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Bollettino U. M. 1.
(9) II (2009), 467-482

Smooth 4-Dimensional Thickening of Singular 2-Dimensional
Complex in the non Compact Case

VALENTIN POENARU - CORRADO TANASI

Abstract. — The present paper extends the theory of 4-dimensional thickening [3], [4], in
the NON-PROPER case. Concrete uses of this extensions are to be founded in [2].

1. — Introduction

The present paper is devoted to the 4-dimensional thickening functor which
associates to a singular 2-dimensional polyhedron (X2 L M?) as defined in [3],
[4], [7] and [1] together with a desingularization called ¢, a smooth 4-manifold
called ©*(X2, p) which was already studied in our previous papers [3], [4], [7]. The
novelty is that not only we consider here a not necessarily compact X2, but also
we take into account situations when exhausting f via elementary zipping moves
(as defined, for instance in [3], [4], [7]) requires a not locally finite sequence of
such.

We consider now a 3-manifold M3 which is without boundary (it can be
closed or open) and we consider also an interval, call it 7, which could be the
interval [0, 1] or the real line R. The manifold M? is endowed with a smooth cell
decomposition called 7 and I is endowed with a partition called 6 (cell de-
composition of I). We consider the product cell decomposition 7* ® 0 of M? x I.
We will be interested in the 2-skeleton of 7 ® 0 which we denote by X?. This X?
has the bona fide regular neighbourhood N4(X?) ¢ M3 x I which is a smooth 4-
dimensional manifold with non empty boundary. The first object of the present
paper is to give another different and is it turns out immensely useful de-
scription of this object N*(X?). In order to do this we proceed as follows. To
begin with from X2 ¢ M? x I we will extract a singular 2-dimensional poly-
hedron X2 L M3 in the sense of [1], [3], [4]. We should stress here that this
singular polyhedron is not canonical and not unique unlike the embedding
X? c M? x I. We will need to introduce a vector field % on M?3. This vector field
is supposed to be in general position with respect to X2 and is supposed to be
such that the flow exists for all times. We might think of this flow either as i (x)
with @ € M3, t € R or as a diffeomorphism H = H(x,t) = h(x) entering the
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commutative diagram below

M3 x T - M2 x T

I

Remember also that M3 x I comes endowed with the natural projections

M3 x I o 1

M3

Notice to begin with that the first very naive idea to define a singular 2-di-
mensional polyhedron would be to consider X2 —— M3, but this would be a very
bad idea because this map 7 is clearly degenerate and so we perturb = by 7o H
and we define f = 7 o H with

Ry

X2
The fact that the vector field is in general position with respect to X% means
that this map is non degenerate and it also has our bona fide undrawable sin-
gularities, so this object is a singular 2-dimensional polyhedra. Observe that
while X2 is canonical this object depends strongly on the choice of vector fields.
This singular 2-dimensional polyhedron comes with the desingularization which
we call N; this desingularization is defined as follows. We should notice that from
any singularity start two copies of double lines at the source, living in two distinct
branches. With respect to the projection 7y one is high and the other is low. We
will take H = S when the branch is high and R = N when it is low. Our first
Theorem is the following

THEOREM 1.1. — There is a diffeomorphism
N4(X?) = (X2, M).

Consider a singular 2-dimensional polyhedron X2 N M3, where M? is sup-

posed now open and a desingularization ¢ which could be the one from above or
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another one. Under these conditions we consider the sequence of zippings

¥
zipping

X3 YS

M3
There are two possibilities when g is a PROPER map, in this case Y2 is a bona fide a

2-dimensional polyhedron or when g is an IMPROPER map, in which case Y? is a
wild object. We assume the zipping is, anyway, coherent.

THEOREM 1.2

L. In the case of a coherent zipping, if we call by v the induced desingu-
larization and we have

@2, p) ' 04(X2, p) + {2-handles possibly oo™ many}.

I1. Inthe IMPROPER case Y? is no longer a locally finite simplicial complex,
nevertheless we can make sense open reqular neighbourhood essentially by
taking small open reqular neighbourhood of small pieces and putting them to-
gether. With this and with the boundary of the regular neighbourhood deleted, the
conclusion above holds again.

2. — On 4-dimensional thickening of a singular 2-dimensional spaces.

We consider a closed 3-manifold M3, the collar M3 x [0,1] and a compact
smooth submanifold N4 ¢ M3 x [0,1). We assume both N* and M? x [0,1] — N*
to be connected and also that there is some # > 0 such that M? x [0, 5] C N*.
With this, after an appropriate reparametrization (= isotopy) it can always be
assumed that for some base point * € M? we have

(+ x[0,1) N N* = % x [0, 5].

We will make great use of the product structure M3 x [0, 1], with its two pro-
jections, in what follows

M3 x T o

vertical projection

7 | horizontal projection

M?
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Various triangulations (or cell-divisions) of smooth manifolds will be con-
sidered. It is understood that these triangulations (or cell-divisions) are always
compatible with the underlying DIFF structure. We will denote by 7(, the p-
skeleton of the triangulation (or cell-division) z. In particular, our M? will be
endowed with such a triangulation (or cell-division) 7 and I = [0, 1] will be en-
dowed with a decomposition (i.e. a triangulation) 6, namely

O=to<thi<---<t=n<tipn<---<t,=1.

For M3 x I, two kinds of cell-decompositions will be considered. To begin with
we will have the prismatical cell-division (which we will sometimes loosely call
just a “prismatical triangulation”) r ® 6, where the 0-cells are of the form {vertex
of 1} x t; and the k-cells (k > 0) are of the form

(1) {(k — 1) simplex of 7} x [¢;,%;,1] or {k-simplex of 7} x ;.

Assume now 7 is a bona fide triangulation. Then, after a total order on the set of
vertices of 7 has been chosen once and for all, each prism (1) can be triangulated
in a standard, well-known fashion so as to change t ® 6 into a bona fide trian-
gulation of M? x I, with the same 0-skeleton as  ® 0 and which we will denote by
7 ® 6. The 7’s which we will consider from now on will be of a very special type.
We start by considering a spitting

(2) M? = (MP — int B) | ] B? with « € B?,
v SZ
call this M
and a smooth submersion
3) M? — {«x} L RB.

The existence of such a g follows from the Smale-Hirsch theory. The submersion
g induces a flat riemannian metric on M® — {x}, which is of course not complete,
but this is immaterial for our purposes.

So, locally at least, M® — {+x} has now an affine structure, and all the
triangulation 7 (respectively cell-divisions) we consider from now on for M? are
such that

1) M} (see (2)) is a subcomplex and M3 — int M} is a 3-cell of 7.

2) Any simplex (cell) of M3 is affine-convex on the sense that it is mapped
isorphically by g (see (3)) into an affine simplex (or affine convex-cell) of R3. Such
7’s will be called “affine”.

We will choose once and for all a vector V € R? which is in general position
with respect to g.t, in the sense that if o2 is a 2-simplex (or 2-cell) of 7, or if o', s
are two one-simplexes with a common vertex, then Visin general position with
respect to the planes generated by go® and/or by (ga!,gs!); here “general posi-
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tion” is meant in the linear sense and g is the submersion (3) which has been also
chosen once for all With this, we consider a vector field & on M3, which is equal to
the pull back of V via the local diffeomorphism g, in the nelghbourhood of M3,
and zero in the neighbourhood of * € M3. Conditions for the norm ||£|| of this

constant” vector field will be imposed later on. We will denote the flow of & by
M3 X M3 andjor by

3 H a3
M° x 1 M° x I

o o

1

We denote the diffeomorphism H(x,t) = (hy(x),t). The role of the flow H will
be to perturb the badly degenerate projection

K% {(:® 0)g on the whole M3 x I} 5 M3

into a non-degenerate map

o [ no(H|K?)
_—

(4) K M3,

It is assumed that 6 is such that the various f (K2|ti) C M? are in general
position.

We will denote by Sing(f) C K2 the set of points where f fails to be im-
mersive. Because of our various general requirements, f |(K2 — Sing(f)) is a
generic immersion, and the singularities themselves are isolated points
x = (@, ;) with &' € 1), of the following type. At the level of 7, there are sim-
plexes ¢%, ¢! of dimensions two and one respectively, with ¢ No! = {2’} and

which are such that the planes generated by #;,6% and by nH(a! x I) = | Iya?
tel
meet along a line passing through £;.a'. Of course, in this discussion ¢ could also

mean an affine 2-cell, when 7 is a cell-decomposition. The same remark applies
later on. The same & can correspond to several such lines, but by very small
zippings we can blow up each « into several admissible singularities of the un-
drawable type, without altering the almost collapsibility of K2. So, after such minor
perturbations, (4) is an almost collapsing singular 2-dimensional polyhedron, in
the sense of [3]. The notation (4) will be used for both interpretations, before or
after the small zippings have been performed. We actually want to be very specific

about the undrawable singularities of K2 ER M?3. Every connected component of
flayx [0, Nf(ze x t;) (respectlvely of fzay x [0, Nf((ze x t;)) is an arc

starting at asingularity x = (&, t;) of K2 = M?, and there are no other singularities.
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Such a singularity has a high branch P.(h) and a low branch P,(¢) with P,(h) C
T(1) X [ti, 1],Px(f) C 12 X t; (respectively P.(h) C Te) X ti7px(€) C 1) X [0, tz])
We will work from now with the basic desingularization R for K2 7, 5% which
always specifies the high branches

() R(Py(h) = S, R(P,(0)) = N.

Here, the letter “R” stands for “rectangular”, and it is supposed to remind us
that our desingularization (5) takes into account the product structure of M3 x I
(and the orientation of I). On the other hand, it is assumed here that the sin-
gularity appearing in (5) is actually of the undrawable type, obtained from the
blow-up of the pristine rough singularity .

If we consider now N % (r @ 0)|N4, then

Ne L m?

(i.e. the restriction of (4) to N(g)) is again a singular 2-dimensional polyhedron
which will be endowed with the desingularization R (5).
The embedding

(6) (Neg), 15 1(0) = 701y x 0) — (M? x [0,1], M? x 0)

where 7 is a triangulation of M? and () its 1-skeleton, induces a pair of nested
regular neighborhoods

) N3(zqy x 0) € N3(Ng), with N* ¢ ON*.

But then, there is also another “natural” 3-dimensional regular neighborhood of
7(1) to be considered. If we start with our singular 2-dimensional polyhedron (6)
we can change it into a singular 3-manifold @3(N<2)), and then, the %—collar

7y % [0,%0) C N2 — {singularities}, produces for us a second, canonical 3-di-
mensional regular neighborhood

N3(1) % 0) = ©°(N)) — {singularities} C ©*(N(y))

see note below

O°(fNez)

—_—————
the smooth regular neighbourhood of fNein M3
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NoTE. This can be identified with a piece of the desingularization @ (N, @), ?)-

This canonical N3(zq) x 0) embeds naturally into the various 9@*(---,R)
which we will consider.

LEMMA 2.1. — We have a diffeomorphism of pairs
(8) (N (N ), N3(1) x 0)) = (0*(N), R), N3(1(1) x 0)).

In order to simplify the exposition, we will assume that Ng) =
(t ® 0)2)|M? x I and we will denote this by Z2.

The case of a more general Nz, with N* subcomplex of (t @ 0))|M? x I can
be treated similarly. With all this, the two terms in (8) are two recipes for
thickening Z? in dimension four, the first one coming from the natural embed-
ding Z? — M3 x I and the second one depending on the vector field ¢ which
defines generic perturbation f of 7. We have to show that they coincide.

We start by introducing some notations. The regular neighborhood of
7% x t; C X x t; is denoted N3(i) (it is supposed to be invariant under i = + 1)
and the regular neighborhood of the 1-skeleton of Z%l) x t;, with a 2 to be defined
below, is denoted 73(¢) C int N3(i). We denote by N*() the regular neighborhood
of Z2 x t; ¢ 23 x I and (where the X to be defined), if we write IN*(i) = 2N3(3),
we have two obvious embeddings j;(inf,sup) of 73(i) into ON*(i), with disjoined
images.

£
Z+\\;T
D e}

K3 N3(i)

~—p

g

Tf

K’ singul?rities\T N3(Z)
Wm\\\ N\
3

Fig. 1. — The hatched regions correspond to 2 x [¢;_1,¢;] and X X [¢;, t;41].
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For N4(Z?), we have the following obvious and very symmetrical description

9) N2 = u@O) x [t tD | NG | PO x [t DU
Ji(inf) Ji(sup)

The choice of & breaks the symmetry of the description of %3(i). More precisely,
we have now a surface 2 which has Z(ZD x t;, as a spine and a product structure

(10) W30 = X x [0,1] € N3G) C 5% x t;

with the [0, 1]-factor corresponding to the vector field £. Here is the explicit
construction of ~. For each p € 33 — (), we consider a small 2-dimensional
affine variety E(p) € p orthogonal to & and for a small neighborhood
peUlp) C Z%D we take the orthogonal projection U(p) n—m>E(p). For each
pE Z%l), we have a “local chart”, which is the pair

Cp = {the germ of E(p) along n(p) U (p), U(p) =~ n(p)U(p)}.
Whenever U(p) N U(q) # 0, we have a diffeomorphism

(11) C,|(Up) N U@) ™2 ¢, |(Up) N Ug)),

defined by following the trajectories of &, and for which the cocycle condition is
trivially verified. So we can put things together and get (X, Z(zl)), defined for the
time being as a purely abstract object. We get an embedding X~ ¢ N® which
extends Z%, C N by isotoping, to begin with (E(p), 2(p)U(p)) C N?, via the flow,
lines of &, until 7n(p)U(p) coincides with U(p) C Z?D. Further isotopies of the
E(p)’s, along the flow lines and not budging any longer the 1-skeleton, can realize
the gluing (11). We have now a singular 3-dimensional object

(12) EE - JExtn D UNOYE < it c 2T
P P

and N*(Z?) = N*(K?); the right hand side of this equality is a second less sym-
metrical description of N 4(Z2) than 9). In (12) we have two copies of 2 which we
will denote Xt c N3(3), respectively X~ C N3@i), via which 2 x [t;_1.t]. Re-
spectively X x [t;,t;.1] are glued to N3(i). Each of the Z* can be independently
isotoped, even allowing the two copies to cross each other (COHERENT” O(4)-
move” see [1]) without changing N4(K?). We can even bring parts of X% to ON3(4)
via isotopy, without changing N*(K?) (“O(2)-moves”). In particular, for the basic
2, we will consider a collection of 2-by-2 disjoined squares I; C X resting with
exactly two opposite sides on 92X, such that each connected component of
2 —UJ;1; is a 2-cell (a polygon with an even number of sides). It is understood
that from the standpoint of the 2-dimensional Z2, the I; ’s correspond to little arcs
in Z2 which are far from the singularities of Z2 — 3. The vector field + ¢ gives
a recipe for pushing the If into ON3(4); this recipe is suggested in figure 1. This
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operation changes K? into an object which we will denote by K’; this is a 3-
manifold except for singularities © which are polygons with an even number of
sides. These are actually a generalization of our usual undrawable singularities o,
in their 3-dimensional version. In order to explain this, we will go back to our
usual undrawable ¢’s and present them in an equivalent way, where they look
very much like the new 7’s.

So, here comes an asymmetric model for the (usual) undrawable singu-
larities o. Let X be the union of the two rectangular boxes A3, B? from figure 2
along the long rectangle [ag, b2, c2, dg2, d3, b3, agl. It is understood here that the
part o = [bs, b3, c3, c2] goes towards the interior of A3, except for its two opposite
sides [by, b3], [c1, c3]. We leave it to the reader to check that this X is the same
thing as our usual description of an undrawable singularity.

The genus one surface which is supposed to split X from a larger singular 3-
manifold is

{0A? — {[a1, b1, bs, ag] U [c1,dy, dy, cal}} U{0B® — {([az, d2, d3, ag] x 0]
U([ag, dz] x [0,1]) U ([as,ds] x [0,1])}}.

In this new model, if we pass to a desingularization ¢ with p(4%) = S, then we
have to blow up [bg,cz,c3,b3] C A® into two copies [bg,cz,cs,b3] (sup) and
[bs, ¢z, c3, b3](inf) having [bs,ca], [b3,c3] in common; one leaves B? glued to
the blown up A? along [as,bs,bs,as] U [b, o, cs, b3)inf) U[co, ds, d3, c3]. If
@(A3%) = N, then we just unglue B® and A® along the hatched areas, but

a by C1 dy
Vo ’
o\ \ az by C2 g d
2 B3—[ag,az.ds,ds] x[0,1]
as 3 C3 d3
51“-,‘ as b3 C3 ds
Q4 1)4 Cyq ‘-‘ d4 / /
A3 3 as by C2 ds
Qg ‘64
a b c d

singularity o
! )

Fig. 2. — Usual, undrawable singularity (= a square).
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leaving [bg, b3], [c2, cs] put. This is our asymmetric model. But the point here
is that this way of describing the undrawable ¢’s (which are little squares)
can be immediately generalized to singularities r which are polygons with
2q sides, for g > 2. For the sake of the argument, we will choose ¢ = 4. Now
we consider the union Y = C? U D3 (see figure 3) the two pieces being glued
along the large octagon with sides [a1, az], [az, az,d1,d1] (which for typogra-
phical convenience appears as a broken line), [di,dz],[d2,d2,y;,c1],[c1,cal,
[c2, 72, By, 011, [b1, b2], [b2, By, a1,01]
It is understood that the little hatched octagon

T= [a27517527y17y27ﬁ15ﬂ25 al]

is pushed towards the interior of C?, except for its four opposing sides [a;, az],
(51, Bol, [y1, 721,101, d2]. We can define singular 3-dimensional manifolds W3 with
singularities 7, and when our local model is part of such a W3, then it is split off
from the rest, by the surface of genus three

{803 — {the four half-disks (&', ay, az,a”), (¥, By, B2, 0"), (¢, 71,72, €"), (d', 61, 62,d")}}
U{&D3 — {(the large octogon) x 0) U ([az, d1]+ [dz, c1]1+[c2, b1] + [b2, a11 % [0, 1]))}}.
We again have desingularization ¢ and if
p(C?) =8 = ¢"(D?)

then we blow up the hatched octagon r C C® into t(inf)Ur(sup) the two copies

bbby bV
52 61 c”
a& 031 it c1
al\ ) ( \ Co l)3
;H a2 \ \ 72 C” dl d2
) 2 \ A2
\\\ as (6%) Y1 C1
d" dyds d” \\\ \
\ ar o T2 C2
\
by by
\

Fig. 3. — New singularity 7 (the case of an octagon)
D? = {the large octagon [a;, as,d;,ds, c1, c2, by, ba1} X [0, 11.
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staying glued along [ay, o] + [B1, 721 + [71, 02] + [J1, az]. We leave D3 glued to C3
along a large octagon obtained from the usual one 1= z(inf).

If p(C?) = N = ¢*(D?) then we unglue D? from C? along 7 leaving the sides
[a1,a2] 4+ [ B, Pal + [71, 721 + [01, 62] untouched. All our little theory of 4-dimen-
sional thickening ©*(V3, p) where V3 has only singularities o, can be extended to
a theory of 4-dimensional thickening @*(W3, ) where the more general 7’s are
involved.

REMARKS.

I) We would have a hard time working with singularities like the original
2. It is essential here that a complete set of opposing sides should be on the
boundary:
II) If we go to dimension two, the 7’s blow up into usual singularities (see
the example below).
For the W3 = K’ (see figure 1) we choose the desingularization R which is
defined by

RN3(1) =8 = R*(Z x [ti_1,t;]) for singularities t C 2~
respectively
R(N3(i)) = N = R*(Z x [t;,1i11]) for singularities 7 ¢ Z7.
LEMMA 2.2.
1) We have a diffeomorphism
(13) NYZ%) = (K", R),

where N*(Z?) is like in (9) and where the right hand side is built in the context of
the theory with new singularities t (see figure 3).

2) There is a passage
(14) (K',R)=(6*(Z*),R)

(where 6> (Z2)) is the singular 3-dimensional manifold which corresponds to
72 N 23) comsisting of acyclic O(1)*! moves and of COHERENT O(4)’s. As a
consequence of this we have a diffeomorphism

(15) ' K',R) = OZ%,R).

In (14), (15), the left hand sides belong to the new, generalized theory, while
the right hand sides belong to the usual one.

Proor. — The diffeomorphism (13) is easy, but it only establishes the con-
nection of 4-dimensional regular neighborhoods in 2% x I with our new bizarre



478 VALENTIN POENARU - CORRADO TANASI

6. Tt remains to show the connection of this @ with our usual one. We will only
sketch the description of (14). The general idea is to start with a singularity
(figure 1) and then push the hatched area completely into the boundary, using the
vector field +¢ and thereby creating a whole bunch of usual singularities o. The
easiest way to understand the process is to look at a concrete example. Consider a
localized piece X? of Z? x t; looking like in figure 4. We assume that the corre-
sponding piece of Z?D is Y! =[0,a] U[0,b]U[0,c] U[0,d] and that the constant
vector field ¢ points towards the (x > 0,y > 0,z > 0)-sector. To make things
really precise, let us also say that it is orthogonal to the plane (a, b, ¢).

Locally, N3(i) is a very thin tubular neighbourhood of X% C R3. Inside this
N3(i), the Z* are essentially two copies of a very thin 2-dimensional regular
neighbourhood of Y, defined with the help of .

We will describe what happens to these 2% after one has performed (14). As
far as X~ is concerned, it is simply a regular neighborhood of Y! living com-
pletely on the (y < 0,z < 0)-side; it is completely non-singular.

The 2 is a union of pieces which we will describe now. It will be understood
that those pieces which are contained in [a, ¢,g,f] U [a, i, k, ¢] C X? are always on
the (y > 0,z > 0)-side. When they live on [0, b, e,d] C X?, they can be either on
the ¢ > 0 side or on the & < 0 side. A singularity o is created exactly where there
is a change of sign for x. Schematically speaking, we will have

2+ = [CLl,(L az, bl,b7 bg,ﬁ,a,dg,d,dl,al,a] U
—_——
this is with ©>0 e

U levecen0,a1l 16,069 -

[f.a] (7,01 this is with x<0

The site [a, f] corresponds to a usual undrawable singularity ¢. Any other local
model can be treated similarly and the passage from local to global should be

clear.
4
d, d
f : g
d,
xr
o
y
a N €
——p B C1
a i aialysdatale c
0, NEN - - -} &
o
b,
- l
i b b '

Fig. 4. — We see here a localized piece X? of Z% x t; C 2% x t,.
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So, this finishes the proof of the absolute diffeomorphism
NYZ*) = 64(Z*, R)

and we make now the following claims, the proofs of which are left to the reader.

i) The proof above extends to more general subcomplexes X2 of
(t @ 0)2)|M? x I, like for instance the N g from the lemma 2.3 in [5].

ii) The diffeomorphism N*(X%) = 6*(X2, R) has a number of nice features,
some of which we list now. Assume that there is a 1-dimensional subcomplex
X' € X? such that X! is for from the singularities X? — M? and such that
X' c X2 has collar X' x [0,1] C X% with X' x 0 = X', X! x [0,1) open and far
from the singularities. We assume, also, that for each connected component
X! c X'wehave X! C n51(t;) with the corresponding piece of collar either also in
Ty L(t;) or compatible with 7. [In our real life case from [5], we can take
X! = 74y x 0 + I".] Under the conditions both N* and @* come with a canonical 3-
dimensional regular neighbourhood of X! embedded in the boundary and the
claim is that the two regular neighborhoods are the same and that the diffeo-
morphism N* = 6* respects them.

3. — IMPROPER zipping and its thickenings.

In this section we will discuss the proof of the case II of theorem 1.2. So, we
will consider a singular 2-dimensional polyhedron X2 L, M with ¥( ) =o(f),
meaning that all the double points Ma(f) C X? can be extended via zippings,
starting from the singularities. We also give ourselves a desingularization ¢.

We want to discuss now the IMPROPER case and the simplest way of char-
acterizing it is to say that we will consider the situation when the subset
My(f) C X? is not a closed subset. We will only discuss here the following
paradigmatic case, where the issues involved appear already in full clarity. So, we
will look at the following local model. Inside M? we have a coordinate chart
U = R? = (x,y,2), inside which live co + 1 planes, namely W = (z = 0) and the
V, = (¢ =ux,), where x; < 22 < --- with limx, = . Our local model for
X2 L M is here f\U = W + Y.V, € X2 with f|(W + 3. V,,) being the ob-

vious map.The fact that Mz (f) is ni)t closed manifests itself }llere by the limit line
X = & NOT being a double line. Notice that the situation is here, nevertheless,
the “the next best”, short of being PROPER: a tight transversal 4 C X2 to the
double point set is such that the accumulation set

lim (M5(f) N A)

is of FINITE cardinality. According to our previous paper [6] this is, essentially,
the generic situation.
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Now, we will pick up a sequence of positive numbers converging very fast to
Zero & > g > & > --- and with this, on the road to @4(Y2, y) from theorem 1.2
which we will take here simply to be ©*(f X2), an object still to be made sense out

of we will start by replacing the fW U " V,, C f X?, with the following 3-dimen-
1
sional non-compact 3-manifold with boundary

16) MY (Wx(—e<z<e—{r=uc}x{z==e}]

o0
UZT/?@ X (X, — &n < <Xy + &)
1

In such a formula, notations like “W x ( — ¢ < z < ¢)” should be read “W thick-
ened into —¢ < z < ¢”. Next, we will go 4-dimensional and, start by replacing R?
with R* = (2,9, 2,t). Our local model should live now inside R* = (x,¥,2,t), and
we will try to locate it there conveniently for the geometric realization of the
zipping. We will show how we would like to achieve this for a generie section
Yy = constant.

For reasons to become soon clear, we will replace the normal section
y = const corresponding to W and which should be

Ny=[-oco<®<oo,y=const, —e<z2<e 0<t<1]

— (=2, y =const,z = +¢, 0 <t < 1),

by the smaller N, — > DITCH (n),, which is defined as follows. The DITCH (n), is
1

a thin column of height —¢ < z < ¢ and of («x, t)-width 4¢,, which is concentrated
around the are
(x=a,,y=const, —e<z<¢g t=1).

This thin indentation inside N, is such that, with our fixed y =const being un-
derstood here, we should have

(17) lim DITCH (n), = (¥ = Xoo, —¢ <2 <, L =1).
N—0o0

Notice that, in the RHS of (17) it is exactly the z = +& which corresponds to
punctures eliminated in (16).

Continuing to work here with a fixed, generic ¥, out of the normal y-slice
corresponding to V,,, namely (x, —¢&, <& <&, + &, —0 <z <00, 0<t <),
we will keep only a much thinner, isotopically equivalent version, namely the
following

(18) (@ — &y <@ <2y + &y, —00 <2 < 00,0<t< ).

The (18) has the virtue that it can fit now inside the corresponding DITCH(%),,
without touching at all the N, — {DITCHES}. See here the figure 5.
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z
*‘T v
¢
-\ N - (t=1,z=¢)
WK JEN U Nt=12=—¢)
— — —
Ditch(1) Ditch(2) Ditch(n) |
X1 T2 Tn Too
Fig. 5.

What has been carefully desecribed here, when all 4’s are being taken into ac-
count, is a very precise way of separating the oo + 1 branches of (the thickened)
(16), at the level of R4, taking full advantage of the additional dimensions (i.e. the
factor [0 < ¢t < 1] in our specific case). With some work, this kind of thing can be
done consistently for the whole global £ X2. The net result is an isotopically
equivalent new model for @*(X?), which invites us to try the following naive ap-
proach for the geometric realization of the zipping. Imitating the successive
folding maps of the actual zipping, fill up all the empty room left inside the ditches,
by using only Whitehead dilatations and additions of handles of index A > 1, until
one has reconstructed completely the @*(f X2). Formally there is no obstruction
here and then also what at a single ¥y =const may look like a handle of index one,
becomes “only index > 27, once the full global zipping is taken into account. But
there is actually a big problem with this naive approach, via which one can cer-
tainly reconstruct 04 £X?) as a set, but with the wrong topology, as it turns out.

The precise problem is the following. Because of (17) above, when we try to
imitate the zipping

X’ = fXx*
which we suppose here COHERENT, via an infinite sequence of additions, i.e. in-
clusion maps instead of quotient space maps, in four dimensions, then we get for
the set ©*(fX2) a topology which is NOT metrizable. This is a topic which will be
discussed in full detail in the paper [2].
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There is an obvious cure for this disease, namely to delete the line
(=120, e<z<g t=1).

for all values y, from the prospective @*(fX?). What theorem 1.2 says, is that
there is here a better, more global cure, superseding the preceding one, namely
throw away completely the 90 (f X2).

But then, this should not be a brutal step, it should be integrated in the in-
finite succession of additions (= inclusion maps), which mimic the zipping pro-
cess: intercalate steps which are part of an infinite Whitehead dilatation sending
the 960" to infinity, to the normal ones. The reader should not find it hard to fill in
the details here. Anyway there issues are more fully developed in [2].
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