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Eigenfunctions of the Laplace Operators
for a Building of Type G»

A. M. MANTERO - A. ZAPPA

Abstract. — Let A be thick affine building of type G». We prove that any eigenfunction of
the Laplace operators of 4, associated with a pair (y,,s), is the Poisson transform of a
suitable finitely additive measure on the maximal boundary Q of A, by using only the
combinatorial structure of A.

1. — Introduction.

In his paper [5], S. Helgason conjectured that any joint-eigenfunction of all
invariant differential operators on a symmetric space can be given by the Poisson
integral. This problem has been solved in [9]. In [10] S. Kato proved a p-adic
analogue of the Helgason’s conjecture by giving necessary and sufficient
conditions for the bijectivity of the Poisson integral in terms of the cyclicity of a
K-fixed vector of an unramified principal series representation.

Since the affine buildings introduced by Tits [16] are the objects playing the
role of symmetric spaces for semisimple matrix groups over p-adic fields , we
may consider Kato’s results as results on buildings.

Nonetheless the definition of affine building is strictly combinatorial.
Therefore it is interesting to prove an analogue of the Helgason’s conjecture for
affine buildings, not necessarily arising from a linear p-adic group, by using only
their combinatorial structure.

The case of affine buildings of rank 2 (homogeneous trees) has been solved in
[11], by introducing the space of martingales on the Poisson boundary and
studying their relation with the solution of the eigenvalue problem for the con-
volution operator by the radial function y,;. See also [4].

The buildings of rank 3 may be classified, following Tits [16], into buildings of
type Az, By and Gy according to the triangle tesselation operated on the
Euclidean plane by the associated Coxeter reflection group W.

In [2] it has been proved that there exist affine buildings of type As which are
non-linear; moreover in his paper [7] Kantor constrycted two geometries having
universal covers which are affine buildings of type B2 and G2 respectively which
do not arise from matrix groups (see [8]).
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In [12] we considered affine buildings of type As and two average operators,
the Laplacians, which are, in the linear case, the generators of the Hecke algebra
of the convolution operators by compactly supported bi-K-invariant functions on
the vertices of the building; then we described the solution of the eigenvalue
problem for these operators in terms of the Poisson transform of a unique finitely
additive measure on the maximal boundary Q.

__ In this paper we solve the Helgason’s conjecture for affine buildings of type
G2, so extending the results obtained in [12].

The strategy we use here is inspired from [12]: we first define the
Poisson kernel and the Laplace operators £;,Ls on the building, then we
reduce the problem to an eigenvalue problem on an abstract apartment A
for two operators obtained by retracting on A the Laplace operators with
respect to a chamber. Actually the characterization of the eigenfunctions of
the Laplace operators is based on the property that any joint eigenspace of
the retracted operators has dimension equal to 12 (i.e. the cardinality of the
associated finite Coxeter reflection group) and it has a basis consisting of
functions obtained by retracting the Poisson kernel for a suitable choice of
boundary points. To this purpose we select on A a fundamental region R
consisting of 12 vertices, with the property that if an eigenfunction is zero
on Ry, then it is the null function on A, and we evaluate on the vertices of
Ro the retraction of the Poisson kernel corresponding to twelve suitable
boundary points, so forming a 12 x 12 matrix P. The non-singularity of the
matrix P implies the existence of the required basis for the eigenspace and
then the theorem. N

Nevertheless buildings of type G2 present substantial differences from those
of type Aq. First of all, the residue of a vertex depends on its type, and there is
only one type of special vertices which form, on any apartment, a lattice of 72.
Moreover, in the linear case, the compactly supported bi-K-invariant functions
on the special vertices are generated by the characteristic functions of the set of
vertices at distance respectively two and four from the origin. For these reasons,
Poisson kernel and Laplace operators are defined only on the special vertices
and these operators are the average operators on the vertices at distance re-
spectively 2 and 4 from a fixed special vertex. Therefore it is much harder to
evaluate, in this context, the retraction (with respect to a chamber ¢y of the
building) of the Poisson kernel.

To overcome these difficulties, in this paper we introduce a quick and easy to
handle tool to evaluate the retraction (with respect to any cy) of the Poisson
kernel. More precisely we introduce three operators 7I'; which describe the re-
traction on A and we associate to each of them a 12 x 12 matrix. Once the pro-
blem is reduced to a matricial problem, we are able to determine the matrix P,
combining in a appropriate manner these matrices, and then to compute (by
using a mathematical software) its determinant.
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This method of computing the retraction by using the operators T; easily
applies to buildings of type B, and it allows us to solve Helgason’s conjecture also
in this case [13].

In this paper we discussed also the cases when only one type of special ver-
tices or the non-special vertices are considered. We point out that these cases
differ from those when all types of special vertices are considered, because for
them Helgason’s conjecture fails, for there exist eigenfunctions of the Laplace
operators that cannot be expressed in terms of a finitely additive measure on Q.
The same happens if we consider only one type of vertices in a building of type
Ay, as it will be shown in a forthcoming paper [14]. B

In Section 2 we collect all general facts we need about buildings of type Gz and
we define the Poisson kernel.

In Section 3 we define the operators T, the associated matrices and we de-
scribe the technique to evaluate the retraction of the Poisson kernel in term of
them.

In Section 4 we introduce the Laplace operators and we evaluate their joint
eigenvalues. Moreover we retract these operators on the abstract apartment and
we describe the fundamental region R on it.

In Section 5 we compute the matrix P and we evaluate his determinant.

Finally in Section 6 we prove the theorem.

We would like to thank T. Steger for valuable suggestions about the matter of
this paper and Donald Cartwright for helping us to manage the problem of
computing the determinant of a 12 x 12 matrix, whose entries are polynomials in
four variables of degree up to 20.

2. — Preliminaries.
2.1 — The building.

A thick affine building 4 of rank 3 is a simplicial complex consisting of ver-
tices, edges and triangles (the “chambers”), realized by “gluing together” a fa-
mily of subcomplexes (the “apartments”), each of which is isomorphic to the
Coxeter complex A of a reflection group W acting on the Euclidean plane E?. We
refer to [15] and to [1] for the formal definition. The building has type Gy if the
Coxeter graph is the following:

In this case

W = ({ro,r1,72} 172 =12 =72 = 1,(rgr)® = (ror)® = (r12)® = 1).
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We denote by V, € and C the set of vertices, the set of edges and the set of
chambers of 4 respectively; we also denote by d the usual graph-theoretic dis-
tance on V. There is a functions 7 from £ (resp on V) onto 7 /37, called “the type”,
such that each chamber contains one vertex and one edge of each type. We assign
the type to the vertices and to the edges of any chamber according to the notation
of the Coxeter graph, as shown in Figure 1. The angle between the i-edge and the
J-edge of any chamber is 7/m;;, where mo; = 3,m12 = 6 and mgpe = 2.

Fig. 1.

We define two chambers i—adjacent if they share an edge of type i. Any two
chambers ¢, ¢’ may be joined by a “minimal” gallery [c, ¢'] of two by two adjacent
and distinct chambers ¢y =c, ..., ¢; = ¢;if ¢;_1 and ¢;, are iy —adjacent for each k,
then 7 = (iy,...,%) is the “type” of the gallery, denoted by =(c,c’), and the
number [ + 1 is its “length”. Analogously, any chamber ¢ (resp. any vertex x) may
be joined to any vertex &' by a minimal gallery [c,«'] (resp. [x,4']) and zlc, ']
(resp. nlx, x']) denotes its type.

The residue St(x) of any vertex « is a spherical building, whose type depends
on 7(x). Actually St(x) has type Gz if t(x) = 0, type A1 x A; if (x) = 1 and type As
if 7(x) = 2. (see [15] or [1]). In particular if 7(x) = 0, the finite Coxeter group W,
associated to St(x) is the dihedral group of order 12

Dg = ({r1,m2} 7§ =15 = ()’ = 1)

and W = 72 >a W,. Thus the vertices of type 0 are the “special vertices” of 4.

The building 4 is assumed to be locally finite; therefore any edge belongs to
finitely many chambers. We call “valency” of an edge the number of chambers
sharing it, and we denote by g; + 1 the valency of any edge of type i. Edges of
type 0 and 1 have the same valency, but the valency of edges of type 2 is possibly
different. For ease of notation we set gy = g1 = p and g2 = ¢q. In [3] W. Feit and
G. Higmann proved that pq is a perfect square; moreover in [6] W. Haemers
proved that p < ¢*, ¢ < p3.

For any special x, the residue St(x) consists of (p + 1)(p?¢® + pq + 1) vertices of
type 1, (g +1D(p?¢® +pg+1) vertices of type 2 and (p + 1)(q + 1)(p?¢® + pq + 1)
chambers.

Let « be a special vertex. A sector @, based at x is a simplicial cone of vertex x
determined, in any apartment containing x, by a chamber, called “base chamber”
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of the sector, having «x as one of its vertices [15]. We call “¢-wall” of @, for = 1,2,
the wall containing the edge of type ¢ emanating from x. Two sectors based at a
same vertex are said “i-adjacent” if they share a i-wall.

Two sectors Q., @, are said equivalent, or parallel,@. ~ Q,, if they contain a
common subsector. The set Q of equivalence classes w of parallel sectors is called
“maximal boundary” of 4. We denote by @.(w) the sector based at x associated
with w. If we fix a special vertex e, 2 may be endowed with a totally disconnected
compact Hausdorff topology, generated by the family 5 consisting of the sets

Qe)={weR:cCQlw}, VceCl.

We call “fundamental apartment” of the building the abstract apartment A
and we denote by V, € and C the set of its vertices, the set of its edges and the set
of its chambers respectively. The definition of retraction 7 of 4 to A with re-
spect to a boundary point @ (of initial vertex xo) given in [12] applies also to
buildings of type Gs, provided x, is a special vertex. The same is true for the
retraction 7, of the building to the fundamental apartment with respect to a
chamber ¢ € C (see [12]). For every function f on V, the “retraction” of f with
respect to a chamber c is the following function on V

1( i 2. f@.

er (X))

folX) =

2.2 — Coordinates on an apartment.

Given an apartment A and a sector @,, in it, any special vertex of .A may be
identified by an ordered pair of integer coordinates (12, n) (with respect to @,,) in
the following way. We select the line H; (resp. Hs) passing through xy, and
containing the 2-wall of @, (resp. the 2-wall of the sector @, 1-adjacent to Q).
The special vertices of H; are assigned coordinates (0,n), n € 7, (resp.
(m,0), m € 7,) assuming that (0, 1) (resp (1, 0)) are the coordinates of the vertex
of Q, N Hy (resp Q, N Hz) at distance 2 from . Thus a special vertex x of A has
coordinates (m, n) if the line parallel to H; (resp. Hs) intersects He (resp. H;) in
the vertex of coordinates (m,0) (resp. (0,%)). With this assumption the special
vertices of @, are characterized by coordinates (m,n) with 0 <m <mn (see
Figure 2).

If A’ is another apartment containing x and Q,,, then the coordinates of x in
A’ are the same as those in A. Moreover, if « € @, N Q,, , then x has the same
coordinates with respect to both ., and @, .

Each chamber ¢ of .A may be endowed, with respect to the sector Q,, with a
triple of integer coordinates (k, m, n), where (m, n) € 72 are the coordinates of the

Xp?
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Fig. 2.
special vertex x of ¢ (with respect to Q,,,) and k € {1, ---,12}, characterizes (among

the chambers of A sharing the vertex «x) the position of ¢ with respect to the sector
Qy ~ Q.- Figure 3 exhibits the chosen numbering. Assuming that W stabilizes the
vertex « of A of coordinates (m,n), we denote by oy, the element of W, mapping
the base chamber of the sector @, onto the chamber of coordinates (k, m,n).




EIGENFUNCTIONS OF THE LAPLACE OPERATORS ETC. 489

We denote by U (resp. U) the set of special vertices of the building (resp. of
the fundamental apartment).

On the fundamental apartment A we set X = X, ,, if the special vertex X has
coordinates (m,n) (with respect to a sector Q).

REMARK 2.2.1. — Since each chamber of 4 contains exactly one special vertex,
a complex valued function f defined on I/ (resp. on I{) may be interpreted as a
function on C (resp. on C), which is constant on all chambers sharing a special
vertex, and viceversa.

2.3 — Poisson kernel.
Fix a sector @ on A.

DEFINITION 2.8.1. — Foreverya,f € C* let Pup U — C be the multiplicative

Sfunction )
¢(L,/;(Xm,n) = amﬂna v(mv n) e Z 9

with respect to the coordinate system associated to @. The Poisson kernel, of
initial point xy and of parameter a, f, is the function

Py, 0) = ¢, ,(ri(@)), VeelU, VYoeQ.
We simply write P(x, w) = Pfff’ﬂ(oc, ), whenever there is not ambiguity.
REMARK 2.3.2. — By Remark 3.1.1 we may define P(c,w), Vc € C, as

Plc,w) = P(x,w), if xec.

Poisson kernels depend on the initial point in the following way.

LEMMA 2.3.3. — For every xy,yo € U
6)) P (x, ) = P(x, 0)(P™(yo, ),  Veel, YocQ.
In particular PY(xy, w) = (P*(y,, w))fl, Yo € Q.

Proor. — We refer to [12], Lemma 2.8, for the proof of (1). O

3. — Retraction of the Poisson kernel to A with respect to a chamber.
3.1 — The operators T;.

For every C € C we denote by t;(C) the chamber of A which is i-adjacent to
C and, for every c € C, we denote by 7;(c) the set of all chambers of 4 which
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are i-adjacent to ¢. Then |7 ;(c)| = ¢; and 7.(7 ;(c)) = ti(T'c(C))_.FiX weER gl
and consider the retraction ¥, assuming r%(Q,,(w)) = Q. We give an or-
ientation (with respect to w) to the pair (C,t;(C)) by setting

C—t(C), if 7c)=C implies »°(T;(c)) =1(0),
C —t;(C), otherwise.
See Figure 4 for ¢ = 0.

We point out that when C < ¢;(C), there exists a unique ¢; € 7;(c) such that
7(c;) = t;(C), while for all ¢ € T(c), ¢ # ¢; we have r™(¢') = C.

Q Q

Fig. 4.

As a consequence, each edge of A may be endowed by an arrow, according to
the previous notation, and edges lying on parallel lines have the same orienta-
tion. In Figure 5 we exhibit the orientation of the edges belonging to the
chambers sharing the base vertex of the sector Q.

Q

Fig. 5.
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DEFINITION 3.1.1. — For every function ¥ on C and for every C € C we define

qiF:(0)), it C— (),

Ty(F)C) = :
F(CO) + (g — DF(C), if C — (0.

For every C € C we denote by ,(C) the chamber of A connected to C by a
minimal gallery of type = = (i1, ..., ).

ProposITION 8.1.2. — Let T, =Ty, - - - T}, If re(c) = C, them, for every function
FonC,

@) T(F)XC)= > Fo()).
cery 1 (t(0))

Proor. — We use induction on the length [ + 1 of 7.

Let I = 1. We recall that the assumption 7.(c) = C implies 7 L)) = Ti(e);
therefore if C — t;(C), then »°(¢') = t;(C), for every ¢’ € r, 1(¢,(C)). On the other
hand, if C « ¢;(C), there exists a unique chamber ¢’ in r_ 1(#(C)) such that
r%(¢’) = t;(C), while r™(¢') = C for any other chamber in 7;1(t;(C)). As a
straightforward consequence of the definition of the operators T; we obtain

T(F)C)= Y F@ie)).

cers (t:(0))

We assume now (2) is true for [ — 1 and we prove it for [. Let ng = (i1, - -,%-1)
and let ¢,,(C) be the chamber #;-adjacent to ¢,(C) in the minimal gallery [C, £,(C)].
Then

T(F)C) = To(Ty(ENC) = Y Ty (ENEE ().

¢€r Ltz (O)
On the other hand, by denoting C’ = »%(c¢’), for every ¢’ € r, 1(tno(C)), we have
T,(F)C)= > F@oe"),

crer 1 (t;, (C)
Since

U 7 @) =1 t(0),

¢'€rg tg, ()
then
> o FenE ) = Y Fen@).
c'er (e, (C)) \e"er, ¢, (C") &ery ! (t:(C)

So (2) is proved. O
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Let us consider the function P(-, w) = P™(-,w) on U. The retraction of P(-, w)
on A with respect to a chamber ¢ is the function

PX,0) = D P@,o)= Z 4 ,r@), VX €U,
( 1, erg @ ( I, wer, | (X)
and by Remark 2.2.1 it may be written also in the following way
~ ~ 1
PX,w)=PC,0) = ——+— G )N if XeC.
X, ) = P(C, ) ) ce;cfb S e)
%

Assuming 7,,(co) = Cy = 17(co) we have the following corollary.

COROLLARY 3.1.3. — For every X € U, let C be the chamber containing X in a
minimal gallery connecting Cy to X. Let n = (i1,---,%;) be the type of [Cy,C].
Then

PX,w) = P(C,w) = Tr($, 5)(Co).

1(C)I

e

3.2 — The matrices M.

Fix (m,n) € 72; for every k € {1,...,12} we denote by Cj the chamber of
coordinates (k, m,n) with respect to Q. Let ¢ € C and assume C;, = 7,(c) = r(c).
For every h,ke{l,...,12} we denote by p}f}c the number of chambers
= rfl(ti(Ck)) such that »%(¢') has coordinates (k,m',n’) for some (m',n') € 72.
If p(l) # 0, then (m’,n') is uniquely determined; so we may form the 12 x 12-
matrix M; = (mﬁf,)c) whose hk-entry is

3) m;z])c _ pg‘bl]iam M/))n -n

Representing (3) in the explicit form, we get

p—1 0 0 0 0O 0 0 00 %00
0 p-1 0 0 0 0 0 20000
0 0 p-1 0 O 0 0 00004
0 0 0 p-1 0 % 0 00 000
0 0 0 0 p-10 0 00 020
My=| © 0 0 8 0 0 0 0000 0]
0 0 0 0 0 0 p—105% 000
0 a 0 0 0 0 0 00 000
0 0 0 0 0o 0 £ 00000
B 0 0 0 0 0 0 00000
0 0 0 0 a 0 0 00 000
0 0 p 0 0 0 0 00000
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o 1 0 0 0 O 0 0 0 0 0 0
pp-10 0 0 0 0O 0 O 0 0 0
o 0 0 1 0 0 0 0 0 0 0 0
0 0 pp-10 0 0 0 O 0 0 O
o 0 0 0 0 1 0 0 0 0 0 0
vo_l0 0 0 0 pp-10 0 0 0 0 0

! o 0 0 o0 o0 O O 1 o0 0 0 o0 |
0O 0 0 0 0 0 pp=10 0 0 0
o 0 0 0 0 O 0 0 0 1 0 0
0O 0 0 0 0 0 0 0 pp-120 0
o 0 0 o0 0 O O 0 0 0 o0 1
o 0 0 0 0 O 0 0 0 0 p p-1
00 1 0 0 0 0 O 0 0 0 0
00 0O O 1 0 0 0 0 0 0 0
g 0g=10 0 0 0 0 0 0 0 0
00 0 O 0 O 1 0 0 0 0 0
0 g 0 0g¢g-10 0 0 0 0 0 0
Ma—|00 0 0 0 0 0 0 1 0 0 0
2”100 0 g O 0 g-10 0 0 0 0
00 0 0 0 0O O O 0 0 1 0
00 0 0 0 g 0 0 g—120 0 0
00 0O O 0 O 0 0 0 0 0 1
00 0 0O 0 O O ¢ 0 0g¢g—1 0
00 0 0 0 0O O 0 0 ¢ 0 g¢g-1

These matrices do not depend on (m,n) and they give a useful algorithm for
evaluating 7';(¢, ;)(C) in terms of the coordinates of C, as the following lemma
states.

LEMMA 3.2.1. — Let C be a chamber of coordinates (k, m,n) with respect to Q
and let ¢ € C be such that C = r.(c) = r2(c). Then

Ti(,p)(C) = a™ " Vo Miey,

where Vy is a 1 x 12-matrix, e, is a 12 x 1-matric such that Vo, =1, and
ek = Onk-

ProoF. — The formula is an immediate consequence of the definitions of the
operator T; and of the matrix M;. Actually, for every k, the chamber C coincides
with the chamber Cj, defined above and Ti(qba_’/g)(Ck) is the product of the vector
a™ "V by the k-column of the matrix M;. d

The previous characterization may be extended to any product T, n =
(i1, ..., 7).
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LEMMA 3.2.2. — Let C be a chamber of coordinates (k, m,n) with respect to Q
and let ¢ € C be such that C = r,(c) = r¥(c). Then for every n = (t1,...,%)

4) Tw(¢, p(C) = a" " Vo M ey,
wheve M, = M;, ... M;,.

PrOOF. — Let [ =2. For every (m,n) € 7% we consider the chambers
Ci, ..., Ciz containing X,, ,. By Lemma 3.2.1 we have

a"B"VoMi,M;, = (Ti(, ))(C1), . .., Tiy(, p)(Cr2)) M,

On the other hand, as a straightforward consequence of definition, the
product of the vector (Tiz(gbaﬁ)(Cl), e Tiz(qba’ﬂ)((]lg)) by the k-column of the
matrix M;, gives the value of T}, T, (qﬁaﬁ) in the chamber Cj. By induction on [
we get (4). Od

Assume 7, (co) = Cp = 7'_95;)(60). Let (k,m,n) be the coordinates of Cy with
respect to the fixed sector §. We have

THEOREM 3.2.3. — For every X € U, let C be the chamber containing X in a
minimal gallery connecting Cy to X. Let m = (iy, - - -, i) the type of [Cy, C1; then

D D 1 m pn
P(X,C()) = P(C,CO) = ma ﬁ V(]Mnek.

ProoF. — The previous identity follows immediately from Corollary 3.1.3 and
from Lemmas 3.2.1 and 3.2.2. O

4. — Eigenfunctions of the Laplace Operators.

4.1 — Laplace operators on the building.

For every x € U we define

S1(@) ={y e U : n(x,y) = (0)},
So(@) = {y € U : n(x,y) = (0,1,2,1,0)}.

Analogously, for every X € U, we define (see Figure 6):

SIX)={Yeld:nX,Y)=(0)} ={X1,---,X¢},
g2()() = {Y € H : 7T(X7 Y) = (Oa 1727170)} = {X77 o 7X12}'
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X X7
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6 3
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X192 X0
Fig. 6.

If we consider the retraction of 4 on A with respect to a chamber ¢ containing
the vertex «, then

Siwy= J '), i=12
YeSi(X)

where X = r.(x). This implies
1S1@)| = p(p + DP*¢® + pg + DIS2(x)| = p*e(q + D@ + pg + 1.
We set K; = |S;(x)).

DEFINITION 4.1.1. — We define Laplace operators on A the linear operators

Lif@ =K' Y f@, Veeld, i=12
yeS;(x)

acting on the space of complex valued functions f on U.

4.2 — The etgenspace S(y1, y2)-
For every pair (y;,7,) € C2, we denote
S(ylaVZ) = {f U —C / ‘le = yif’ 1= 1,2}

PROPOSITION 4.2.1. — Let (a,) € (C*)*. For every w € Q and for every
Xy € U, the function sz’ﬁ(~, ) belongs to the eigenspace S(y1,75), associated with
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eigenvalues y; = v;(a, ) given by
n@pf) =K''pa+p+pPat + p*ePp T + pPgap Tt + pga ) + e,
(@) =K'~ Dq+Dpa+f+p°¢at + p*¢F + pPaap ! + pga'p)
+ Ky @f + poqta B+ 00 Pap T+ g B g 4 pPPaRh)
+ C2,
where
a=K'(p-Dpg+p+1),
02 = K;'(p*(q — 1) + 2pq(p — 1)* + pPqlq — 1) + pPqlq — 1) + pq(p — 1)*(q — 1)).

ProOF. — Let P*(-, ) = Pﬁ?ﬁ(~,w). For every « € U and i = 1,2, we have

LiPC,o)@) =K Y POy, 0) =K 1( > P“(y,w)> P, ).
yeS;(x) yeS;i(x)
Let ¢ be the base chamber of the sector Q.(w) and let C = r.(c) = ¥ (c); then
Si@w)= U 7 1Y), i=1,2.Sowe may compute the sum on the right using the
YeS;X)
method illustrated in Section 3. For every j € {1,...,12}, we denote by C; the
chamber containing X; in a minimal gallery connecting C to X;, and we denote by
m; the type of the gallery [C, C;] = [C,X;]. We have

mo = (0)

2 = (1,0)

g = (2,1,0)

y, = (1,2,1,0)

s = (2,1,2,1,0)

e = (1,2,1,2,1,0)

o = (0,1,2,1,0)

g = (0,2,1,2,1,0)

e = (1,0,2,1,2/1,0)

o = (231703271327170)
m = 1,2,1,0,2/1,2,1,0)
e = (2,1,2,1,0,2,1,2,1,0).

Since the coordinates of C with respect to the sector Qx = 7 (Q.(w)) are (1,0, 0),
we have

6
Y Plyw)=> VoMyer,

yeS1(x) J=1

12
> Py,0) =Y VoMyer.

yE€S1 () J=1
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Therefore the two sums on the left are independent on x and give the joint ei-
genvalues y,(a, f5), yo(a, f). The required formulas for these eigenvalues follow
from an explicit computation of Vo My e1, for every j. O

DEFINITION 4.22. — The pairs (a,p) and (d',f) are said “equivalent”,

(aaﬂ) ~ ((Z/,ﬁ,), if‘yi(avﬂ) = Vi((l/,/;/), l = 132

Let us assume that the finite Coxeter group W, stabilizes the base vertex X of
the sector Q. Thus each element o € W, acts on the multiplicative functions on U
(with respect to @): for every multiplicative ¢, the function

J(¢)(Xm‘n) = ¢(0'(an)), V(WL, ’}’L) c Zz’

is multiplicative; for every pair (¢,7) € (C*)? we denote by (£,,7,) the pair such
that
o(be,) = 2,0,

LEMMA 4.2.3. — For every (a,f) € (CX)Z, let £ = * and n = 4 Then, for
every a € Wy, prq pq

(a,p) ~ a(a,p),
where a(a, f) = (pgé,, p*qn,).

PROOF. — Setting a = pgé and S = p2qy, we obtain the following expression
for I'y(&, n) = ;(pgé, pqn) (i = 1,2):
MEn =K'+ n+nt it + )+,
L&) =K' pPqp — D@+ DE+E +n+nt+ &+
+EK D P+ e S+ E )
+ Co.

These formulas show that I'1(¢, ) and I'y(, ) are Wy-invariant. Therefore, for
every (a, ) and for every o € W,

yi(a7ﬂ) = yi(pqémpzqna)a 1= 132 0

REMARK 4.2.4. — For every pair (y;, 7) € 'Cz, there exists (a, ff) € (CX)2 such
that y; = y,(a, B), © = 1,2. Actually, by setting s =¢+1n, a2 = 14yt and
then by =a; +ag, be =ajaz, we may easily prove that, for every pair
(A;,45) € C2, there exists (£, #) such that

A=+ttt + et + &y,
Ap=En+ &+ a2+ WP+ Et + 7).
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COROLLARY 4.2.5. — Let y; = y;(a, ), 1 =1,2. Then
Pi‘zaﬁ)(-,w) € 80y, 7), Yo e Q, VoeW,.

4.3 — Retraction of the Laplace operators.

Given a chamber ¢y, we prove that, as for buildings of type ﬁz, the Laplace
operators on A retract to a pair of linear operators on A.

PRrOPOSITION 4.3.1. — Let ¢y € C; there exist mon megative y; = y;(X,Y),
1=1,2, such that

®) Cif)o® = Y nX V), vXel, i=12,

YeSi
where Sy (X) =5;(X)U{X}, 52 (X) = So(X)US; (X)U{X}. Moreover 7;(X,Y) > 0
ifY € SiX).

PROOF. — Let X € U; we observe that, for every x € Ve LX),
Siw = J Si@nr'®)
YeSi

as a disjoint union. This implies that, for every X,

— Kfl
Lif,,(X) = |T&)12(X)| Z ( Z ( Z f(?/)) )

YEg,jj(X) JCET(%I(X) yESi(él')ﬁV(TOI(Y)

On the other hand, for every Y ¢ giu X),
U Si@nr@) =),

wergl(X)
and, for every y € . 1(Y),
{rer'X): yeSi@)} =Sy N X),

asy € S;(x)if and only if x € S;(). Since the cardinality of S;(y) N e 1(X) does not

depend on the choice of y in (o 1(Y), and, for every X, the set S;(%) N frCOl(X )is not
empty if Y € S;(X), the proposition holds. O

From now on we denote by L1 and L5 the linear operators on A obtained by
retracting £4 and £y with respect to a chamber cy:

LFX) = Y n&XYVFY), vXel, i=12
YeSix)
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Actually £~1 and £~2 are independent of the choice of the chamber ¢y, but they
depend only on the choice of the chamber Cy on A such that 7(co) = Cp. We
point out that the coefficients of £; and £ really depend on the vertex X.

For every pair (y;,7,) € (2, we denote

Sy ) ={F:U— C:LiF=yF, i=1,2}
As a straightforward consequence of dlefinition,j;CO € ‘ST(yl, 79), for every function f
in 8(y, 72)-
4.4 — Fundamental region on A.
As for a building of type Ay, we may choose on A a particular region R,

characterized by the property that knowing the values of a function of
S(y1,79) on the special vertices of this region allows to reconstruct the whole

function on U.

R,

Fig. 7.

DEFINITION 4.4.1. — We call “fundamental region” Ry of A any region ob-
tained applying any element w € W to the region pictured in Figure 7.

PROPOSITION 4.4.2. — Let F' € ‘57()/1, 79); then F' is uniquely determined by its
values on the special vertices of Ry.

ProoF. — We choose on A the fundamental region consisting of the vertices

X090, X10, Xo1, X-10, X_11, X209, X11, X 21, X_1-1, X 20, X21, X192,

with respect to the sector Q. For every n > 1 consider, as shown in Figure 8, the
hexagon R,, of base vertices:
Xn,h Xl.m an.,ny Xﬂz,Oa X7n+1,7?7/+15 Xn,fnJrl-

N As in [12, Proposition 3.5], we use induction on #» to prove that a function ¥ of
S(y1, 1), which is zero on the vertices of Ry, is the null function. O
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X3.1 Xi3
X2,1 X1,
R,
Xag
1,1
(X0,1
X3, 2 \X2 1\ X1, '
Xo.0 RS @PP\ SEX
—1 (X o1
-1,-1 X_op
X_2,-2 X_30

COROLLARY 4.4.3. — For every pair (y,,7,) € C% dim 57(9/17 79) < 12.

Proor. — Let Ry be a fundamental region of A and Y7y,..., Y its vertices.
The map F+— {F(Y1),...,F(Y12)} is a linear injection from S(y;,y5) to 2 O

4.5 — A basis for SN(yl, o).

Let (a,f) € (C*)? and y; = 7:(a, B), 1 =1,2; for every chamber cy, the re-
traction f’(~, ) of PZ?/;(-, ) belongs to §(y1, 79), for every w € Q and xy € U.

Fix a chamber ¢, and assume ) € ¢o. Our aim is to check that it is possible to
choose twelve different boundary points w;, ..., w2 in such a way that the cor-
responding functions f’(-, W), - ,f’(-7w12) are linearly independent and there-
fore they may be chosen as a basis for the eigenspace.

DEFINITION 4.5.1. — We denote by Q) = Qy(co) the set of all boundary points w
such that the base chamber of the sector Q.,(w) has coordinates (k,0,0) with re-
spect to the sector based at cy in any apartment containing both sectors.

12

As immediate consequence of definition we have Q = |J Q and Q;, N Qp = 0,
k=1

if k # k'. Moreover there exists a unique value of k¥ depending on ¢y, say k., such
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that Q’% = Q(cp). In this sense the sets Qi,..., Q212 play the role of the sets
Qcj, j=1,...,6, defined in [12, Definition 3.8].

REMARK 4.5.2. — On the fundamental apartment A we consider the sector @
emanating from the vertex X and we denote by C its base chamber. For
k=1,...,12 we consider the chamber C;, containing X and having coordinates
(k,0,0) with respect to @; moreover we denote by @;. and &y, the sector based at Cj,
and the corresponding boundary point (see Figure 9).

Fig. 9.

If 7., maps ¢y onto C, then
Qk = {C() G Q : TC()(Q.%’(](Q))) = Qk}a

and therefore 7., (w) = @y, Yo € Q.
For every w € €, let assume that % maps Q,,(w) onto Q. Then we have:

PROPOSITION 1153 — Let (k',0,0) be the coordinates of the chamber 0',;1(5)
(with respect to Q). For every w € Q;, and for every X € U

~ 1
(6) P(Xﬂ)):mVOMnekw

if m is the type of a minimal gallery connecting C to X.
PRrOOF. — For every k we have 6,(Q) = Q.. Thus C has the same coordinates

with respect to @ as a,;l(é) has with respect to @. Therefore (6) follows from
Theorem 3.2.3. O

REMARK 4.5.4. — Let wy be a boundary point such that ,,(cw) is based at ¢y,
and let ¢, = o1(co) be a chamber containing xy and having coordinates (k, 0, 0) with
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respect to Q,(wo); then rﬁ%(ck) = (Cy, if 7o maps Qx, () onto Q. We si_mply de-
note by 7, the retraction of the building on A mapping o} L(¢o) onto 6;,1(C) and by

Py.(-, wp) the retraction of P™(-,my) with respect to 7. Then, for every X € U,
P(X, o) = Pi(o;" (X), o).

Actually for every X € U we have n(C,X) = n(a;,1(C), 07} (X)) and |re, (X)) =
. 1(a,;l(X ))|. So the required identity follows from Theorem 3.2.3.

We pick a point @y, in Q;, for each k = 1,...,12, and we consider IN—’(~, wy). We
fix a fundamental region R containing X and C as shown in Figure 10, denoting
by Y1,..., Yz its vertices, and we consider the 12 x 12 matrix P = (P;;), whose
entry P, is the value ﬁ(Yj, wy).

Q
Yii 2 Yy
Yz Ys
Y3 Y,
Yl = X ; Y4
Ys Yy
DETL Yio
Fig. 10.

DEFINITION 4.5.5. — A pair (a, f) is said “singular” if det P = 0.

Since any function P(-,wk) is completely determined by its values on the
vertices of the region R,, the functions P(,w1),...,P(,wp) are linearly de-
pendent if and only if (a, ) is singular. The following proposition exhibits the
singular pairs.

PROPOSITION 4.5.6. — The pair (a, f) is singular if and only if (a, f) satisfies at
least one of the following relation:

a=p, B =nq,
B=a, af = piq,
p=d,  F=pa

PRrROOF. — By Proposition 4.5.3, in order to determine P;; we only have to
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determine the type of a minimal gallery connecting C to Y; and then to apply (6).
We have

nC,Ys) = (0)

n(C,Ys) = (0,1)

n(C,Yy) = (0,1,2)

n(C,Ys) = (0,1,2,1,0)

n(C,Ys) = (0,1,2,1,2)

o(C,Y;) = (0,1,2,1,2,1,0,1)
n(C,Ys) = (0,1,2,1,0,2,1,2)
n(C,Yy) = (0,1,2,1,0,2,1,2,1,0)
n(C,Yy) = (0,1,2,1,0,2,1,2,1,2)
n(C,Yy1) = (0,1,2,1,0,2,1,2,1,0,1)
n(C,Y) = (0,1,2,1,2,1,0,1,2,1,2).

The computation of the determinant of the matrix IP is obtained operating iterate
reductions of the matrix and using mathematical software “Mathematica 2”. We
get, for every (a,f) € (CX)Z,

det P = Ma"*f " (a — p)°(@® — @ = p)°p*a — f° @ — p*0)°(B — pa)’,
where M is a constant depending on p, g. This proves the proposition. O

COROLLARY 4.5.7. — The functions f’(-,wl), e ,P(-,wlz) are linearly depen-
dent if and only if (a, ) satisfies at least one of the relations:

a=Dp, B =nq,
B=a, aff = pq,
p=d*  F=pla

PROPOSITION 4.5.8. — For every singular pair (a, f) there exists an equivalent
pair which is non-singular.

PRrOOF. — Setting a = pqgé, f = p2qy, the pair (a, f) is singular if and only if
(&, n) satisfies one of the following relations:

é = q_la n= p_la
(M n=ple, &n=ql,
n=q&, &= qip.

We shall prove that for every (&, n) there exists o € Wy such that (&,,7,) does not
satisfy any of the previous relations.
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We may restrict to consider
®) 1< [E] < [

In fact if |£] > || then the pair (&,,7,) = (y, &) satisfies |&,| < |7,|. Moreover if
£ <1<|yl (resp. |¢|<|y/<1), then the pair (&,n,) =& 'n) (resp.
(&, &7Y) satisfies 1 < |&,] < |n,.

If (8) holds, the only possible relation between (7) is

9 n=q&.
But if the pair (¢, #) satisfies (8) and (9), then the pair (£,,7,) = (¢, 7) again
satisfies (8) but not (9). This proves the proposition. |

THEOREM 4.5.9. — For every (yy,7s) € 2, there exists a non-singular pair
(a,p) satisfying y; = y(a, B),i = 1,2, such that {P(-,an),...,P(,;mn2)} is a basis
fOT. S(ylv VZ)

Proor. — It is an immediate consequence of Proposition 4.5.8 and
Remark 4.2.4. |

REMARK 4.5.10. — Let (a,f) l}f} a non-singular pair and let P be the corre-
sponding matrix. For every f € S(y;, y2), with y; = 7,(a, f),7 = 1,2, and for every
chamber ¢ € C, the linear system

12
(10) > Piky =fYp, j=1,...,12,
k=1

is non-singular; we denote its unique solution by
(11) (;ul(f7 C)a s 7#12(.]{5 C))
Formulas (10) and (11) generalize (9) and (10) of [12].

5. — The main theorem.

5.1 — The Poisson transform.

Let H(Q) be the linear space of all locally constant functions on Q and let
H'(Q) be its dual, consisting of all finitely additive measures defined on the al-
gebra generated by the open sets of Q2. As for a building of type As, for every
X9, % € U the function P™(x, -) belongs to H(Q).

For every pair (a, ) and every xy € U, we define the Poisson transform (of
initial point xy and parameters (a, ) of a finitely additive measure v € H'(Q) as
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the function

P @) = [ P @, o)), el
Q

For ease of notation, we simply denote by P*v this function, when (a, f) is fixed.
As a direct consequence of Proposition 4.2.1, P™v belongs to the eigenspace
S(1,72), if y; = y(a, B), i = 1,2. Moreover Proposition 4.1 of [12] extends to a
building of type Gz, as a consequence of Theorem 4.5.9 and Remark 4.5.10.

ProposiTION 5.1.1. — Let (a,f) be a non-singular pair. If f =P, for
v e H'(Q), then for every chamber c € C

WQ(e) = (1. f, P, 2C) ™,

where x 1s the special vertex of ¢ and Pflﬁﬁ(ac, Q(C)) denotes the value that the
Junction Py 4(x, ) assumes for every w € €(C).

Proor. — See proof of [12, Proposition 4.1], with the obvious change of
notation. O

COROLLARY 5.1.2. — For every non-singular pair (a, f) and for every xy € U,
the Poisson transform Pz"ﬂ is a linear injection from H'(Q) to S(y;,ys,), where
Vi = yi(avﬁ)a 1= 172

5.2 — Surjectivity of the Poisson transform.

The surjectivity of the Poisson transform, for non-singular parameters, may
be proved using the same machinery used in case Ay. First of all, we solve the
problem for quasi-isotropic measures with respect to a chamber ¢ € C. The de-
finition of quasi-isotropic measures may be stated as in [12], referring to notation
of section 4.

DEFINITION 5.2.1. — A measure v € H'(Q) is quasi-isotropic with respect to a
chamber ¢y € C if, for every k=1,...,12 and for every chamber C C Qy, the
measure v assumes the same value on all the sets Q(c), such that

Q) C 2 and 7)) =C.
For every chamber ¢, € C and for every pair (y;, y,) we set
Se (15 72) = {f € Sy, 72) : f constant on the 7, -fibers}.

As for a building of type As we prove the following lemma.
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LEMMA 5.2.2. — Let (a,p) be a non-singular pair and y; = y;(a,f),1 =1,2.
Consider f = Pﬁf’ﬁv, forve H(Q). Then f € S, (1,72 if and only if v is quasi-
1sotropic with respect to cy.

PrOOF. — See proof of Lemma 4.6 of [12], with the obvious change of
notation. O

As a consequence of the previous lemma, we get the following result.

PrROPOSITION ~ 5.2.3. — Let  (a,f) be a mnon-singular pair and
y; = yi(a, B), 1 = 1,2. Then, for every f € S¢,(y1, 1s), there exists a unique measure
v e H'(Q), quasi-isotropic with respect to cy, such that f = Pﬁ:?ﬁv.

Proor. — The retraction with respect to ¢y induces a linear injection
of S¢(y1,79), into the space §y17y2), which has dimension 12; hence
dim S, (y1,72) <12. On the other hand the quasi-isotropic measures with
respect to ¢y form a linear subspace H’CO(Q) of H'(2), having dimension 12, as
any v € H’CO(Q) is determined by its values on the twelve sets Q ;. Thus the
injectivity of the Poisson transform PJ° from HgO(Q) to S (y1,79) implies
dim S, (y1,72) = 12 and hence the surjectivity of the map. O

REMARK 5.2.4. — For every (yy,75), the eigenspace S(y;, 75)) splits as
S(1,72)) = Se, (91, 72)) + Ker(r,y),

where 7., denotes the map f —>fcﬂ.

Also the technical result of Lemma 4.8 of [12] holds in the present case, with
the obvious change of notation.

LEMMA 5.2.5. — Let (a, B) be a non-singular pair and y; = y(a, f),i = 1,2. If f
belongs to S(yq, y9), and f ., = 0, then

(12) > fo=0,

cer;ol(C)

for every chamber C C Q.

Proor. — For ease of notation, suppose 7.(c) = C, Ve € r, 1(C). Since fc be-
longs to S(yy, 72), for every ¢ € r, 1(C), it suffices to prove that the sum in (12) is
zero on the vertices of a fundamental region R. We choose Ry in the subsector
of @ based at C and denote its vertices Y7,..., Y12 as usual. Then it is easy to
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observe that

Fop= 3 F¥p), Vi=1,..,12

cen.’ol ©)

This allows us to conclude. O

Using these preliminary results, we may obtain, by the same argument as in
[12], the following theorem, which gives the required characterization of the
eigenfunctions of the Laplacians.

THEOREM 5.2.6. — Let y;, 7, € C and let (a, ) be a non-singular pair such that
v, =70, B), 1 =1,2. Forevery f € S(y;, y,) there exists a unique finitely additive
measure v € H'(Q) such that

f= Pzﬁv.
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