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A Mathematical Model for a Contracting Interstellar Cloud

MERI LisI - S1Lvia TOTARO

Abstract. — In this paper, we study a one-dimensional mathematical model for a con-
tracting interstellar cloud, with a star inside. Existence and uniqueness of a positive
solution are proved by means of the fixed point theorem. A time discretization pro-
cedure 1s given and the case of an expanding interstellar cloud is also considered.

1. — Introduction

The interstellar (and intergalactic) medium, far from being a vacuum, can be
regarded as a “chemical laboratory” responsible of the birth of stars and galaxies.
Developments in astrophysics during the last few decades have kept the subject
in the forefront of general scientific and popular interest.

The intergalactic medium is mainly filled with hydrogen (90%), about 10% of
the atoms are helium, and a further 0.1% of atoms are carbon, nitrogen and
oxygen. Other elements are even less abundant. Mixed with gas are “dust” grains
of silicon and carbonates, [4].

Matter is concentrated in big clouds (nebulae or intestellar clouds), whose
dimensions are of the order of ten lights years, i.e., between 107! and 10 parsec
(one parsec is about 3 - 10'% kilometers). Note that the diameter of the solar
system is of the order of 10~ parsec. The numerical density of the particles
inside an interstellar cloud ranges from 10° to 10° particles per cubic centimetre
(Earth atmosphere density, at sea level, is approximately 10" particles per cubic
centimetre, whereas in the intergalactic vacuum one can find 10° particles/cm?).
This means that a nebula is rarefied, but not so much as the intergalactic vacuum.

Interstellar cloud can be classified in dark nebulae, emission nebulae and
reflection nebulae, [8]. Dark nebulae are clouds that become opaque because of
their internal dust grains. They obscure, or absorb, the light coming from stars
behind them. This is the reason why dark nebulae are sometimes called ab-
sorption nebulae. The form of such dark clouds is very irregular: they have no
clearly defined boundaries and sometimes take on convoluted serpentine shapes.
The largest dark nebulae are visible to the naked eye: a famous example is given
by the Horsehead Nebula (B33, [1]).

Emassion nebulae are clouds that emit light from one or more stars which are
inside the cloud itself. They are usually the sites of recent and ongoing star
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formation. An example of this kind of nebulae is given by the Orion Nebula (M42,
[7D.

Finally, reflection nebulae are clouds of dust which are simply reflecting the
light of a nearby star or stars. Also reflection nebulae are usually sites of star
formation: an example is given by Pleiades (M45, [7]).

Consider now an interstellar cloud, occupying a convex region of the inter-
stellar medium. The boundaries of the nebula are not fixed, but they move slowly
in time. In most cases, when a source (like for example a star) is present inside
the nebula, the movement of the boundaries are such that the cloud collapses into
the source itself. Of course, the time needed to conclude the whole “contraction”
is very long (a million of years), because of the enormous dimension involved and
the extremely slow speed of the boundaries, which is of the order of 30 km/s, i.e.,
10712 pe/s. Note that to have an appreciable “variation” of 102 pe, about 31 years
are needed, [13].

This process can be simplified going to consider the one-dimensional case,
where the nebula can be represented by a slab. Consider a fixed reference
system, defining a suitable x axis and assume the nebula to have a plane sim-
metry with respect to a 0 point. Moreover, imagine the nebula at time ¢ = 0 to be
bounded by the two surfaces x = — b(0) and x = b(0), i.e., assume the initial
dimension of the cloud to be 2b(0). Note that, because of the geometrical
properties of a nebula, 2b(0) < 20 parsec. As time goes on, consider the movement
of these boundaries to be such that the dimension of the cloud become smaller
and smaller. The case under investigation is that when the boundaries
x = —b(t),x = b(t) (2b(t) indicates the dimension of the cloud at time ¢) tend to
the “critical position” & = — by, € = bypin, i.€., When pressure and temperature
conditions tend to so high values to cause nuclear reactions. The consequence of
these facts is that the interstellar cloud collapses into the photon source, i.e., it
becomes a star, that is going to shine for millions of years. Figure 1 shows a
sketch-plan of the situation.

Note that what we assumed implies that b(t) is a bounded function such that:

1) b(t) < b(0) <20 parsec.

If the transport phenomenon is assumed to be one-dimensional, i.e., the
photon number density N depends on the space variable x, on the “angle”
variable u (u represents the cosine of the angle between the speed direction and

the horizontal x axis) and on time ¢, the photon transport equation in the inter-
stellar space reads as follows, [9]:

0 0
(2) &N(W,ﬂ,t) - —Cﬂ%N(%,ﬂ,t) _Cz(xat)N(xnu>t)

11
1
+§628(x, t) f N, i/, t)dy’ + cqlx,t),
g
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with & € (= 5(0),5(0)), u € (—1,4+1) and t € (0,%), where ¢ is a suitable positive
constant that will be chosen later.

In Eq. (2), 2 and X are the total and the scattering cross sections respec-
tively (the scattering phenomenon is assumed to be isotropic), ¢ is the source
term and c is the light speed.

Moreover, Eq. (2) is supplemented with the following assumptions on N, q, ~
and X:

(3) N, 1,0) = No(a, ), € (~b(0),b0), wel-1,+1],
(4) No(w,) =0, g (= b0),000), pel-1,+1],
(5) N(—b0),u,t) =0, u>0,te[0,t],
(6) NO®©O),u,t) =0, <0t e0,t],
(1) Z(x,t) = Zy(x,t) = 0, xd (—b), b)), t € [0,%],
(8) q@,t) =0, 2 & (= byins buin), t € [0,2].

Note that relations (3)-(4) are the initial conditions for the photon number
density N, assumptions (5)-(6) represents non-reentry boundary conditions and
assumption (7) indicates the fact that the particle density outside the nebula (i.e.,
in the intergalactic vacuum) may be considered equal to zero. Finally, since the
source term is assumed to be present inside the region bounded by x = — b,
and x = b,,;,, relation (8) holds.

In order to study the model, make a change of variables, by considering x — ru

instead of ¥ and ¢t — r instead of ¢, with » a nonnegative real number (see Fig. 1).

Moreover, dividing by ¢ and multiplying by exp [— [X < — vt — —>dr}
Eq. (2) becomes: 0

0 N,
9) —W{N< — U, .t >exp[ !Z( —r'u,t C>dr}}
R Y ST A W
—exp[ !Z(x Yt C)dr}
) 1
e _ _r ot = _ _r
{223(90 ru,t C)[N(x ru, ot C)d,u +q(ac ru,t c)}

In what follows, the model will be studied by considering the cases x > 0 and
1 <0 separately and existence and uniqueness of the solution will be proved. In
particular, ct represents the space crossed in ¢ seconds by a given particle along
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Fig. 1.

the velocity direction. Since the maximum dimension of the nebula is 25(0), that
can be estimated in about 20 parsec (see (1)), the maximum time, t,,,,, necessary
to cross the whole nebula can be given by:

(10) P 20 pzwsec’

i.e., about 10 days.
The following notation will be used: considering a generie particle moving
with direction g, if it occupies position x (for example, x € (— b, Din)), then:

b)) = x — R~ (@, for u € (0,1),x € (b(®),b(0)) or u € (—1,0), € (- b(0),b(?)),

where, with a compact notation, R*(t) = R*(x, u,t) are suitable nonnegative real
numbers, for any fixed ¢. In a similar way:

(12) - bmin =X — R;}Em,u, for ne (07 1), S (_ bmina b(O))
or u € (=1,0),x € (— b(0), —by;n),
(13) by =x—R_, u for pec(,1), x € (bypin, b(0))

mintls
or u € (=1,0),2 € (— b(0), byy;n),

where, with a compact notation, R = Ri (v, ), R, = R

* o = R (x, 1) are suitable
nonnegative real numbers (see Fig. 1).
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Now, integrating Eq. (9) with respect to 7, between 0 and ct, the mathematical
equation describing the photon number density for a contracting intestellar
cloud becomes:

ct f
(14) N(w, 1, t) = No(x — ctu, p) exp {—f E(x — 7yt — %)dr’}
0

Ry , )
—I—J-{exp[—!z(x—Wu,t—%)dr’}q(x—w,t—g)}dr
Pl 4 d 1 r P r
+'0[ {exp{—![(m—r%t—z)dr]éfs(x—ry,t—E)IN(x—rﬂ,y,t—g)dﬂ}dn

where x € [— b(0),b(0)],u € [ 1,+1],¢ € [0,£] and

min{ct, R} }, u>0,

15 Ry = Ry(x, i1, t) =
(15) 0 hals {min{ct,RO}, <0,

with R§ defined by relations (11). Note that Rj has been defined because, in the case
1 > 0, for the photon density N(x, i, t) one has to consider only the contribution due to the
values of r between 0 and Ry if ¢t > R, i.e., if the space crossed by a generic photon in a
time t is such to “bring” it outside the nebula, whereas, the integral has to be made for »
between 0 and ct, if ct<R{. In a similar way, for x <0, if ¢t > R, the integration with
respect to  has to be done between 0 and R, whereas, if ct <R, between 0 and ct. Let us
remember that ct < ctyq, see (10).

2. — Analysis of the model.

Now, in order to analyze Eq. (14), the case i > 0 is first studied.

For x belonging to [— 0(0), —b(®)], since x —ru<ax < —b{t) < — byin,
from conditions (7)-(8) it results q(ax — ru,t) = X5 — ru, t) = X(x — ru,t) = 0.
Moreover, in the case ct > R, x—ctu < —b(0) and thus, by using as-
sumptions (4)-(5), one can deduce that Ny(x —ctu,u) =0. Hence, for
x € [—00),-b®)] and x>0, Eq. (14) reduces to:

R+
No(x —ctu, ), 0<t< 70
N(x,u,t) =
RT -
0, <<t
c
For x belonging to (— b(t),b(0)], first consider the case ct ZRJ . For the
same reasons as before, it results No(x — ctu, 1) = 0. Moreover, in Eq. (14),
Rj = Ry (see definition (15)). From assumptions (7)-(8) and definitions (11),
for x € (= b(t),b(0)] and t > Rf{/c, Eq. (14) reduces to:
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A

by in

M= [ fon] fo(e- e Yarlo(sma-) o

0

4b(t)
"

r +1
4 1 r r
/ ] /! !
+f {exp{—!f(x—’rmt—z)dr]éfs(x—r%t—E) {N(x—mt#,t—E)dﬂ}dn

0

B

byin x + b) <0.

where it is assumed that A is zero if Y <0 and B is zero if

u

For « belonging to (— b(t), b(0)], considering now the case ct<R§ , we have
that Rj = ct (see (15)). Hence, the results can be generalized such that, for
x € (— b(),b(0)], Eq. (14) reduces to:

ct ,
(16)  N(x,u,t) = No(we — ctu, 1) exp [ff E(x — vt — %)dr’}

. f{[ f(etmeYarlu(o- e )

r

f{ool foermi-2)adlbo eome-2) e ot e

0
with
(A7) Opin = O 0, 11,8) = mm{ct Jr;””"} ot =o', ut) = min{ct,

x + bt)
U

and where the first part on the right handside of Eq. (16) is equal to 0 for
0< t<R§ /c. Note that 6" is such that b(t) <b(0) <10 parsec, t <t,qe-

The case 1t <0 can be studied in a similar way. In particular, since R = R, for
ct > Ry and Rj = ct for ct <R (see (15)), if v € [— b(0), b(?)) Eq. (14) reduces to:

ct
(18) N(%,ﬂ,t) = NO(OC - Ct,uaﬂ)exp |:7f 2( - 7‘/“‘7t 77>d1ﬂ:|
0
c

P

o .
mmn ,

+ f {exp{—f2<90—T'u,t—%>d?“}q<x—m t——)}dv
0

0

J r +1
4 1 r r
/ J / /
—&-f{exp{_bfz(x—rﬂ,t——c)dr} éfs(x—mt,t—g> [N(x—r,u,,u ,t—E)d,u }dr,

0

D
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with:

(19) Gy = i, 1) = min{ct,”_Tb"”"}, o =0 ) = min{ct, g ‘Mb(”}
and where the first part on the right handside of Eq. (18) is equal to 0 for

0<t<R;/c. Note that ¢ is such that b()<b(0)<10 parsec, t<tyqe-

b .
Moreover, note that in Eq. (18), it is assumed that C is zero if T+ Omin <0 and
x+b(t) H

D is zero if <0.

Finally, for « € [b(t), b(0)], Eq. (14) reduces to:

R

No( — ctu, i), 0<t<=—"

N(x,u,t) = ¢ ,
0, <<t

because b,,;, < b(t) <ax <x—ru and from conditions (7)-(8) it follows that
qle —rp,t) = XZg(x — ru, t) = 0. Moreover, since b(0) < x — ctu for ¢t > R, then
No(x — ctu, ;1) = 0 (see assumptions (4)-(6)).

Looking at definitions (17) and (19) for &%, it is useful to analyze the cases:

ct = Y +ﬂb(t), for u > 0; ct= ¢ _ﬂb(t), for ©<0.

Consider the definition of 5", for x > 0. By means of a graphyc representation

of the functions y = ct and y = @+ b) (with a fixed x), it is easy to see that a ¢’
u

exists such that

b(t*
(20) ot = v+ b))
yoi
If t > ¢% then ct > [x + b(t)]/u and 0" =[x + b()]/u. The case u <0 is similar: in
particular, a t* exists such that:
x —b(t*)
21 ctt =———=.
(21) .
Thus, if ¢ > t*, then ¢t > [x +b@®)]/u if >0, ¢t >[x—0b®)]/p if ©<0 and
0t =[x £ b@®)] /11, where, from relations (20)-(21):

t, >0
(22) t = { v KT
t, wu<0

Hence, the trasport equation for the photon number density N(x, u,t) for a
contracting interstellar cloud, initially occupying the convex region [ — b(0), b(0)],
can be summarized as follows.
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Forx € [ b(0), b(t)],u>0R <t<tandx € [b@),bO)], £ <0 }i_tgt:

(23) N, u,t) = 0.

+ _

For x €[ — b(0), —b@®)],u > 0,0 < t< RTO and x € [b(t), b(0)], u<0,0 < t< }%:
ct ”
N(x, u,t) = Nolx — ctu, 1) exp {—f Z(ac — 7t — E)dr’].
0

For « € (— b(t),b(0)], « > 0 and « € [ — b(0), b(t)), u<O0:

ct

(24) N(ac,,u,t):No(oc—ct,u,,u)exp{—fZ( —m,t——)dr}
0

f{[ f (- =2 Yar _w,t_g)}dy
B e L A L e L

where the first part on the right handside of Eq. (24) is equal to 0 for
0 <t<R{/c,;.>0and for 0 <t<Rj/c,u<0. Moreover, in Eq. (24), we put:

O ins >0 5, 1u>0

5

min’

(25) (Smin = 51112'11(907 M, )= { 5 0= 6(%'7/1,0 = {

1u<0 o, u<0 ’

with J;., 0% defined by relations (17), (19).

Note that, since relation (23) holds, the no-reentry boundary conditions (5)-(6)
“move” from x = — b(0), x = b(0), to the contracting boundaries x = — b(t), x = b(t),
respectively.

To study existence and uniqueness of the solution N(x, i, t) of Eq. (24), the
following Banach space is introduced, because of the physical meaning of its

standard norm:
X = LY - b(0),b(0)] x [—1,+1] x [0,2]),
with ¢ > ¢, (t* is given by (22)), and where the norm

t b(0) +1
(26) 1% :fdtf d,acf du, VeeX
0 —b(0) -1

represents the integral between 0 and ¢ of the photon number inside the cloud at
time ¢.
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Since the number of particles inside the nebula is constant in time, because of
the mass conservation law, it follows:
b(®) b(0)
[ s@vde= [ @ 0de
—b(t) —b(0)
and analogously
b(®) b(0)
[ swndn= [ z@0de.
—b(t) —b(0)
Assuming that the cloud is homogeneous at any ¢ < [0,f], one has that
the cross sections do not depend on x (i.e., 2(x,t) = 2(f), Xs(x, 1) = 2(0);
2(x,0) =2(0) =2y =a constant, 2 (x,0) = 2x(0) =24 =a constant) and
the above relations yield

(27) 2(B)b() = 2b(0), 25(D)b(E) = Z50(0).

This means that the interactions of photons with the particles of the
nebula do not alterate the number and the “quality” of the particles
themselves (for instance, no particle is destroyed or modified, if its dif-
fusion or absorption coefficient has been changed).

Define now the operator @ : X — X, such that:

Qf = ¢ + Hf, vfeX,
with

ct
1
o(x, 1, 1) = No(x — ctu, 1) exp —Zob(O)f mm’/]
0 Cc

(Smm
+ f {exp Zgb(O)fb )dr} ( —w,t—%)}dr,
0

and where H : X — X is a linear, bounded operator such that

s0D(0
2b§—(—) ff(ac ru, il t——)dﬂ}d?"

where relations (27) have been used. Note that ¢ is a known function, because all
the parameters appearing in it are known.

In order to prove existence and uniqueness of the solution of Eq. (24), it is
sufficient to prove that the operator @ is a contraction on the space X, i.e., that
the operator H is such that || H| <1.

J
(Hf ), 1, ) :f {exp
0

-1
— 39b(0) f ey
S b(t-"%)
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Since

) -1 ,
a{exp —Zgb(O)b[@dT} } exp

from definition (26), we have:

0
b(t-2)|

c

r 1
—2ob0) [ v’
J-b(t—z) }

Zsob(o) e ! s ! !
VHfly <2 =2 [ ay [as [ 17,0, Sldd par,

mwn 717(0) 0 ]

where y = —ru,d=1—— and the fact that f du = 2 is used. Hence:
-1

90 b(O)

w112

Moreover, since X <1073X, (see [3], [5], [6]), and 101 <b,,;, <b®) <b(0) <10
parsec, b(0)/b,,i, <102, we proved that ||H|| <1. By using the fixed point theo-
rem, existence and uniqueness of an a.e. positive solution of Eq. (24) are proved.
The solution can be found by means of a successive approximations method.

1Hf llx <

3. — Time-discretization.

In this section a time-discretization procedure is provided and an inverse
problem for the computation of the interstellar cloud “dimension” b(t) is proposed.
Note that b(¢) is a bounded functlon such that b(t) < b(0) <10 parsec, for any .

Consider Eq. (24) with d =1t — - and d =t ——, and choose a generic time

instant ¢;, such that ¢; = jr, withj € \ and nt = t. In this way, the interval [0, ] is
divided into n subintervals of lenght 7. The time step T must obviously be such
that [b(t + 1) — b(®)]/b(t) <« 1. Since b(t + 1) — b(t) = rb(t), 7 must be chosen so
that 7|b(®)/b(t)] < 1, i.e., T < b@®)/|b®t)],r < min{b@®)/|bt)|,t € [to,t1}. Hence,
Eq. (24) at “time” ¢ = {; reads as follows:

t
1,
NG, u,tj) = No(x — ctju, 1) exp [_C‘Z(’b(o)[ b() d&}
0

4
vo [ fen

Oy
. Smin
t]

t; ‘
+c f {exp

o
7 c

3
—eXob(0) f ﬁd&’] qla — c(t; — Du, &)}d&

b(0) +1
2“‘0 b(S) f N —ct; — D, i, &)dﬂ’}d&

—eZob(0) f T otd
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By discretizing the time variable in the various integrals, the above equation
becomes:

-1
(28) N(x,u,t;) = No(x — ctju, 1) exp _Czob(O)Zb(;)]
+c Z Texp | —cXob(0) Z b0 )] qe — ctj—1 — th—1)pt, tp-1)

2 ]mm

+cheXp

1, b0) s
—¢Zob(0) Z b )] 2507 b, f N — cltj-1 — tp—Du, 1/, th-1)did

5min

where j;, ;, is the index that gives the time ¢; closer to (tj - ) , Whereas j* is

that index that gives the time ¢ closer to ( i — Tj) ) . This discretization procedure
permits to find N; = N(x, 1, t;) in terms of previous known “steps” No, N1, ..., N;_4
and this may be used in connection with a numerical procedure to solve (24).
Assume to know a measure of N at time ¢ = {;, at the point &, along the di-
rection j, i.e., N N (X, 1, t;): this is a so called “far field measure”, that can be
made from Earth by usmg sultable astrophysics instruments.
Then, putting N; = N], Eq. (28) becomes:

~ ]71
(29) Nz, p,t;) = No(x — ctju, 1) exp | —cZob(0) Z b(;.)l

-1
—¢Zob(0) Z bt )1 qe — ctj—1 — tp—1)pt, tp—1)

i=h—1

+c Z T exp

h=j;

min

+chexp

1, b i
—c2b(0) Z b(tz] 250 bt fN(x_C(tj—l — b, i t—)did

which permits to find b(;), that is the unknown. By inserting again b(t;) into Eq.
(28), this allows to obtain N(x, u, ;) at time ¢ = ¢;, for any point « and direction s.
Now, the process can be iterate going to find N(x, i, ;1) at time ¢ = ¢;, 4, for any
x and u. Thanks to far field measures, this “machinery” permits to understand
the movement of the boundaries of a cloud in dependence of discretized times
(“inverse problem”). A “continuous” form of b(f) may then be obtained by some
interpolation method.

Note that whereas the literature on time independent inverse problems in
photon transport (in particle transport) is rather abundant (see the references
listed in [3]), on the other hand, only a few papers deals with time dependent
inverse problems (see for istance [10], [11], [12]).
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Finally, observe that a “small” error on the computation of b(¢), obtained by
means of the time-discretization procedure proposed in this section, causes a
“small” error on N(x, u, ). In fact, evaluating AN; = |N(x, 1, t;) — N, u, t;)|, with
N(x, u,t;) the photon number density at time ¢ =#; corresponding to b(¢;) and
N(x, u,t) that corresponding to 5(@) (see (28)), one has that 4N; goes to zero as
b(t;) — b(t;)| goes to zero.

4. — Concluding remarks.

A similar analysis can be done when a mathematical model for an expanding
interstellar cloud is considered. In this case, as time goes on, the movement of the
boundaries x = — b(0), ¢ = b(0) is such that the cloud dimension becomes bigger
and bigger, till its boundaries tend to a critical position © = — b4z, & = Diaee -

Note that, in any case, b,q, <10 parsec. Figure 2 shows a sketch-plan of the
situation.

Hence, Eq. (2) represents the transport equation in the interstellar cloud,
with @ € (— baz, bmaz), 4 € (—1,4+1) and ¢ € (0,%) (it is possible to prove that
t > t*, with t* given by (22)), and it is supplemented by conditions (3), (4), (7) and
the following ones:

(30) N(- bmaaca,uvt) =0, u>0te [0,%],
(31) NOmaz, 1, 1) = 0, u<0,te [O,Z],
q(x,t) =0, x¢ (— b(0),b0)),t € [0,%].

In a way similar to that followed for the contracting interstellar cloud model,
the following results can be obtained: for x € [— byqr, —0@)], x>0 and
xr e [b(t)7 bmam]vﬂ <0,

(32) N, i, t) = 0.

For & € (— b(®), byazl, 1t > 0 and € [ — byuqe, b(®)), £ <0:

fieone-2p
+fo{exp[—f2<ac—rﬂ,t——)dr} ( —w,t—g)}dr

0 0

3 +1
{exp{ fZ(x—ru, )dr} (x—r,uj—g) fN(x—w,,uﬂt—%)d,u’}dr,
0 -1

ct

(33) N(x,u,t) = No(w — ctu, i) exp {—
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“Vacuum” “Vacuum”

—b n(m:_b t) —b U) b( ) b(f) br Lax *

Fig. 2.

where ¢ is given by definition (25) and:

oy _5g(ac,y)_min{ct, w>0

50 = 50(967 Hy t) =

x+ b(O)}

0y =0, (@, 1) = min{ct, n<0

i b(O)}
Note that, since relation (32) holds, the non-reentry boundary conditions (30)-(31)
“move” from & = — by, = bipae to the expanding boundaries x = — b(t),
x = b(t), respectively.

To study existence and uniqueness of the solution of Eq. (33), a procedure
similar to that used for the case of a contracting nebula can be followed, con-
sidering the Banach space Y = L'([ — byaz, bynaz] X [— 1,4+ 1] x [0,£]), with
t > t* (see definition (22)). Moreover, a time discretization process similar to that
made in the case of a contracting intestellar cloud can be performed. Finally,
analogous considerations on the error 4N; can be made.
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