight generalization of the previous lemma.

LEMMA 8.3. — Let u,v,o and T be as in Lemma 3.2. Let S : Q — Q, 0§ € [0,1]

and
vg = ¥+ Su(0o) + (1 — O)v.

Then there exist y € I'o(v, ), yp € I'(0,11), 11 being the second marginal of
Looxa ) Such that

WiGrs, 1) — W30, < 0 [ [ly = S@F — y = TP dy e, ).
oxQ

PROOF. — The case 0 = 0 is trivial. Otherwise, define vy, v,,, T, 7, and yr, asin
the proof of Lemma 3.2. Moreover, let v§ = v + S4(0o) + (1 — 0)v, and introduce
transport plans 7, € I'(v¢, 1) as follows:

Tn =080 TJI»I)#X(\RZ\Q)xﬁ YntXoxgn + 1 — Q)X(R2\Q)x§ Vi
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Then, with the change of variables z = T, (%), we have

sz(vgnu) < f ‘y - x|2d§n

oxQ
=0 [ ly—S@Pdy e+ [ Iy -l
QxQ QxQ
+a-0 [ |ly-ofay,

(RAQ)xQ

We can rewrite (16) as

Wi =0 [ ly—aPdy, + [ Iy —afdy,

(RA\Q)xQ QxQ
+(1-0) f ly — «f*dy,
(RA\Q)xQ
=0 [ ly - T@Pdyr ) + [ 1y - <Py,
QxQ QxQ
+a-0 [ ly-aldy,
(RA\Q)xQ

This way, it is clear that

W30, 10— WaG, 00 < 0 [ [ly = S@P - |y = Tu@)P]dyy, @, ).
QxQ
Here we can pass to the limit in # exactly as done for (17), so we refer to the proof

of Lemma 3.2 for concluding. The only element to add is the lower semicontinuity
of Ws for treating the first term, so that

Wa(vs, 1) < liminf Wa(vg, 1)

as vg — vs. O

REMARK 3.1. — With minor modifications one can also obtain the same result
for the case

vs = ¥+ 84(00) + (1 = DyaV + xo0\a"

where A is an arc contained in Q. In this case we have y € I'y(v, 1), 0 < L2L Q,
o(Q) =vA), (I,T)go € I'o(o,x4V). 1y will be a suitable measure such that
R AP P}
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We are now ready for the proof of Theorem 3.1.

PROOF OF THEOREM 3.1. Let o < L% Q have a bounded density, and let
() = W(Q). Let moreover T be the optimal transport map between ¢ and v, and

T.=A -l +¢T, ¢e[0,1]
We introduce the following perturbed measure
v = 9+ Tou(d®o) + (1 — a®)y,

where a = (1 — ¢)°.
Now we apply Lemma 3.3, with T’ in the role of S: there exist a transport plan
y € I'og(v, ) and a transport plan yp € I'(o, u;), where g, is the second marginal of

Xs0xo V> such that

(200 Wi = Wi < a2 [ [ly = TL@)P =y = T@)F]dyr. ).
QxQ

Next, we apply (11) to v, and v, and we find

¢0(sz) - ¢0(V) - - ({};(Q) - ‘A}(-Q)) + % f(hvg + h‘)d(f/‘, - {})7
Q

so that
(21) ¢0(V1:) - ¢O(V) = 7(12]7(8‘(2) + %GZI (hvg + hv)d(Tx#O-)~
Q

Since v is a minimizer, there holds
1
Do(v,) = Po(¥) + - (W3 (s, 1) — Wi (v, 1)) > 0,
for all 1 € P(Q). Substituting (20) e (21) in this inequality, we obtain:
2
a 2 2
o [ v - 1.@P — ly - T@P]dyy

(22) QxQ .
— WO + 50* [0+ nyd@40) > 0.
Q

Since T, =T+ (1 — ) — T), we obtain the following expansion (of the first
order centered in ¢ = 1)

ly — T@ = |y — T@) + 2 — D{y — T(x),x — T@®)) + ole — 1).

Of course the remainder is uniformly bounded with respect to x € Q. For
treating the second integral in (22), notice that, as v € L*(Q), h, € W?*(Q), and
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by Sobolev embedding &, € C'(Q) (since 2 has smooth boundary). So we can
perform the expansion

hyoT,=hyoT +(c—1)(VhyoT,T —1I)

(23) +(e— 1)<(V]’1,l, oTy—Vh,o T)7 T - I>7

for a suitable 0 € (¢,1). If K = sup|T'(x) — x|, the last term is bounded by

)
K(e— 1D o(|Typx) — T(@))), w(d) beiicleg the modulus of continuity of Vi,, which, as
5 — 0, goes to zero uniformly with respect to « € Q, since VA, € C°(Q). So there
holds

(24) hyoT,=hy,oT +(e—1){(Vh o T,T —I) + oz — 1),

and the remainder is uniform in 2.
Finally, since

(25) hy,oT,=hyoT,+ (hy, —hy)oT,,
we have to estimate &, — h,. This quantity is solution of the problem
{ —Mu+u = a2T,4(0) inQ
=0 ondQR.
Hence we can write

(26) SUE |h1}(9€) - h/v(x)| = aZ sup |¢;:‘a

rxeR reQ

where ¢, satisfies

—Ap. + ¢, = E#(a) in
9, =0 onoQ.

But aT;4(s) converges to 0 in LA(Q), since for &€ (0,1) there holds
|det T, > (1A — ¢)? and we have

4
4 _ 4 o
b[|aT£#(a)| _agf<— det(Jm) | det (JT,)|

s%fm it it

This implies the W?4(Q) convergence and the C'(Q) convergence of ap, as & — 1.
So there exists a constant C which bounds ag, uniformly in « and ¢, and from (26)
we get

(27) sup |h, (@) — hy(x)| < Ca = C(1 — &)%.

e
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Making use of (24) and (27), from (25) we find
(28) hyoTe=hyoT+(Ee—1){(Vh,oT,T—1I)+o0(—-1),

where the remainder is again uniformly bounded in x.
Now, dividing by a2, we expand to the first order in (22) with respect to ¢ — 1,
and with 7 fixed, to find

1-—¢

[ =1, 7@ ~ 0)dyy 509 + [ (T @)
Q

QxQ

+d-o f (VI (T@)), 2 — T(@))do + ol — &) > 0.
Q

As a consequence, since o(Q) = W(02) and h, = 1 on 9Q, upon dividing by (1 — &)
we get
1
e f (y — T(), T(x) — x)dyp + f (Vh(T(x)), 2 — T(x))da > 0.
Q

QxQ

As T(x) € supp (v), in the first integral the scalar product is nonpositive
for geometric reasons (we are working with a convex domain). It follows
that

(29) [(vm@@),e - T@)ds > 0.
Q

Let A € Q be an arc such that v(4) > 0. We point out that, redefining v,
as V4 @®Topo + 1 — a®ysV + fooa¥ With T, =1 —oI+¢T and T now
being the optimal transport map between an absolutely continuous ¢ and
x4V, this proof works in the same way. Indeed, in view of Remark 3.1,
inequality (20) still holds for some y, € I'(g, u;), where y; < ”i(xogxﬁ 7). So
we obtain (29) with T'(x) taking values in supp(v) NA. Now, suppose by
contradiction that

(VIn(@),y —2)<0

for some (z,%) € supp (@) x Q. Then, recalling that Vi, € C°(Q), there exist
an arc I C 92 containing zZ and a neighborhood @ of ¥ such that the
same inequality holds whenever (z,y) € I x (. Because of the arbitrari-
ness of A and g, we can choose ¢ supported in 2N and A C I. Since T
transports o to y4v, this implies (VA (T(x)),x — T(x)) <0 for all x € supp (o),
against (29). O
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4. — Uniqueness of the gradient flow.

We now consider the problem of uniqueness of solutions for (1)-(2) in the case
of measures with L internal part. Taking into account the result of Theorem
3.1, we focus on the following class of solutions.

DEFINITION 4.1 (Regular gradient flow). — Let T' > 0. A solution of problem
1)-2) is a regular gradient flow if

D) [|a®ll, € L=0,T),
i) (Vhyp(@),y —x) > 0 for all (x,y) € supp (ut)) x Q and ¢ € (0, T'.

REMARK 4.1. — Condition 12) is related, as already noticed in the introduction,
to the one appearing in [AS, Definition 3.1], that is, t—zu(f) is nondecreasing as a
measure valued map. In fact, if the negative gradient at the boundary (that is the
limit of velocities in Q) is directed towards the exterior of the domain, we expect
that no mass can move from 022 to Q2 during the evolution. Such a behavior was
argued in [AS] in the case 4 > 0 by means of direct energy arguments, which do
not extend for A = 0. Actually, condition i), obtained in Theorem 3.1 only for
A =0, will allow us to obtain a stronger uniqueness result.

THEOREM 4.1 (Construction of a regular gradient flow). — Let Q be convex. Let
Lo € P(Q), with Lty € L*°(Q). Then there exists a solution to problem (1)-(2) which
18 a reqular gradient flow.

PrOOF. — Let 10 := 1y We find 1+ solving (4) with 4 = 0 recursively. We
then define

(30) i) =gt ifte (kr,(k+ 1)1l

T

and for 7 | 0 we can find limit points, that is, we can find sequences 7, | 0 such
that in the sense of measures

(31) lim 7, (6 = p) V>0,

So, there exists a solution constructed in this way (see [AS, Section 6] for more
details). Thanks to Lemma 3.1, the interior parts of all the discrete minimizers
will belong to L*. Letting 7' > 0, and passing to the limit in 7, we will have
) € L0, T); L*>(Q)). Moreover, after Theorem 3.1, the discrete minimizers
can also be chosen to satisfy (15), which, passing again to the limit in 7, becomes
condition 7) of Definition 4.1. In fact, as a consequence of (31), hﬂm“) — hy@ in
CH(Q) for every t € [0, T]. In conclusion, there exists a regular gradient flow as in
such definition. O
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The next inequality prepares the proof of the uniqueness theorem.

LEMMA 4.1. — Let p,v € P(Q), with fi,% € L™(Q) and Wi(u,v) < e3. Then
there holds

D,0) — D) > gmg) Q)

32
32) + f (Vi (), y — x)dy(a, y) — o(Wa(u, v),

(@xQ\(02x0Q)

where w(t) = IN{t| log t|, K being a suitable nonnegative constant depending only
on @ [l and |7 .

ProoF. — We shall estimate the last term of inequality (10). Forall y € Iy(u, v)
we have

Judv-w="" [ G-y
Q

(@xQ\(0Q%0Q)

and a Taylor expansion (with remainder in integral form) yields

[rhav-w=" [  (Vn@.y—)dye.y
) (QXQ\(0Q%0Q2)
(33)

Q
1
1
5[ [ (@ 0wt o -,y - @)dipdo.

0 (@xQ)\(002x09)

In order to treat the remainder, we split it in two terms:

1
] Q=0 0 — 0y — )t it

0 @xQ)\(092x0Q)

1
1
<3 Of J 710 = 03+ 000 — .y ) e )0
2xQ

1
1
5 [ U = 0+ Oy — ),y — @)y, v
0 oxo
First term:

the measure y, 57 is a transport plan between i and oy for a suitable o1 < v,
then it is induced by a transport map 7. Let

Toy=Q-0OI+0T, py= Tg#ﬂ.
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It follows that

1
[ [ 19200 = 0+ 09y — ),y — @)y, y)do

0 ox0

1
— f % f (V2R (To@)(To(x) — @), Ty(x) — x) |dic)do
0 Q

1
(34) = f % f (VEh (@)@ — Ty (@), @ — Tyt (@) | duy(a)dl
0 Q

1

1
< Of ! V2h, (@) | — T @) 2duy()do

R

1 1/

1/p
1 ,
Il ( | |v2hﬂ<x>|”du0<x>) ( [ Ix—Tgl(x)zpdﬂa(x)) do),
Q Q

0

IA

|

where p > 1 and p’ are conjugate exponents. Let p and p, be the densities of jt
and u, respectively. The change of variables formula gives

[ 192y = [ 1920 py a?
Q Q

1/2 1/2
< ( f |v2hu|2pd£2) ( f |pg|2d£2)
Q Q

1/2 , , 1/2
2 2p 2 2
< f V2, [2dL f (4| Jeil JT9)|) | det (JTy)|dL
Q Q
1/2 i 1/2
<u| [ ract) | [ ot
Q Q 0

But for ¢ € (0,1), there holds |det (J(1 — I + 6T))| > (1 — 6)2, yielding

1/2 ) 1/2
ac
IV2hPduy < M| | |V2h,|[?PdC?
;2[ H 0 5’[ u Qf(l _ 0)2

< M|V |[f, 1120 = 0)7
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On the other hand

J V=13 PP dpy = 11 =15 PiL = T
Q Q
< @iam @27 [ |1 - 7, Pdg,
Q

— (diam Q)% Vg2 f T — IPdj
Q

= (P(diam Q)** DW2(u, v).

Substituting in (34), we get

1

[ [ 1920 = 0+ 09y — ),y — @) dyta, y)do
0 0x0

<MYP|QY P diam QP [Py |0 W (1)

1
1 71/ /
—(1—0)7VPe?P gg.
Of 210

Now, for p sufficiently large (for example p > 3), the integral in the last term is
finite and uniformly bounded in p. Moreover by elliptic regularity we have
HVZh,,Hsz(Q) < cpllull, so that

1
[ [ 1092000 = 00 + 0y — 00,5 — @)dyte, )0 < CpWE ().
0 ox0

As done by Yudovitch in the study of Euler equations in two dimensions (see
[YU1, YU2]), we minimize in p and, since W(u,v) < e~3, we find

minpW'" (u,) = W5, )] log (W5 (e, ).
This is the desired logarithmic bound.

Second term:

it can be treated in the same way: for example we can consider yg, ) €
(02, V), where o2 is a suitable measure with g < 1. Now there exists a transport
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map s such that s;V = g2. Letting sy = (1 — 0)s + 01, we get

1
f f (V2R (1 — O + Oy)y — ),y — @)|dy(e, y)dO

0 oxQ

1

1 - ~
Sf 1_62 f|v2hl‘||801_I|d(8(}#l})d0.
Jaor )

The calculation is now analogous, taking into account that | det (/sp)| > ¢ and
that [ |1 — s[*di < W2(u, ).
Q

Thanks to the logarithmic bound on the remainder of (33), from (10) we
obtain (32). O

Eventually, we are going to state and prove our main result. The procedure is
analogous to the one of [AS, Theorem 3.2], but here we can show that uniqueness
holds also if some mass is present on the boundary of 2 during the evolution.
Even if the initial datum is not supported in Q, this guarantees a global un-
iqueness result.

THEOREM 4.2 (Uniqueness of the regular gradient flow). — Let Q be convex.
Let 1, 12 be solutions of (1)-(2) satisfying the conditions of Definition 4.1. Then
110) = 12(0) implies 1 (t) = 12@t) for all t € [0, T,

ProoF. — Let u(t) be a regular gradient flow as in Definition 4.1 (it is
coupled with the velocity field —Vh,pro), 7 € To(u(®),v) and v e P(Q).
Applying (32) we find

B,0) — Dult) > (@ — (@)

] (Tho@.y - ).y - oW, )

(@xQ\(02% Q)

whenever WZ(u(t),v) < e~3. Since w(t) satisfies the continuity equation, for al-
most every ¢ there holds (see [AGS, Theorem 8.4.7])

1

oxQ
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Substituting in the previous relation we get (for Wg(u(t), V) < e3)

1d

A .
5 7 — W2(u(t),v) < &,(v) — &;(u(t)) —5 (M@ — D)

+ oWt ) = [ (Vi) y =)y y).
02xQ

On supp (iu(®)), Vi, points towards the interior of the convex domain, then the
last term is non positive, and so, for W2(u(t),v) < e73,

1d

A .
(35) 577 Vo (®), v) < 0,0 = @,(u(t) — 5 (@) — jut)(D)

+ o(WE(u(®), v)).

Applying (35) first to 4 = u!(t), with v = 4%(s), and then reversing the roles of !
and /2, we can sum the corresponding inequalities as done in [AS, Theorem 3.2]
(for a rigorous argument, see [AGS, Lemma 4.3.4]) and we get

d
7 a0, 12 ®) < oW ), 1)
for almost every t such that W3(ul(t), 12(t)) < e®. Now we make use of the

1
logarithmic bound, that yields [ 1/w(s)ds = co. So Gronwall’s lemma entails
(@) = 12@t) for all t € [0,77.  ° O
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