BOLLETTINO UNIONE MATEMATICA ITALIANA

R. Supper.

A Montel Type Result for Subharmonic Functions

Bollettino dell'Unione Matematica Italiana, Serie 9, Vol. 2 (2009), n.2, p. 423–444.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2009_9_2_2_423_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

A Montel Type Result for Subharmonic Functions

R. Supper

Abstract. – This article is devoted to sequences $(u_n)_n$ of subharmonic functions in \mathbb{R}^N , with finite order, whose means $J_{u_n}(r)$ (over spheres centered at the origin, with radius r) satisfy such a condition as: $\forall r > 0 \ \exists A_r > 0 \ \text{such that} \ J_{u_n}(r) \leq A_r \ \forall n \in \mathbb{N}$. The paper investigates under which conditions one may extract a pointwise or uniformly convergent subsequence.

1. - Introduction.

For a sequence $(f_n)_{n\in\mathbb{N}}$ of holomorphic functions in \mathbb{C} which is uniformly bounded on each compact, Montel's Theorem asserts that there exists a subsequence which converges uniformly on any compact (see [11], pp. 54-56). Since the $\ln |f_n|$ are subharmonic functions in \mathbb{R}^2 , the question arises whether such a result still holds for a sequence of subharmonic functions $(u_n)_{n\in\mathbb{N}}$ which is uniformly majorized on each compact. It is already available that a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ can be extracted, which converges in the distribution sense (see [8], p. 47 for the detailed statement). But this kind of convergence does not give any information on the pointwise behaviour. Without any growth condition on the u_n , the articles [1] and [5] obtain a convergent subsequence, but the convergence is not uniform: it is mean convergence over spheres (see also Remark 7 in Section 3). The present paper is devoted to the case of subharmonic functions u_n in \mathbb{R}^N $(N \in \mathbb{N}, N \geq 3)$ with a finite order of growth, under the assumption that the means $J_{u_n}(r)$ of u_n over spheres with radius r and center O are majorized independently of n, whereas the analogous condition in [1] and [5] dealt with the means of $|u_n|$ instead of u_n . We obtain the existence of a subharmonic function uand a subsequence $(u_{n_p})_{n\in\mathbb{N}}$ converging towards u uniformly on any compact set $\mathcal{Z} \subset \mathbb{R}^N$ which remains distant from the supports of the Riesz measures associated to u and u_{n_n} (more precisely: there exists $\theta > 0$ such that the θ -neighborhood Ξ_{θ} of Ξ does not intersect any of these supports). Besides that

$$\limsup_{p \to +\infty} u_{n_p}(x) \le u(x) \qquad \forall x \in \mathbb{R}^N$$

with equality quasi-everywhere (outside a set of outer capacity zero). We refer to Theorem 3 in Section 3 and Theorem 4 in Section 5 for more precisions on the

exact assumptions. Such a result of quasi-everywhere convergence was already known for subharmonic functions of the kind

$$x \mapsto \int_{\mathbb{R}^N} \frac{-dv_p(\xi)}{|x - \xi|^{N-2}}$$

(Riesz potential of the measure ν_p , see [6], p. 58). But this result required that

$$\int_{|\xi|>1} \frac{dv_p(\xi)}{|\xi|^{N-2}} < +\infty$$

(see [6], p. 190), whereas the Riesz measures μ_n associated to the functions u_n under study in this article only satisfy

$$\int_{|\xi|>1} \frac{d\mu_n(\xi)}{|\xi|^{N-1+q}} < +\infty$$

(with $q \in \mathbb{N}$ related to the order of growth of u_n , see Sections 3 and 5 for more explanations).

The paper is organized as follows: the case of subharmonic functions with arbitrary finite order is postponed to Section 5, whereas Sections 3 and 4 start with the study of the case where the order is ≤ 1 . Throughout the paper, all measures are non-negative measures on the σ -algebra of Borel subsets of \mathbb{R}^N and they assume finite values on all compact sets.

2. - Sequence of measures.

THEOREM 1. – ([7] p. 351, [2] pp. 11 and p. 16). – Let E be a compact in \mathbb{R}^N and $(\mu_n)_{n\in\mathbb{N}}$ a sequence of measures on E. If there exists A>0 such that $\mu_n(E)\leq A$ $\forall n\in\mathbb{N}$, then a subsequence $(\mu_{n_p})_{p\in\mathbb{N}}$ can be extracted which converges to a measure μ in the following sense:

(1)
$$\lim_{p \to +\infty} \int_{E} \varphi \, d\mu_{n_p} = \int_{E} \varphi \, d\mu$$

for any continuous function φ on E.

The sequence $(\mu_{n_p})_{p\in\mathbb{N}}$ is said to be vaguely convergent (see [6], pages 7 and 3) or convergent in the w*-topology (see [4], p. 231). If φ was only upper semi-continuous on E, it could only be asserted that

$$\limsup_{p\to +\infty}\int\limits_{E}\varphi\,d\mu_{n_p}\leq \int\limits_{E}\varphi\,d\mu.$$

Similarly, for a lower semi-continuous φ :

$$\int\limits_{E} \varphi \, d\mu \leq \liminf_{p \to +\infty} \int\limits_{E} \varphi \, d\mu_{n_{p}}$$

(see [3], pp. 205–209 for the proof of these results). For instance, when $N \geq 3$:

(2)
$$\int_{E} \frac{1}{|x-\xi|^{N-2}} d\mu(x) \le \liminf_{p \to +\infty} \int_{E} \frac{1}{|x-\xi|^{N-2}} d\mu_{n_p}(x) \qquad \forall \xi \in \mathbb{R}^{N}$$

with |.| the Euclidean norm in \mathbb{R}^N .

LEMMA 1. – Given E, μ_{n_p} , μ as in Theorem 1 and a compact $\Xi \subset \mathbb{R}^N$ distant from the supports of measures μ_{n_p} and μ , then

$$\lim_{p \to +\infty} \int\limits_{E} \frac{d\mu_{n_p}(x)}{\left|x-\xi\right|^{N-2}} = \int\limits_{E} \frac{d\mu(x)}{\left|x-\xi\right|^{N-2}} \qquad \textit{uniformly on Ξ}.$$

Remark 1. - The ponctual convergence was already given by [2], p. 18.

Proof of Lemma 1. – Let Ξ_{θ} be the θ -neighborhood of Ξ , relatively to $|\cdot|$, with $\theta > 0$ chosen small enough so that Ξ_{θ} does not intersect the supports of the measures μ_{n_p} and μ . We thus have to prove that

$$\lim_{p \to +\infty} \int\limits_{\mathbb{R}} \varphi_{\xi} \, d\mu_{n_p} = \int\limits_{\mathbb{R}} \varphi_{\xi} \, d\mu \qquad \quad \text{uniformly on } \Xi,$$

with the functions $\varphi_{\xi}: x \mapsto [1/\max\{|x-\xi|,\theta\}]^{N-2}$. In the demonstration of Theorem 1 (see [3], p. 207), one of the main steps is the proof of $I(\varphi) \leq J(\varphi)$ where $I(\varphi) := \sup_{\Delta} s(\Delta, \varphi)$ and $J(\varphi) := \inf_{\Delta} S(\Delta, \varphi)$, the supremum and infimum involving any finite collection $\Delta = \{C_1, C_2, ..., C_t\}$ of disjoint hypercubes whose union contains E (and a fortiori the supports of μ_{n_g} and μ), with

$$s(\varDelta, \varphi) = \sum_{j=1}^t \mu(C_j) \inf_{C_j} \varphi$$
 and $S(\varDelta, \varphi) = \sum_{j=1}^t \mu(C_j) \sup_{C_j} \varphi.$

Here, for any $\xi \in \mathcal{Z}$, we have:

$$J(\varphi_{\xi}) - I(\varphi_{\xi}) \le S(\Delta, \varphi_{\xi}) - s(\Delta, \varphi_{\xi}) = \sum_{i=1}^{t} \mu(C_{j}) \left[\varphi_{\xi}(x^{(j)}) - \varphi_{\xi}(y^{(j)}) \right]$$

for some $x^{(j)}$ and $y^{(j)}$ in the closure $\overline{C_j}$ of C_j . We can assume that all $\overline{C_j}$ (at least those such that $\mu(C_j) > 0$) have small enough diameters and do not intersect Ξ_{θ} .

For all x and $y \in \mathbb{R}^N \setminus \Xi_{\theta}$, the following holds:

$$\varphi_{\xi}(x) - \varphi_{\xi}(y) = \frac{1}{|x - \xi|^{N-2}} - \frac{1}{|y - \xi|^{N-2}} = f(0) - f(1)$$

with f defined by $f(t) = |x - \xi + t(y - x)|^{-N+2} \ \forall t \in \mathbb{R}$. Now

$$f'(t) = \frac{-N+2}{|x-\xi+t(y-x)|^N} \sum_{i=1}^{N} [x_i - \xi_i + t(y_i - x_i)] (y_i - x_i)$$

and Cauchy-Schwarz formula yields

$$|f'(t)| \le \frac{N-2}{|(1-t)x+ty-\xi|^N} (|x-\xi|.|y-x|+|y-x|^2) \quad \forall t \in [0,1].$$

When x and y both belong to the convex $\overline{C_j}$, then (1-t)x+ty is also located there, hence $|(1-t)x+ty-\xi|\geq \theta$. There exists M>0 (depending only on the compacts E and E) such that $|x-\xi|< M$ and |y-x|< M for all $\xi\in E$, E, and E and E is also located there, hence $|(1-t)x+ty-\xi|\geq \theta$. There exists E and E is also located there, hence E is also located the E is also located there.

$$\varphi_{\xi}(x^{(j)}) - \varphi_{\xi}(y^{(j)}) \le \frac{N-2}{\theta^N} 2M |y^{(j)} - x^{(j)}|.$$

For any $\varepsilon > 0$, there exists a collection $\Delta = \{C_1, C_2, ..., C_t\}$ such that the diameter of every C_i does not exceed ε , hence

$$J(\varphi_{\xi}) - I(\varphi_{\xi}) \leq \frac{2M(N-2)}{\varrho^N} \, \varepsilon A \qquad \forall \xi \in \mathcal{Z}.$$

Including this argument in the demonstration [3] (p. 206-208) will point out that the convergence (1) is actually uniform when we work with the equicontinuous family $\{\varphi_{\bar{\varepsilon}}\}_{\bar{\varepsilon}\in\bar{\Xi}}$.

Notation. – We consider the ball $\overline{B}(O,r)=\{x\in\mathbb{R}^N:|x|\leq r\}$ and the sphere $S(O,r)=\{x\in\mathbb{R}^N:|x|=r\}\ \forall r\geq 0$

Remark 2. – With $\varphi \equiv 1$ in Theorem 1, we observe that

$$\lim_{p\to+\infty}\mu_{n_p}(E)=\mu(E)\leq A.$$

The vague convergence on E of $(\mu_{n_p})_{p\in\mathbb{N}}$ towards μ does not necessarily imply its vague convergence on a compact $K\subset E$ towards the same limit μ . Otherwise, one would have $\lim_{p\to+\infty}\mu_{n_p}(K)=\mu(K)$. A counterexample is provided by:

Example 1. – For any $n \in \mathbb{N}^*$, let $f_n : \mathbb{R} \to \mathbb{R}$ be the continuous function, affine on $\left[1 - \frac{1}{n}, 1\right]$ and on $\left[1, 1 + \frac{1}{n}\right]$, defined by: $f_n(1) = n$ and $f_n(t) = 0$ if

 $t \leq 1 - \frac{1}{n}$ or if $t \geq 1 + \frac{1}{n}$. Let μ_n be the measure defined by:

$$\int\limits_{\mathbb{R}^N} \varphi(x) \, d\mu_n(x) = \int\limits_0^2 \varphi(t,0,...,0) f_n(t) \, dt$$

for any measurable function $\varphi:\mathbb{R}^N\to\mathbb{R}^+$. The sequence $(\mu_n)_{n\in\mathbb{N}^*}$ converges vaguely on $E=\overline{B}(O,2)$ to the measure $\mu=\delta$ the Dirac mass concentrated at the point $(1,0,...,0)\in\mathbb{R}^N$, because

$$\lim_{n \to +\infty} \int_{0}^{2} \varphi(t, 0, ..., 0) f_n(t) dt = \varphi(1, 0, ..., 0)$$

for continuous functions $\varphi: E \to \mathbb{R}$. Now let $K = \overline{B}(O,1)$. Then $\mu_n(K) = \int\limits_0^1 f_n(t) \, dt = \frac{1}{2}$ hence $\lim\limits_{n \to +\infty} \mu_n(K) < \mu(K) = 1$.

Remark 3. – If M is a non-empty measurable set contained in E, such that $\mu(\partial M) = 0$ (where ∂M denotes the boundary of M), then

$$\lim_{n \to +\infty} \mu_{n_p}(M) = \mu(M)$$

(see [6], p. 9 for a proof). When $\mu(\partial M)=0$, the set M is said to be regular relatively to μ (see [2], pp. 9-10). Denoting by μ'_{n_p} and μ' the restrictions to M of μ_{n_p} and μ respectively, then $(\mu'_{n_p})_{p\in\mathbb{N}}$ converges vaguely to μ' (see [6], p. 10), but this result does not hold any longer without the assumption $\mu(\partial M)=0$.

EXAMPLE 2. – Let $(f_n)_{n\in\mathbb{N}^*}$, $(\mu_n)_{n\in\mathbb{N}^*}$, μ and E be defined as in Example 1. Let $M=\overline{B}(O,1)$ and μ'_n be the restriction to M of μ_n , in other words:

$$\int\limits_{M}\varphi\,d\mu_{n}'=\int\limits_{F}\psi\,d\mu_{n}$$

for any measurable function $\varphi:M\to\mathbb{R}^+$, with ψ defined by

$$\psi(x) = \left\{ \begin{array}{ll} \varphi(x) & \quad \text{if } x \in M \\ 0 & \quad \text{if } x \in E \setminus M. \end{array} \right.$$

Thus $\int\limits_{M} \varphi \, d\mu_n' = \int\limits_{0}^{1} \varphi(t,0,...,0) f_n(t) \, dt$. Here $\mu' = \delta$, but $(\mu_n')_{n \in \mathbb{N}^*}$ converges vaguely on M to the measure $\frac{1}{2} \delta$ because

$$\lim_{n \to +\infty} \int\limits_0^1 \varphi(t,0,...,0) f_n(t) \, dt = rac{1}{2} \, arphi(1,0,...,0)$$

for any continuous function $\varphi: M \to \mathbb{R}$.

A more general version of Theorem 1 is available:

THEOREM 2. – ([6], pp. 11-12 and p. 7). – Let $(\mu_n)_{n\in\mathbb{N}}$ be a sequence of measures on \mathbb{R}^N . Suppose that for any compact $E\subset\mathbb{R}^N$ a constant $A_E>0$ exists such that $\mu_n(E)\leq A_E \ \forall n\in\mathbb{N}$. There is then a subsequence $(\mu_{n_p})_{p\in\mathbb{N}}$ which converges vaguely to a measure μ on \mathbb{R}^N , in other words:

$$\lim_{p\to +\infty}\int\limits_{\mathbb{R}^N}\varphi\,d\mu_{n_p}=\int\limits_{\mathbb{R}^N}\varphi\,d\mu$$

for any continuous function φ on \mathbb{R}^N with compact support.

REMARK 4. – This implies (1) on any compact set E such that $\mu(\partial E) = 0$, according to [6], p. 10. This allows to apply (2) and Lemma 1 on such sets E.

Lemma 2. – Given μ_n , μ_{n_p} , μ defined as in Theorem 2, let $\rho: \mathbb{R}^+ \to \mathbb{R}^+$ be the repartition function associated to the measure μ , defined by $\rho(t) = \mu(\overline{B}(O,t))$ $\forall t \geq 0$. Similarly, for any $n \in \mathbb{N}$, let ρ_n denote the repartition function associated to μ_n . Then $\rho(t) = \lim_{p \to +\infty} \rho_{n_p}(t)$ at any continuity point of ρ (hence for any t in the set $[0, +\infty[$ deprived of an at most countable subset). If there exists a right-continuous function $\beta: [0, +\infty[\to [0, +\infty[$ such that $\rho_n(t) \leq \beta(t) \ \forall n \in \mathbb{N}]$ $\forall t \geq 0$, then $\rho(t) \leq \beta(t) \ \forall t \geq 0$.

Remark 5. – The term "repartition function" is explained as follows: let μ' be the measure defined on $[0,+\infty[$ by $\mu'(I)=\mu(\{x\in\mathbb{R}^N:|x|\in I\})$ for any Borel set $I\subset[0,+\infty[$. In the case where $\mu'([0,+\infty[)=\mu(\mathbb{R}^N)=1$, the function ρ coincides with the repartition function of μ' in the classical probabilistic meaning.

PROOF OF LEMMA 2. – Since $\rho(s) \ge \rho(t) \ \forall s \ge t \ge 0$, the set of all discontinuity points of ρ on $]0, +\infty[$ is at most countable. At any point $t_0 > 0$ the following holds:

$$\mu(S(O, t_0)) = \rho(t_0) - \lim_{t \to t_0, t < t_0} \rho(t).$$

Let t>0 be a point where the function ρ is continuous. Hence $\mu(\partial M)=0$ with $M=\overline{B}(O,t)$ and $\lim_{p\to +\infty}\mu_{n_p}(M)=\mu(M)$ according to [6], p. 9.

The estimation $\rho(t) \leq \beta(t)$ is obvious for points t where ρ is continuous. Let t_0 be a point of discontinuity for ρ . As ρ is right-continuous at any point of $[0, +\infty[$, one has:

$$\rho(t_0) = \lim_{t \to t_0, t > t_0} \rho(t) = \lim_{k \to +\infty} \rho(t_k)$$

where $(t_k)_{k\in\mathbb{N}^*}$ is a sequence of continuity points for ρ with $t_k>t_0$ and

$$\lim_{k\to +\infty}t_k=t_0$$

(such a sequence exists since the set of discontinuity points is at most countable). The conclusion follows from $\lim_{k\to +\infty} \beta(t_k) = \beta(t_0)$.

3. - Subharmonic functions of order less than one.

A subharmonic function u in \mathbb{R}^N of finite order $\lambda \geq 0$ satisfies such an estimation:

$$\forall \gamma > \lambda$$
 $\exists A > 0$ $u(x) \leq A + |x|^{\gamma}$ $\forall x \in \mathbb{R}^{N}$.

Assuming that u is moreover harmonic in some neighborhood of the origin with u(O) = 0, the repartition function ρ associated to the Riesz measure μ of u satisfies (see [9]):

$$\forall \gamma > \lambda$$
 $\exists C > 0$ $\rho(r) \leq C r^{N-2+\gamma}$ $\forall r \geq 0$.

When $\lambda < 1$, this leads to $\int_0^{+\infty} \frac{\rho(r)}{r^N} dr < +\infty$ which provides the following representation (see [8], pp. 67-69) where $K_0(x, \xi) = |\xi|^{2-N} - |x - \xi|^{2-N}$:

(3)
$$u(x) = \int_{\mathbb{R}^N} K_0(x,\xi) \, d\mu(\xi) \qquad \forall x \in \mathbb{R}^N$$

This representation remains valid for $\lambda=1$ (see [3], pp. 155-156) provided that moreover u is of convergence class, that is: $\int\limits_{1}^{+\infty}\frac{M_u(r)}{r^{\lambda+1}}\,dr<+\infty \text{ with } M_u(r)=\max_{|x|=-r}u(x) \text{ (see [3], p. 143) or equivalently (see [10])}$

$$\int\limits_{1}^{+\infty} \frac{J_u(r)}{r^{\lambda+1}} \, dr < +\infty \qquad \quad \text{where } J_u(r) = (N-2) \int\limits_{0}^{r} \frac{\rho(t)}{t^{N-1}} \, dt.$$

Jensen-Privalov formula (see [8], p. 44), in other words: Nevanlinna's first fundamental theorem (see [3], p. 127), provides another expression:

$$J_u(r) = \frac{1}{\sigma_N} \int_{S_N} u(rx) \, d\sigma_x$$

with $d\sigma$ the area element on the unit sphere S_N and $\sigma_N = \int_{S_N} d\sigma = \frac{2\pi^{N/2}}{\Gamma(N/2)}$ (see [3], p. 29).

LEMMA 3. – Given u subharmonic in \mathbb{R}^N , harmonic in $B(O,\varepsilon)$ (for some $\varepsilon > 0$) with u(O) = 0, let ρ denote the repartition function of its Riesz measure. Then

$$2^{N-3} \rho(r/2) \frac{1}{r^{N-2}} \le J_u(r) \qquad \forall r > 0.$$

PROOF. – This minoration follows from $J_u(r) \ge (N-2) \, \rho(r/2) \int\limits_{r/2}^r \frac{dt}{t^{N-1}}$, together with $2^{N-2}-1 \ge 2^{N-3}$.

DEFINITION 1. – Given $\varepsilon > 0$, let S_{ε} denote the set of all subharmonic functions u in \mathbb{R}^N , harmonic in $B(O, \varepsilon)$ with u(O) = 0, of order <1 or at most of order 1 convergence class.

For $u \in \mathcal{S}_{\varepsilon}$, note that $\rho \equiv 0$ on $[0, \varepsilon[$ and that $\lim_{r \to +\infty} \frac{\rho(r)}{r^{N-1}} = 0$ (see [10]).

THEOREM 3. – Given $\varepsilon > 0$ and two increasing sequences of positive numbers $(M_k)_{k \in \mathbb{N}}$ and $(R_k)_{k \in \mathbb{N}}$ satisfying $R_0 > 2\varepsilon$ and $\lim_{k \to +\infty} R_k = +\infty$ together with

$$\sum_{k>1} \frac{M_k}{R_k} \left[\left(\frac{R_k}{R_{k-1}} \right)^{N-1} - 1 \right] < +\infty,$$

let $(u_n)_{n\in\mathbb{N}}$ be a sequence of elements in S_{ε} such that

$$(4) J_{u_n}(R_k) \le M_k \forall n \in \mathbb{N} \forall k \in \mathbb{N}.$$

a) Then there exist $u \in \mathcal{S}_{\varepsilon}$ and a subsequence $(u_{n_p})_{p \in \mathbb{N}}$ converging towards u uniformly on any compact set $\Xi \subset \mathbb{R}^N$ distant from the supports of the Riesz measures associated to u and u_{n_p} . Besides that

$$\limsup_{p \to +\infty} u_{n_p}(x) \le u(x) \qquad \forall x \in \mathbb{R}^N.$$

b) There exists a set $Q \subset \mathbb{R}^N$, with outer capacity zero, such that

$$\limsup_{p \to +\infty} u_{n_p}(x) = u(x) \qquad \forall x \in \mathbb{R}^N \setminus Q.$$

Lemma 4. – Given $\varepsilon > 0$, $u \in \mathcal{S}_{\varepsilon}$, μ the Riesz measure of u and ρ its repartition function, let $w(u, x, R) = \int\limits_{|\xi| > R} K_0(x, \xi) \, d\mu(\xi) \ \forall x \in \mathbb{R}^N \ \forall R \ge 0$. If $|x| \le R/2$, then

$$|w(u, x, R)| \le 2^{N-1} |x| \int_{R}^{+\infty} \frac{d\rho(t)}{t^{N-1}} \le 2^{N-1} |x| (N-1) \int_{R}^{+\infty} \frac{\rho(t)}{t^N} dt.$$

PROOF. - See [3] p. 139 and [10].

Remark 6. – When $R \ge 2|x|$, the representation (3) becomes:

$$u(x) = \int_{|\xi| < R} \frac{d\mu(\xi)}{|\xi|^{N-2}} - \int_{|\xi| < R} \frac{d\mu(\xi)}{|x - \xi|^{N-2}} + w(u, x, R)$$

with $u(x)=-\infty$ if and only if $\int\limits_{|\xi|\leq R} \frac{d\mu(\xi)}{|x-\xi|^{N-2}}=+\infty$ (both other terms on the right–hand side being finite).

REMARK 7. – Keeping Jensen–Privalov formula in mind, it turns out that (4) is fulfilled for instance when $u_n(x) \leq M_k \ \forall x \in \overline{B}(O, R_k) \ \forall n \in \mathbb{N} \ \forall k \in \mathbb{N}$. It also points out that the mean convergent subsequence from the works [1] and [5] was obtained in a different situation than here: the articles [1] and [5] assume that

$$\forall r > 0$$
 $\exists A_r > 0$ $\int_{S_N} |u_n(rx)| d\sigma_x \le A_r$ $\forall n \in \mathbb{N}$

which implies (4) but the converse is not valid.

PROOF OF THEOREM 3a). –The Riesz measures μ_n $(n \in \mathbb{N})$ associated to u_n respectively satisfy for all $k \in \mathbb{N}$ and $n \in \mathbb{N}$:

(5)
$$\mu_n(\overline{B}(O, R_k/2)) = \rho_n(R_k/2) \le \frac{1}{2^{N-3}} M_k R_k^{N-2}$$

with ρ_n the repartition function of μ_n . Thanks to Theorem 2, a subsequence $(\mu_{n_p})_{p\in\mathbb{N}}$ can be extracted, which converges vaguely to a measure μ whose repartition function, denoted by ρ , satisfies: $\rho \leq \beta$ on $[0, \infty[$ according to Lemma 2 applied to the increasing piecewise-constant function β defined by:

$$\begin{split} \beta(t) &= \frac{1}{2^{N-3}} \, M_k \, R_k^{N-2} := L_k \qquad \forall t \in [R_{k-1}/2 \,,\, R_k/2[\qquad \forall k \geq 1 \\ \beta(t) &= \frac{1}{2^{N-3}} \, M_0 \, R_0^{N-2} \qquad \qquad \forall t \in [\varepsilon, R_0/2[\\ \beta &\equiv 0 \text{ on } [0, \varepsilon[.] \end{split}$$

Now

$$I_k := \int\limits_{\frac{1}{n}R_{k-1}}^{\frac{1}{2}R_k} \frac{\beta(r)}{r^N} \, dr \leq L_k \int\limits_{\frac{1}{n}R_{k-1}}^{\frac{1}{2}R_k} r^{-N} \, dr = \frac{L_k}{N-1} \left[\left(\frac{2}{R_{k-1}} \right)^{N-1} - \left(\frac{2}{R_k} \right)^{N-1} \right].$$

Thus

$$\begin{split} \sum_{k=1}^{+\infty} I_k &\leq \frac{2^{N-1}}{N-1} \sum_{k=1}^{+\infty} \frac{M_k \, R_k^{N-2}}{2^{N-3}} \left[\left(\frac{1}{R_{k-1}} \right)^{N-1} - \left(\frac{1}{R_k} \right)^{N-1} \right] \\ &\leq \frac{4}{N-1} \sum_{k=1}^{+\infty} \frac{M_k}{R_k} \left[\left(\frac{R_k}{R_{k-1}} \right)^{N-1} - 1 \right]. \end{split}$$

This shows that

$$\int_{0}^{+\infty} \frac{\beta(r)}{r^{N}} dr < +\infty \qquad \text{thus} \quad \int_{0}^{+\infty} \frac{\rho(r)}{r^{N}} dr < +\infty.$$

Hence the function u defined by (3) is subharmonic in \mathbb{R}^N with Riesz measure μ according to [8], pp. 67-68. The growth order σ of the function $r \mapsto r^{2-N}\rho(r)$ coincides with the convergence exponent

$$\inf \left\{ c: \int\limits_0^{+\infty} rac{
ho(r)}{r^{N-1+c}} \, dr < +\infty
ight\} \qquad ext{(see [8], p. 66)}$$

whence $\sigma < 1$. Thus

$$\forall \gamma > \sigma$$
 $\exists A > 0$ $\rho(r) \le A + r^{N-2+\gamma}$ $\forall r \ge 0$.

For such a fixed γ , we compute

$$J_u(r) = (N-2) \int\limits_{arepsilon}^r rac{
ho(t)}{t^{N-1}} \, dt \leq rac{A}{arepsilon^{N-2}} + rac{N-2}{\gamma} \, r^{\gamma} \qquad orall r \geq arepsilon.$$

The order λ of u being given by:

$$\lambda = \limsup_{r \to +\infty} \frac{\log M_u(r)}{\log r} = \limsup_{r \to +\infty} \frac{\log J_u(r)}{\log r}$$

(as a consequence of Poisson formula: see [10]), we obtain $\lambda \leq 1$. When $\lambda = 1$, it remains to check

$$\int_{0}^{+\infty} \frac{J_u(r)}{r^2} dr < +\infty$$

in order to conclude that $u \in \mathcal{S}_{\varepsilon}$. Fubini theorem leads to:

$$\int_{0}^{+\infty} \frac{1}{r^2} \left(\int_{0}^{r} \frac{\rho(t)}{t^{N-1}} dt \right) dr = \int_{0}^{+\infty} \frac{\rho(t)}{t^{N-1}} \underbrace{\left(\int_{t}^{+\infty} \frac{dr}{r^2} \right)}_{=1/t} dt = \int_{0}^{+\infty} \frac{\rho(t)}{t^{N}} dt.$$

For all R > 0 and $x \in \mathbb{R}^N$ such that $|x| \leq R/2$, it follows from Lemma 4 that

$$|w(u, x, R)| \le 2^{N-1} |x| (N-1) \int_{R}^{+\infty} \frac{\beta(r)}{r^N} dr.$$

Since $\rho_{n_p} \leq \beta$ ($\forall p \in \mathbb{N}$), the same bound holds for $|w(u_{n_p}, x, R)|$ independently of p. For all $x \in \mathbb{R}^N$, $R \geq 2 |x|$ and $p \in \mathbb{N}$, the integral representations of u and u_{n_p} (see (3) and Remark 6) lead to:

$$|u(x) - u_{n_p}(x)| \le |w(u, x, R)| + \left| \int\limits_{|\xi| \le R} \frac{d\mu_{n_p}(\xi)}{|\xi|^{N-2}} - \int\limits_{|\xi| \le R} \frac{d\mu(\xi)}{|\xi|^{N-2}} \right|$$

$$+|w(u_{n_p},x,R)|+\left|\int\limits_{|\xi|< R}rac{d\mu_{n_p}(\xi)}{|x-\xi|^{N-2}}-\int\limits_{|\xi|< R}rac{d\mu(\xi)}{|x-\xi|^{N-2}}
ight|,$$

provided that $u(x) \neq -\infty$ and $u_{n_p}(x) \neq -\infty$ (this is fulfilled for instance for $x \in \mathcal{Z}$). Let D>0 such that $\mathcal{Z} \subset \overline{B}(O,D)$. Given $\eta>0$, let T>2D be chosen such that

$$2^{N} D(N-1) \int_{r}^{+\infty} \frac{\beta(r)}{r^{N}} dr \leq \eta$$

and such that T is a point of continuity for ρ . Remark 4 then applies with $E = \overline{B}(O,T)$ (since $\mu(\partial E) = 0$), hence it follows from (1) with $\varphi(\xi) = [\max(\varepsilon, |\xi|)]^{2-N}$ that

$$\lim_{p \to +\infty} \int_{|\xi| \le T} \frac{d\mu_{n_p}(\xi)}{|\xi|^{N-2}} = \int_{|\xi| \le T} \frac{d\mu(\xi)}{|\xi|^{N-2}}$$

and moreover, according to Lemma 1, there exists $P_n \in \mathbb{N}$ for which

$$\left|\int\limits_{|\xi| < T} \frac{d\mu_{n_p}(\xi)}{|x - \xi|^{N-2}} - \int\limits_{|\xi| < T} \frac{d\mu(\xi)}{|x - \xi|^{N-2}} \right| \le \eta \qquad \forall x \in \mathcal{Z} \qquad \forall p \ge P_{\eta}$$

and

$$\left| \int\limits_{|\xi| \le T} \frac{d\mu_{n_p}(\xi)}{|\xi|^{N-2}} - \int\limits_{|\xi| \le T} \frac{d\mu(\xi)}{|\xi|^{N-2}} \right| \le \eta \qquad \forall p \ge P_{\eta}.$$

For any $x \in \mathcal{Z}$, we have $|w(u, x, T)| + |w(u_{n_p}, x, T)| \le \eta$ ($\forall p \in \mathbb{N}$) since $T \ge 2|x|$. Finally $|u(x) - u_{n_p}(x)| \le 3\eta \ \forall x \in \mathcal{Z} \ \forall p \ge P_{\eta}$, hence the uniform convergence on \mathcal{Z} . Besides that, the following holds for all $x \in \mathbb{R}^N$ and $R \ge 2|x|$:

$$\begin{split} u_{n_p}(x) - \int\limits_{|\xi| \le R} \frac{d\mu(\xi)}{|x - \xi|^{N - 2}} \le \left| \int\limits_{|\xi| \le R} \frac{d\mu_{n_p}(\xi)}{|\xi|^{N - 2}} - \int\limits_{|\xi| \le R} \frac{d\mu(\xi)}{|\xi|^{N - 2}} \right| + |w(u, x, R)| \\ + |w(u_{n_p}, x, R)| + u(x) - \int\limits_{|\xi| \le R} \frac{d\mu_{n_p}(\xi)}{|x - \xi|^{N - 2}}. \end{split}$$

Given $x\in\mathbb{R}^N$ fixed and $\eta>0$, let $T\geq 2\,|x|$ be chosen large enough so that $|w(u,x,T)|+|w(u_{n_p},x,T)|\leq\eta\;\forall p\in\mathbb{N}$ and satisfying moreover $\mu(\partial E)=0$ with $E=\overline{B}(O,T)$, in order to use (1) and (2). Thus:

$$\limsup_{p\to+\infty}u_{n_p}(x)-\int\limits_{|\xi|\leq T}\frac{d\mu(\xi)}{|x-\xi|^{N-2}}\leq \eta+u(x)-\liminf_{p\to+\infty}\int\limits_{|\xi|\leq T}\frac{d\mu_{n_p}(\xi)}{|x-\xi|^{N-2}}.$$

When $\int\limits_{|\xi| \le T} \frac{d\mu(\xi)}{|x-\xi|^{N-2}} < +\infty$, we obtain: $\limsup_{p \to +\infty} u_{n_p}(x) \le \eta + u(x) \ \forall \eta > 0$.

When
$$\int\limits_{|\xi| \leq T} \frac{d\mu(\xi)}{|x-\xi|^{N-2}} = +\infty \text{ (in other words } u(x) = -\infty), \text{ then (2) leads to}$$

$$\lim\sup_{p \to +\infty} \int\limits_{|\xi| \leq T} \frac{-d\mu_{n_p}(\xi)}{|x-\xi|^{N-2}} = -\infty$$

and the result follows from Remark 6:

$$u_{n_p}(x) = \int\limits_{|\xi| \le T} \frac{d\mu_{n_p}(\xi)}{|\xi|^{N-2}} - \int\limits_{|\xi| \le T} \frac{d\mu_{n_p}(\xi)}{|x - \xi|^{N-2}} + w(u_{n_p}, x, T)$$

the last term being bounded independently of p.

The proof of Theorem 3b) is postponed to Section 4.

4. - Null capacity sets.

The notion of capacity Cap(K) is first defined for compact sets K in \mathbb{R}^N (see [6] pp. 58 and 131-133 with a=2). This gives rise to the notions of inner capacity $\underline{Cap}(E)$ and then outer capacity $\overline{Cap}(E)$ for arbitrary sets $E \subset \mathbb{R}^N$ (see [6] p. 143 with a=2). Such a set is said to be capacitable if $\underline{Cap}(E)=\overline{Cap}(E)$, in which case this common value defines the capacity Cap(E). For arbitrary sets $(E_n)_{n\in\mathbb{N}}$, the following holds:

(6)
$$\overline{Cap}\left(\bigcup_{n=0}^{+\infty} E_n\right) \le \sum_{n=0}^{+\infty} \overline{Cap}(E_n)$$

whereas

$$\underline{Cap}\left(\bigcup_{n=0}^{+\infty} E_n\right) \le \sum_{n=0}^{+\infty} \underline{Cap}(E_n)$$

requires that the E_n are Borel sets (see [6] p. 144 with a=2).

Lemma 5. – ([6] p. 190 with a=2). – Let v_p $(p \in \mathbb{N})$ and v be measures such that $(v_p)_{n \in \mathbb{N}}$ converges vaguely towards v and that

$$\lim_{r \to +\infty} \int\limits_{|\xi| > r} \frac{dv_p(\xi)}{|\xi|^{N-2}} = 0 \qquad \textit{uniformly with respect to } p.$$

Then there exists $Q \subset \mathbb{R}^N$, with $\overline{Cap}(Q) = 0$ such that

$$\int\limits_{\mathbb{R}^{N}}\frac{dv(\xi)}{\left|x-\xi\right|^{N-2}}=\liminf_{p\rightarrow+\infty}\int\limits_{\mathbb{R}^{N}}\frac{dv_{p}(\xi)}{\left|x-\xi\right|^{N-2}}\qquad\forall x\in\mathbb{R}^{N}\setminus Q.$$

PROOF OF THEOREM 3b). – For the statement $\int_{0}^{+\infty} \frac{\beta(t)}{t^N} dt < +\infty$, we refer to the proof of Theorem 3a). For any $m \in \mathbb{N}^*$, there exists $T_m > 0$ such that

$$2^{N}(N-1)\int_{T_{-}}^{+\infty} \frac{\beta(t)}{t^{N}} dt \le \frac{1}{m^{2}}$$

it may moreover be assumed that T_m is a continuity point for ρ and that $\lim_{m\to +\infty} T_m = +\infty$. Given $x\in\mathbb{R}$, Lemma 4 provides for all $m\in\mathbb{N}^*$ satisfying $m\geq |x|$ and $T_m\geq 2|x|$:

$$|w(u, x, T_m)| + |w(u_{n_p}, x, T_m)| \le \frac{1}{m} \quad \forall p \in \mathbb{N}.$$

With $m \in \mathbb{N}^*$ fixed, let $B_m = \overline{B}(O, T_m)$ and μ'_{n_p} (resp. μ') the restriction to B_m of μ_{n_p} (resp. μ). Since $\mu(\partial B_m) = 0$, it follows from [6] (p. 10) that $(\mu'_{n_p})_{p \in \mathbb{N}}$ converges vaguely towards μ' . Now

$$\int_{|\xi| > r} \frac{d\mu'_{n_p}(\xi)}{|\xi|^{N-2}} = 0 \qquad \forall r > T_m \qquad \forall p \in \mathbb{N}$$

thus Lemma 5 applies: there exists $Q_m \subset \mathbb{R}^N$ with $\overline{Cap}(Q_m) = 0$ such that

$$\liminf_{p \to +\infty} \int_{|\xi| < T_m} \frac{d\mu_{n_p}(\xi)}{|x - \xi|^{N-2}} = \int_{|\xi| < T_m} \frac{d\mu(\xi)}{|x - \xi|^{N-2}} \qquad \forall x \in \mathbb{R}^N \setminus Q_m.$$

Moreover, according to (1)

$$\lim_{p \to +\infty} \int\limits_{|\xi| < T_m} \frac{d\mu_{n_p}(\xi)}{\left|\xi\right|^{N-2}} = \int\limits_{|\xi| < T_m} \frac{d\mu(\xi)}{\left|\xi\right|^{N-2}}.$$

Let $Q = \bigcup_{m=1}^{+\infty} Q_m$. It follows from (6) that $\overline{Cap}(Q) = 0$. Now, given $x \in \mathbb{R}^N \setminus Q$ and $m \in \mathbb{N}^*$ with $m \geq |x|$ and $T_m \geq 2|x|$, the representation (3):

$$u_{n_{p}}(x) - \int_{|\xi| \leq T_{m}} \frac{d\mu(\xi)}{|x - \xi|^{N-2}} = \int_{|\xi| \leq T_{m}} \frac{d\mu_{n_{p}}(\xi)}{|\xi|^{N-2}} - \int_{|\xi| \leq T_{m}} \frac{d\mu(\xi)}{|\xi|^{N-2}} - w(u, x, T_{m}) + w(u_{n_{p}}, x, T_{m}) + u(x) - \int_{|\xi| \leq T_{m}} \frac{d\mu_{n_{p}}(\xi)}{|x - \xi|^{N-2}}.$$

leads to:

$$-\frac{1}{m} + u(x) \le \limsup_{p \to +\infty} u_{n_p}(x) \le \frac{1}{m} + u(x)$$

(valid for all sufficiently large m) if $\int\limits_{|\xi| \le T_m} \frac{d\mu(\xi)}{|x-\xi|^{N-2}} < +\infty$. The case where $\int\limits_{|\xi| \le T_m} \frac{d\mu(\xi)}{|x-\xi|^{N-2}} = +\infty$ has already been studied at the end of Section 3.

Remark 8. – It was not allowed to apply Lemma 5 to the measures μ_{n_p} . Of course

$$\int\limits_{|\mathcal{E}|>r} \frac{d\mu_{n_p}(\xi)}{|\xi|^{N-1}} = \int\limits_r^{+\infty} \frac{d\rho_{n_p}(t)}{t^{N-1}} \leq (N-1) \int\limits_r^{+\infty} \frac{\rho_{n_p}(t)}{t^N} \, dt \leq (N-1) \int\limits_r^{+\infty} \frac{\beta(t)}{t^N} \, dt$$

tends towards 0 (as $r \to +\infty$) uniformly with respect to p, but with $|\xi|^{N-1}$ replaced by $|\xi|^{N-2}$, this result does not necessarily hold any longer, since $\frac{1}{|\xi|^{N-1}} \le \frac{1}{|\xi|^{N-2}}$ when $|\xi| \ge 1$.

Remark 9. – A similar conclusion as in Lemma 5 is provided by [6] p. 195, under the assumption that the measures ν_p have uniformly bounded energies, the energy of ν_p being given by

$$\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{1}{|x-y|^{N-2}} \, dv_p(x) \, dv_p(y).$$

But neither this result can apply to the measures μ_{n_p} of Theorem 3, because their energy is not necessarily bounded. For instance, the measure $\mu = \delta_a$ (the Dirac mass at some fixed point $a \in \mathbb{R}^N$, $a \neq 0$) has the following repartition function

$$ho: t \mapsto \left\{ egin{array}{ll} 0 & \quad ext{if } 0 \leq t < |a| \ 1 & \quad ext{if } t \geq |a| \end{array}
ight.$$

hence $\int\limits_0^{+\infty} \frac{\rho(t)}{t^N} \, dt < +\infty$ so that the function u defined by (3) is subharmonic in \mathbb{R}^N with Riesz measure δ_a according to [8] pp. 67-68. Explicitely

$$u(x) = \frac{1}{|a|^{N-2}} - \frac{1}{|x-a|^{N-2}} \le \frac{1}{|a|^{N-2}}.$$

Thus the growth order of u is 0, hence $u \in S_{\varepsilon}$ (provided that $|a| > \varepsilon$). However the energy of δ_a is not bounded since

$$\int\limits_{\mathbb{R}^N} \frac{d\delta_a(x)}{|x-y|^{N-2}} = \frac{1}{|a-y|^{N-2}} \qquad \quad \text{and} \quad \quad \int\limits_{\mathbb{R}^N} \frac{d\delta_a(y)}{|a-y|^{N-2}} = +\infty$$

5. – Subharmonic functions of arbitrary finite order.

DEFINITION 2. – Given $\varepsilon > 0$ and $q \in \mathbb{N}$, let $S_{\varepsilon,q}$ denote the set of all sub-harmonic functions u in \mathbb{R}^N , harmonic in $B(O,\varepsilon)$ with u(O) = 0, of order q + 1 or at most of order q + 1 convergence class.

For any $u \in \mathcal{S}_{\varepsilon,q}$, Fubini Theorem leads to

$$\int\limits_0^{+\infty} \frac{J_u(r)}{r^{q+2}} \, dr = \frac{N-2}{q+1} \int\limits_0^{+\infty} \frac{\rho(t)}{t^{N+q}} \, dt \qquad \quad \text{thus} \quad \int\limits_0^{+\infty} \frac{\rho(t)}{t^{N+q}} \, dt < +\infty.$$

This provides an integral representation of u similar to (3) but with $K_0(x,\xi)$ replaced by

$$K_q(x,\xi) = -|x-\xi|^{2-N} + A_q(x,\xi)$$
 with $A_q(x,\xi) = \sum_{m=0}^q a_m(x,\xi)$

and $a_m(x,\xi)$ the homogeneous polynomial of degree m (with respect to x_1 , x_2,\ldots,x_N) in the Taylor expansion of $x\mapsto |x-\xi|^{2-N}$ (see [3] p. 137 or [8] p. 66). More precisely: there exists a harmonic polynomial $H_u\in\mathbb{R}[x_1,x_2,...,x_N]$ of degree at most q, such that

(7)
$$u(x) = H_u(x) + \int_{\mathbb{R}^N} K_q(x,\xi) \, d\mu(\xi) \qquad \forall x \in \mathbb{R}^N$$

(see [3] pp. 141-146 or [8] pp. 67-69).

NOTATION. – For any
$$v = (v_1, v_2, ..., v_N) \in \mathbb{N}^N$$
, let $s(v) = v_1 + v_2 + ... + v_N$.

LEMMA 6. – Given $\varepsilon > 0$, $q \in \mathbb{N}$ and measures τ_p and τ such that $(\tau_p)_{p \in \mathbb{N}}$ converges vaguely towards τ and that $\tau_p(B(O,\varepsilon)) = 0 \ \forall p \in \mathbb{N}$, let R > 0 satisfying $\tau(S(O,R)) = 0$. Then

$$\lim_{p \to +\infty} \int\limits_{|\xi| < R} \!\! A_q(x,\xi) \, d\tau_p(\xi) = \int\limits_{|\xi| < R} \!\! A_q(x,\xi) \, d\tau(\xi)$$

uniformly on any compact of \mathbb{R}^N .

Proof. – Let Φ_{ξ} be defined by $\Phi_{\xi}(x) = |x - \xi|^{2-N} = \left(\sum_{j=1}^{N} (x_j - \xi_j)^2\right)^{\frac{2-N}{2}}$. Hence:

$$A_q(x,\xi) = \sum_{v: s(v) \le q} a_v(\xi) \, x_1^{v_1} x_2^{v_2} ... \, x_N^{v_N}$$

with

$$a_{\nu}(\xi) = \frac{\partial^{s(\nu)} \Phi_{\xi}}{\partial x_1^{\nu_1} ... \partial x_N^{\nu_N}} (O) = \frac{Q_{\nu}(\xi)}{|\xi|^{N-2+2s(\nu)}}$$

where $Q_{\nu} \in \mathbb{R}[\xi_1, \xi_2, ... \xi_N]$. Now it follows from Remark 4 and (1) applied with $\varphi(\xi) = Q_{\nu}(\xi) \left[\max{(\varepsilon, |\xi|)} \right]^{2-N-2s(\nu)}$ that:

$$\lim_{p \to +\infty} \int\limits_{|\xi| < R} \frac{Q_{\scriptscriptstyle \mathcal{V}}(\xi)}{|\xi|^{N-2+2s(\nu)}} \ d\tau_p(\xi) = \int\limits_{|\xi| < R} \frac{Q_{\scriptscriptstyle \mathcal{V}}(\xi)}{|\xi|^{N-2+2s(\nu)}} \ d\tau(\xi)$$

for all $v \in \mathbb{N}^N$ such that $s(v) \leq q$. Whence

$$\begin{split} &\left| \int\limits_{|\xi| \le R} A_q(x,\xi) \, d\tau_p(\xi) - \int\limits_{|\xi| \le R} A_q(x,\xi) \, d\tau(\xi) \right| \\ & \le \sum_{\nu \,:\, s(\nu) \le q} |x_1^{\nu_1} \dots x_N^{\nu_N}| \, . \, \left| \int\limits_{|\xi| \le R} a_\nu(\xi) \, d\tau_p(\xi) - \int\limits_{|\xi| \le R} a_\nu(\xi) \, d\tau(\xi) \right|. \end{split}$$

Given $D \ge 1$, we have $|x_1^{\nu_1}x_2^{\nu_2}...x_N^{\nu_N}| \le D^{\nu_1}D^{\nu_2}...D^{\nu_N} = D^{s(\nu)} \le D^q$ for all $x \in \overline{B}(O,D)$. Thus the convergence is uniform on $\overline{B}(O,D)$.

LEMMA 7. – Given $\varepsilon > 0$, $q \in \mathbb{N}$, $u \in \mathcal{S}_{\varepsilon,q}$, μ the Riesz measure of u and ρ its repartition function, let

$$egin{aligned} w_q(u,x,R) &= \int\limits_{|\xi|>R} K_q(x,\xi)\,d\mu(\xi) \qquad and \ w_q'(u,x,R) &= \int\limits_{|\xi|< R} K_q(x,\xi)\,d\mu(\xi) \qquad orall x \in \mathbb{R}^N \qquad orall R \geq 0. \end{aligned}$$

If $|x| \leq R/2$, then

$$|w_q(u,x,R)| \leq 4^{N+q} |x|^{q+1} \int\limits_R^{+\infty} rac{d
ho(t)}{t^{N-1+q}} \leq 4^{N+q} |x|^{q+1} (N-1+q) \int\limits_R^{+\infty} rac{
ho(t)}{t^{N+q}} \, dt$$

If $|x| \le \varepsilon/2$, then

$$|w_q'(u,x,R)| \le \frac{1}{\varepsilon^{N-2}} \left[2^{N-2} + \sum_{m=0}^q \frac{b_m}{2^m} \right] \rho(R) \qquad with \ b_m = \frac{(m+N-3)!}{m! \ (N-1)!}.$$

PROOF. – The estimation $|K_q(x,\xi)| \le 4^{N+q} \frac{|x|^{q+1}}{|\xi|^{N-1+q}}$ (if $|x| \le |\xi|/2$) is available in [3] p. 139. Observing that

$$|w_q'(u,x,R)| \leq \int\limits_{|x| \leq |\xi| < R} \left[\frac{1}{|x-\xi|^{N-2}} + \sum_{m=0}^q |a_m(x,\xi)| \right] d\mu(\xi),$$

the second result follows from $|a_m(x,\xi)| \leq b_m \frac{|x|^m}{|\xi|^{N+m-2}}$ (see [3] p. 137), since $|x-\xi| \geq |\xi| - |x| \geq \varepsilon - \varepsilon/2 = \varepsilon/2$ and $|a_m(x,\xi)| \leq b_m \frac{(\varepsilon/2)^m}{\varepsilon^{N+m-2}} = \frac{b_m}{2^m \varepsilon^{N-2}}$.

LEMMA 8. – Given $q \in \mathbb{N}$, let $(F_n)_{n \in \mathbb{N}}$ be a sequence of polynomials in $\mathbb{R}[x_1, x_2, ..., x_N]$ with degrees at most q, which converges pointwise on $\overline{B}(O, q)$ towards some function f. Then f is a polynomial of degree $\leq q$ and $(F_n)_{n \in \mathbb{N}}$ converges towards f uniformly on every compact of \mathbb{R}^N . If the F_n are harmonic, then so is f.

REMARK 10. – This result remains valid if the pointwise convergence holds on $\overline{B}(O,r)$ with some radius r>0 independant of q (Lemma 8 merely applies to polynomials G_n defined by $G_n(x)=F_n(r^{-1}qx) \ \forall x\in\mathbb{R}^N$).

PROOF OF LEMMA 8. – For any $k \in \mathbb{N}$, let $P_k \in \mathbb{R}[t]$ be defined by

$$P_k(t) = \frac{1}{k!} t(t-1)(t-2) \dots (t-k+1)$$

with $P_0 \equiv 1$. Thus $P_k(l) = C_l^k \ \forall l \in \mathbb{N}$. These P_k provide a basis for the space of polynomials with degree $\leq q$ in $\mathbb{R}[x_1, x_2, ..., x_N]$. With respect to this basis, let $a_{n,\nu}$ denote the coefficients of F_n , with $a_{n,\nu} = 0$ for any $\nu \in \mathbb{N}^N$ such that $s(\nu) > q$, in other words:

$$F_n(x) = \sum_{v \in \mathbb{N}^N} a_{n,v} P_{v_1}(x_1) P_{v_2}(x_2) \dots P_{v_N}(x_N) \qquad \forall x \in \mathbb{R}^N.$$

For any $\lambda \in \mathbb{N}^N$, we have $F_n(\lambda) = \sum a_{n,\nu} C_{\lambda_1}^{\nu_1} C_{\lambda_2}^{\nu_2} \dots C_{\lambda_N}^{\nu_N}$, this sum being restricted to the $\nu \in \mathbb{N}^N$ such that $\nu_j \leq \lambda_j \ \forall j \in \{1,2,...,N\}$ together with $s(\nu) \leq q$. When $s(\nu) = s(\lambda)$ and $\nu \neq \lambda$, the corresponding term in the sum vanishes since there exists i such that $\nu_i > \lambda_i$. If $s(\lambda) \leq q$, then $\lambda \in \overline{B}(O,q)$ since

$$\sum_{j=1}^{N} \lambda_j^2 \le \left(\sum_{j=1}^{N} \lambda_j\right)^2 \le q^2.$$

If $\lambda = O$, then $F_n(\lambda) = a_{n,O}$ hence $\lim_{n \to +\infty} a_{n,O} = f(O) := c_O$.

If $s(\lambda) = 1$, then $F_n(\lambda) = a_{n,O} + a_{n,\lambda}$, thus $\lim_{n \to +\infty} a_{n,\lambda} = f(\lambda) - c_O := c_{\lambda}$. More generally, for $2 \le s(\lambda) \le q$, we have

$$a_{n,\lambda} = F_n(\lambda) - \sum_{\substack{v : s(v) < s(\lambda)}} a_{n,v} C_{\lambda_1}^{\nu_1} C_{\lambda_2}^{\nu_2} \dots C_{\lambda_N}^{\nu_N}.$$

Having defined recurrently the coefficients c_{ν} for $s(\nu) < s(\lambda)$, we obtain

$$\lim_{n \to +\infty} a_{n,\lambda} = f(\lambda) - \sum_{\nu: s(\nu) < s(\lambda)} c_{\nu} C_{\lambda_1}^{\nu_1} C_{\lambda_2}^{\nu_2} \dots C_{\lambda_N}^{\nu_N}$$

and this value is denoted by c_{λ} . Let F be the polynomial defined by

$$F(x) = \sum_{v \in \mathbb{N}^{N}} c_{v} P_{v_{1}}(x_{1}) P_{v_{2}}(x_{2}) \dots P_{v_{N}}(x_{N}) \qquad \forall x \in \mathbb{R}^{N}$$

with $c_{\nu}=0$ if $s(\nu)>q$. Given K a compact in \mathbb{R}^N , we will next show that $\|F_n-F\|:=\sup_{x\in K}|F_n(x)-F(x)|$ tends towards 0 as $n\to +\infty$ (on $K=\overline{B}(O,q)$, it will provide f=F). Now

$$|F_n(x) - F(x)| \leq \sum_{\nu \in \mathbb{N}^N} |a_{n,\nu} - c_{\nu}| \cdot |P_{\nu_1}(x_1)| \cdot |P_{\nu_2}(x_2)| \dots |P_{\nu_N}(x_N)|.$$

Let $R \geq 1$ be such that $K \subset \overline{B}(O, R)$. Thus

$$|P_{v_i}(x_j)| \le R(R+1)...(R+v_j-1) \le (R+v_j)^{v_j} \le (R+q)^{v_j} \quad \forall x \in K$$

Finally $||F_n - F|| \le (R + q)^q \sum_{\nu} |a_{n,\nu} - c_{\nu}|$. This last sum containing only a fixed number of terms $(\le q^N)$, each of which tending towards 0 as $n \to +\infty$, the result follows.

Now $P_k'(t) = P_k(t) \sum_{l=0}^{k-1} \frac{1}{t-l}$ and $P_k''(t) = P_k(t) S_k(t) \ \forall t \in \mathbb{R}$, where

$$S_k(t) = \left(\sum_{l=0}^{k-1} \frac{1}{t-l}\right)^2 - \sum_{l=0}^{k-1} \frac{1}{(t-l)^2}$$

with $S_k \equiv 0$ for k = 0 and k = 1. Thus

$$\frac{\partial^2 F_n}{\partial x_i^2}(x) = \sum_{v \in \mathbb{N}^N} a_{n,v} \left(\prod_{j=1}^N P_{v_j}(x_j) \right) S_{v_i}(x_i) \qquad \forall x \in \mathbb{R}^N,$$

hence

$$\Delta F_n(x) = \sum_{v \in \mathbb{N}^N} a_{n,v} \left(\prod_{j=1}^N P_{v_j}(x_j) \right) \sum_{i=1}^N S_{v_i}(x_i).$$

As $n \to +\infty$, this quantity tends towards

$$\sum_{v \in \mathbb{N}^N} c_v \left(\prod_{j=1}^N P_{v_j}(x_j) \right) \sum_{i=1}^N S_{v_i}(x_i) = \Delta F(x)$$

at any point $x \in \mathbb{R}^N$. Whence $\Delta F_n \equiv 0 \ \forall n \in \mathbb{N}$ implies $\Delta F \equiv 0$.

THEOREM 4. – Given $\varepsilon > 0$, $q \in \mathbb{N}$ and two increasing sequences of positive numbers $(M_k)_{k \in \mathbb{N}}$ and $(R_k)_{k \in \mathbb{N}}$ satisfying $R_0 > 2\varepsilon$, $\lim_{k \to +\infty} R_k = +\infty$ and

$$\sum_{k\geq 1} \frac{M_k}{{R_k}^{1+q}} \left[\left(\frac{R_k}{R_{k-1}} \right)^{N+q-1} - 1 \right] < +\infty,$$

let $(u_n)_{n\in\mathbb{N}}$ a sequence of elements in $\mathcal{S}_{\varepsilon,q}$ satisfying (4) and $u_n(x) \leq M_0$ $\forall x \in \overline{B}(O,\varepsilon/2) \ \forall n \in \mathbb{N}$. Then the same conclusions hold as in Theorem 3 (with here $u \in \mathcal{S}_{\varepsilon,q}$).

LEMMA 9. – ([8] p. 47). – Let v_n $(n \in \mathbb{N})$ be subharmonic functions in a domain G of \mathbb{R}^N . Suppose that:

- (i) the sequence $(v_n)_{n\in\mathbb{N}}$ is uniformly bounded above on every compact subset of G
- (ii) there is a compact subset $K \subset G$ such that $(v_n)_{n \in \mathbb{N}}$ does not uniformly converge on K to $-\infty$ as $n \to +\infty$.

Then we can choose a subsequence $(v_{n_k})_{k\in\mathbb{N}}$ which converges in the distribution sense (in $\mathcal{D}'(G)$ in other words) to some function v subharmonic in G.

LEMMA 10. – ([8] p. 48). – Let $(v_k)_{k\in\mathbb{N}}$ be an uniformly bounded above sequence of functions subharmonic in G which converges in the distribution sense towards some function v. If we assume in addition that the v_k are harmonic, then they converge uniformly to v on every compact subset of the domain G.

PROOF OF THEOREM 4. – Each function u_n has an integral representation of the kind (7) involving a harmonic polynomial H_{u_n} of degree $\leq q$, written H_n for sake of brevity. Now

$$H_n(x) \le u_n(x) + |w_o'(u_n, x, R)| + |w_o(u_n, x, R)| \qquad \forall x \in \mathbb{R}^N \qquad \forall R > 0.$$

We obtain for all $x \in \overline{B}(O, \varepsilon/2)$ the following majorants which are independent of n:

$$\begin{split} &u_n(x) \leq M_0 \\ &|w_q'(u_n,x,R_0/2)| \leq \frac{1}{\varepsilon^{N-2}} \left[2^{N-2} + \sum_{m=0}^q \frac{b_m}{2^m} \right] \frac{1}{2^{N-3}} \, M_0 \, R_0^{N-2} \\ &|w_q(u_n,x,R_0/2)| \leq 4^{N+q} \left(\frac{\varepsilon}{2} \right)^{q+1} (N-1+q) \, \int\limits_0^{+\infty} \frac{\beta(t)}{t^{N+q}} \, dt \end{split}$$

according to Lemma 7 and (5). With β and L_k defined as in the proof of Theorem 3 a), we now have:

$$\int_{\frac{1}{2}R_{k-1}}^{\frac{1}{2}R_k} \frac{\beta(r)}{r^{N+q}} \ dr \leq \frac{2^{N+q-1}}{N+q-1} \frac{L_k}{\left(R_k\right)^{N+q-1}} \left[\left(\frac{R_k}{R_{k-1}}\right)^{N+q-1} - 1 \right],$$

hence

$$\int\limits_{\frac{1}{2}R_0}^{+\infty} \frac{\beta(r)}{r^{N+q}} \, dr \leq \frac{2^{q+2}}{N+q-1} \sum_{k \geq 1} \frac{M_k}{{R_k}^{1+q}} \left[\left(\frac{R_k}{R_{k-1}} \right)^{N+q-1} - 1 \right] < + \infty.$$

Finally: the polynomials H_n are uniformly bounded above on $\overline{B}(O, \varepsilon/2)$. When $q \in \mathbb{N}^*$, the polynomials F_n defined by

$$F_n(x) = H_n\left(\frac{\varepsilon x}{4q}\right)$$

are uniformly bounded above on $\overline{B}(O,2q)$. They are harmonic too:

$$\frac{\partial F_n}{\partial x_j}(x) = \frac{\varepsilon}{4q} \frac{\partial H_n}{\partial x_j} \left(\frac{\varepsilon x}{4q} \right) \quad \text{hence} \quad \Delta F_n = \left(\frac{\varepsilon}{4q} \right)^2 \Delta H_n \equiv 0.$$

Moreover $F_n(O)=H_n(O)=0$ and $\deg F_n\leq q\ \forall n\in\mathbb{N}$. We first apply Lemma 9 with $v_n=F_n,\ G=B(O,2q),\ K=\{O\}$ and next, Lemma 10. We thus obtain a subsequence $(F_{n_k})_{k\in\mathbb{N}}$ converging uniformly on $\overline{B}(O,q)$ towards some function f which turns out to be a harmonic polynomial of degree $\leq q$ thanks to Lemma 8. So is H, defined by

$$H(x) = f\left(\frac{4qx}{\varepsilon}\right).$$

Conclusion: up to the extraction of a subsequence, $(H_n)_{n\in\mathbb{N}}$ converges to H uniformly on every compact of \mathbb{R}^N .

Through Lemma 3 and Theorem 2, a subsequence $(\mu_{n_p})_{p\in\mathbb{N}}$ is extracted, which converges vaguely to a measure μ whose repartition function ρ satisfies $\rho \leq \beta$ thus

$$\int_{\frac{1}{2}R_0}^{+\infty} \frac{\rho(t)}{t^{N+q}} dt \le \int_{\frac{1}{2}R_0}^{+\infty} \frac{\beta(t)}{t^{N+q}} dt < +\infty.$$

Now the function U defined by

$$U(x) = \int_{\mathbb{R}^N} K_q(x, \xi) \, d\mu(\xi)$$

is subharmonic in \mathbb{R}^N with Riesz measure μ according to [8] pp. 67-68. As in the proof of Theorem 3a, we deduce that the order λ of U satisfies $\lambda \leq q+1$. If $\lambda = q+1$, then moreover

$$\int\limits_{0}^{+\infty} \frac{J_U(r)}{r^{1+\lambda}}\,dr = \frac{N-2}{q+1}\,\int\limits_{0}^{+\infty} \frac{\rho(t)}{t^{N+q}}\,dt < +\infty$$

thus $U \in \mathcal{S}_{\varepsilon,q}$. Now $u = H + U \in \mathcal{S}_{\varepsilon,q}$. For all $p \in \mathbb{N}$, $x \in \mathbb{R}^N$ and $R \geq 2|x|$ we have

$$\begin{split} u_{n_p}(x) - \int\limits_{|\xi| \le R} \frac{d\mu(\xi)}{|x - \xi|^{N-2}} &= w_q(u_{n_p}, x, R) - w_q(u, x, R) - H(x) + H_{n_p}(x) \\ &+ u(x) - \int\limits_{|\xi| \le R} \frac{d\mu_{n_p}(\xi)}{|x - \xi|^{N-2}} + \int\limits_{|\xi| \le R} A_q(x, \xi) \, d\mu_{n_p}(\xi) - \int\limits_{|\xi| \le R} A_q(x, \xi) \, d\mu(\xi). \end{split}$$

• Proof of the uniform convergence of $(u_{n_p})_{p\in\mathbb{N}}$ towards u on Ξ .

Let D > 0 such that $\Xi \subset \overline{B}(O, D)$. Given $\eta > 0$, we fix $T \ge 2D$ in order to be a continuity point for ρ and such that

(8)
$$4^{N+q+\frac{1}{2}}D^{q+1}(N+q-1)\int_{T}^{+\infty} \frac{\beta(t)}{t^{N+q}} dt \le \eta$$

thus $|w_q(u, x, T)| + |w_q(u_{n_p}, x, T)| \le \eta \ \forall p \in \mathbb{N} \ \forall x \in \Xi$. There exists $P_{\eta} \in \mathbb{N}$ such that the following three estimations hold for all $p \ge P_{\eta}$ and $x \in \Xi$:

$$|H(x) - H_{n_p}(x)| \le \eta$$
, $\left| \int_{|\xi| \le T} \frac{d\mu_{n_p}(\xi)}{|x - \xi|^{N-2}} - \int_{|\xi| \le T} \frac{d\mu(\xi)}{|x - \xi|^{N-2}} \right| \le \eta$

and

$$\left| \int\limits_{|\xi| \le T} A_q(x,\xi) \, d\mu_{n_p}(\xi) - \int\limits_{|\xi| \le T} A_q(x,\xi) \, d\mu(\xi) \right| \le \eta.$$

Conclusion: $|u(x) - u_{n_n}(x)| \le 4\eta \ \forall p \ge P_{\eta} \ \forall x \in \Xi$.

• Proof of $\limsup_{p \to +\infty} u_{n_p}(x) \le u(x)$ for all $x \in \mathbb{R}^N$.

Given $x \in \mathbb{R}^N$ and $\eta > 0$, we choose $T \ge 2|x|$ such that T is a continuity point for ρ and satisfies (8) with D replaced by |x|. Thus,

$$w_q(u_{n_p}, x, R) - w_q(u, x, R) \le \eta \ \forall p \in \mathbb{N}.$$

We next proceed as at the end of Section 3.

• Proof of $\limsup_{p\to +\infty} u_{n_p}(x) = u(x)$ for all x outside a set of outer capacity zero.

A sequence $(T_m)_{m\in\mathbb{N}^*}$ of positive numbers tending towards $+\infty$ is built in such a way that each T_m is a continuity point for ρ and that

$$4^{N+q+rac{1}{2}}(N+q-1)\int\limits_{T}^{+\infty}rac{eta(t)}{t^{N+q}}\,dt \leq rac{1}{m^{q+2}}.$$

Thus $|w_q(u, x, T_m)| + |w_q(u_{n_p}, x, T_m)| \le \frac{1}{m} \ \forall p \in \mathbb{N}, \ \forall x \in \mathbb{R}^N \ \text{and} \ m \in \mathbb{N}^* \ \text{such}$ that $|x| \le m$ and $T_m \ge 2|x|$. The proof now ends as in Section 4.

REFERENCES

- [1] J. M. Anderson A. Baernstein, The size of the set on which a meromorphic function is large, Proc. London Math. Soc., 36 (3) (1978), 518-539.
- [2] O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Meddelanden Mat. Sem. Univ. Lund, 3 (1935), 1-118.
- [3] W. K. HAYMAN P. B. KENNEDY, Subharmonic functions, Vol.I, London Mathematical Society Monographs, Academic Press, London–New York, 9 (1976).
- [4] L. L. Helms, Introduction to potential theory, Pure and Applied Mathematics, Wiley-Interscience, New York-London-Sydney, XXII (1969).
- [5] A. A. KONDRATYUK S. I. TARASYUK, Compact operators and normal families of subharmonic functions, Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou, 1995), Prometheus, Prague (1996), 227-231.
- [6] N. S. LANDKOF, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Berlin-Heidelberg-New York, Springer-Verlag, 180 (1972).
- [7] F. RIESZ, Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel II, Acta Math., 54 (1930), 321-360.
- [8] L. I. RONKIN, Functions of completely regular growth, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers' Group, Dordrecht, 81 (1992).
- [9] R. SUPPER, Subharmonic functions and their Riesz measure, Journal of Inequalities in Pure and Applied Mathematics, 2, no. 2 (2001), Paper No. 16, 14 p. http://jipam.vu.edu.au
- [10] R. Supper, Subharmonic functions of order less than one, Potential Analysis, Springer, 23, no. 2 (2005), 165-179.
- [11] A. Yger, Analyse complexe et distributions; éditeur: Ellipses (2001).

UFR de Mathématique et Informatique, URA CNRS 001, Université Louis Pasteur, 7 rue René Descartes, F-67 084 Strasbourg Cedex, France E-mail: supper@math.u-strasbg.fr