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A Montel Type Result for Subharmonic Functions

R. SUPPER

Abstract. — This article is devoted to sequences (uy), of subharmonic functions in RY,
with finite order, whose means Jy, (r) (over spheres centered at the origin, with radius
) satisfy such a condition as: Vr > 034, > 0suchthatJ,, (r) <A, Vn € N. The paper
mwestigates under which conditions one may extract a pointwise or uniformly con-
vergent subsequence.

1. — Introduction.

For a sequence (f;,),cn of holomorphic functions in C which is uniformly
bounded on each compact, Montel’s Theorem asserts that there exists a sub-
sequence which converges uniformly on any compact (see [11], pp. 54—56). Since
the In |f,| are subharmonic functions in IR?, the question arises whether such a
result still holds for a sequence of subharmonic functions (u,),c~ Which is
uniformly majorized on each compact. It is already available that a subsequence
(U)o can be extracted, which converges in the distribution sense (see [8], p.
47 for the detailed statement). But this kind of convergence does not give any
information on the pointwise behaviour. Without any growth condition on the
uy, the articles [1] and [5] obtain a convergent subsequence, but the conver-
gence is not uniform: it is mean convergence over spheres (see also Remark 7 in
Section 3). The present paper is devoted to the case of subharmonic functions u,,
in RY (N € N, N > 3) with a finite order of growth, under the assumption that
the means J,, (r) of u,, over spheres with radius 7 and center O are majorized
independently of n, whereas the analogous condition in [1] and [5] dealt with the
means of |u,| instead of u,,. We obtain the existence of a subharmonic function v
and a subsequence (uy,) ., converging towards « uniformly on any compact set
Z c RY which remains distant from the supports of the Riesz measures asso-
ciated to » and u,, (more precisely: there exists § > 0 such that the {—neigh-
borhood =y of = does not intersect any of these supports). Besides that

limsupu,, () < u@)  Voe RY
p—+o0

with equality quasi—everywhere (outside a set of outer capacity zero). We refer
to Theorem 3 in Section 3 and Theorem 4 in Section 5 for more precisions on the
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exact assumptions. Such a result of quasi—everywhere convergence was already
known for subharmonic functions of the kind

[0

RN |.’)C - 5|N72
(Riesz potential of the measure v, see [6], p. 58). But this result required that

f dvy(&)

—|C|N72 <4+ o0

[¢]>1

(see [6], p. 190), whereas the Riesz measures y, associated to the functions w,
under study in this article only satisfy

f dp,, (O

— <+ 00
N—
<

[¢[>1

(with ¢ € N related to the order of growth of u,, see Sections 3 and 5 for more
explanations).

The paper is organized as follows: the case of subharmonic functions with
arbitrary finite order is postponed to Section 5, whereas Sections 3 and 4 start
with the study of the case where the order is < 1. Throughout the paper, all
measures are non-negative measures on the o-algebra of Borel subsets of RY
and they assume finite values on all compact sets.

2. — Sequence of measures.

THEOREM 1. — ([7]p. 351, [2] pp. 11 and p. 16). — Let E be a compact in RN and
(ty)pen @ sequence of measures on K. If theve exists A > 0 such that u,(E) < A
vn € N, then a subsequence (ﬂnp)peN can be extracted which converges to a
measure i i the following sense:

@ Jm | o du, = f ¢ du
E E

for any continuous function ¢ on K.

The sequence (u,, )pen is said to be vaguely convergent (see [6], pages 7 and 3)
or convergent in the w*-topology (see [4], p. 231). If ¢ was only upper semi-
continuous on %, it could only be asserted that

limsup | pdu,, < f o dp.

pﬂ+:>o
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Similarly, for a lower semi-continuous ¢:
[odu<tmint [pau,
E E
(see [3], pp. 205—-209 for the proof of these results). For instance, when N > 3:

1 - 1 :
) f m du(x) < liminf W gy, (@) VE € RY

p—+o0
E E
with | . | the Euclidean norm in R,

LEMMA 1. - Given E, fhn,y M QS m Theorem 1 and a compact =5 C RY distant
from the supports of measures p, and p, then

i, (@) f dulx)

lim f = uniformly on =.
, N-2 N-2
potee g e =< q

E|x_

REMARK 1. — The ponctual convergence was already given by [2], p. 18.

ProorF oF LEMMA 1. — Let =y be the §—neighborhood of Z, relatively to | .|,
with 6 > 0 chosen small enough so that =y does not intersect the supports of the
measures f,, and u. We thus have to prove that

li{Ln f(pf duy, _—f(pé du uniformly on =,
p—+0o0 -
E E

with the functions ¢ : @+ [1/max{|x — |, 0}1V 2. In the demonstration of
Theorem 1 (see [3], p. 207), one of the main steps is the proof of I(p) < J(p) where
I(p) := sup,s(4, p) and J(p) := inf ; S(4, p), the supremum and infimum involving
any finite collection 4= {Cy,Cy,...,C;} of disjoint hypercubes whose union
contains £ (and a fortiori the supports of I, and u), with

t t
s(4,9) = 3 uCy int and  S(4,p) = u(C)) supe.

i =1 Ci

Here, for any & € Z, we have:
t
J(p2) = I(pe) < S, 92) — 5(4,92) =Y u(Cp?) = p:(y ]
j=1

for some 2 and ' in the closure C; of C;. We can assume that all C; (at least
those such that 1(C;) > 0) have small enough diameters and do not intersect =j.



426 R. SUPPER

For all # and y € RN \ 5y, the following holds:
0e@) — p:9) = — = fO )
& — P = —5 — — = —
C < ‘x _ f‘N 2 |y _ 5|N 2

with f defined by f(t) = |¢ — & + t(y — )| V2 Vt € R. Now

-N+2

"t) =
! e — &+ ty — @)

N Z [xz fl + t(% - xl)] (yz - -701

and Cauchy-Schwarz formula yields

N-2
'f'“”f|(1ft)%+ty,g|zv('”‘f"‘y‘x'“i"‘xF) vt € [0,1].

When x and y both belong to the convex @, then (1 —#)x + ty is also located
there, hence |(1 — t)x + ty — &| > 6. There exists M > 0 (depending only on the
compacts £ and =) such that [x — &|<M and |y — x| <M for all £ € 5, x and
y € K. Finally

(pé(ﬂc(j)) P (Z/(])) < NQNZ oM |y(]) x(j)‘.

For any ¢ > 0, there exists a collection 4 = {Cy, Cs, ..., C} such that the diameter

of every C; does not exceed ¢, hence

2M(N —2)
oN

Including this argument in the demonstration [3] (p. 206-208) will point out that
the convergence (1) is actually uniform when we work with the equicontinuous

family {p:} .z

T(p:) — () < (A VEEE.

NoTaTION. — We consider the ball B(O,7) = {x € R : |¢| <} and the
sphere S(0,7) = {x € RV : |¢| =7} vr >0
REMARK 2. — With ¢ = 1 in Theorem 1, we observe that
pLiTOO o, (B) = p(B) < A.
The vague convergence on £ of (,unp Jpen towards u does not necessarily imply its

vague convergence on a compact K C E towards the same limit . Otherwise, one
would have liIJ;n ,un,,(K) = u(K). A counterexample is provided by:
p—+o00

ExamPLE 1. — For any n € N, let f,, : R — R be the continuous function,
affine on [1 —%,1} and on {1,1+%}, defined by: f,(1) = n and f,(t) =0 if
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1 1
t<1-— " orift>1+ pos Let p,, be the measure defined by:

2
[o@du,@ = [ ot.0... 050 d

RY 0

for any measurable function ¢ : RN — R*. The sequence (e cONVErges
vaguely on £ = B(0, 2) to the measure u = J the Dirac mass concentrated at the
point (1,0, ...,0) € ]RN, because

2
ngerOf(p(t,o,...,())fn(t)dt:¢(1,0,...,0)

for continuous functions ¢:E — R. Now let K = B(0,1). Then W, (K) =
1
1

[ fu@®) dt == hence lim pu,(K)<uK)=1.
0 2 n—-+ 00

REMARK 3. — If M is a non-empty measurable set contained in £, such that
wW(OM) = 0 (where OM denotes the boundary of M), then

im0, () = (M)

(see [6], p. 9 for a proof). When u(0M) = 0, the set M is said to be regular rela-
tively to i (see [2], pp. 9-10). Denoting by ,u;lp and 4/ the restrictions to M of H, and

urespectively, then (,ujzp Jpex converges vaguely to i/ (see [6], p. 10), but this result
does not hold any longer without the assumption @(0M) = 0.

E)iAMPLE 2. — Let (fu)pexts ) pen» 1 and E be defined as in Example 1. Let
M = B(0,1) and w4, be the restriction to M of x,, in other words:

f(ﬂdﬂ% th//dun
M E
for any measurable function ¢ : M — R*, with y defined by

o) iteeM
‘/’(x)—{o if v B\ M.

1
Thus [¢du, = [ ¢(t,0,...,0)f,(t) dt. Here i/ = 6, but (1)), converges vaguely
M 0

on M to the measure % 0 because

1
. 1
nggnocb[(p(t,O,...,O)fn(t)dt§¢(1,0,...,0)

for any continuous function ¢ : M — R.
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A more general version of Theorem 1 is available:

THEOREM 2. — ([6], pp. 11-12and p. 7). — Let (11,),,cx; be a sequence of measures
on RY. Suppose that for any compact E C RY a constant Ag > 0 exists such that
w,(B) < Ap Vn € N. There is then a subsequence (,unp)pe;\/ which converges va-
guely to a measure 1 on RY, in other words:

Jim [ gdu,, = [ pdu
N

RN RY

for any continuous function ¢ on RY with compact support.

REMARK 4. — This implies (1) on any compact set £ such that ((OF) = 0, ac-
cording to [6], p. 10. This allows to apply (2) and Lemma 1 on such sets £.

LEMMA 2. — Given p,, p, , i defined as in Theorem 2, let p : R" — R be the
repartition function associated to the measure u, defined by pt) = ,u(E(O,t))
vt > 0. Similarly, for any n € N, let p, denote the repartition function asso-
ciated to p,,. Then p(t) = plignoo P, (&) at any continuity point of p (hence for any ¢
n the set [0, +oo[ deprived of an at most countable subset). If there exists a
right—continuous function f : [0, + oo — [0, +oo[ such that p, () < pt) ¥n € N
Yt > 0, then p(t) < p(t) vt > 0.

REMARK 5. — The term “repartition function” is explained as follows: let i’ be
the measure defined on [0, 4 oco[ by /(1) = u({x € RY . || € I}) for any Borel
set I C [0, +ool. In the case where /[0, +oc[) = ,u(RN ) = 1, the function p co-
incides with the repartition function of x’ in the classical probabilistic meaning.

PRrROOF OF LEMMA 2. — Since p(s) > p(t) Vs >t > 0, the set of all discontinuity
points of p on ]0, +oo[ is at most countable. At any point ¢y > 0 the following
holds:

S0, 1)) = plto) —  lim  p(@).
tto <ty

Let ¢ > 0 be a point where the function p is continuous. Hence u(0M) = 0 with
M = B(0,t) and lir+n ,unp(M) = (M) according to [6], p. 9.
p—+oo

The estimation p(t) < (t) is obvious for points ¢ where p is continuous. Let £, be a
point of discontinuity for p. As p is right-continuous at any point of [0, + oo [, one has:

p(tO) - tﬂtlolg.g to p(t) - kBEHOO p(tk)

where (f;),cn+ 1S @ sequence of continuity points for p with ¢, > ¢y and

lim tk = to

k—+ o0
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(such a sequence exists since the set of discontinuity points is at most countable).
The conclusion follows from klim Bty = S(toy).
——+ 00

3. — Subharmonic functions of order less than one.

A subharmonic function % in RY of finite order / > 0 satisfies such an esti-

mation:
Vy>A4  3A>0  u@ <A+ VeeRY

Assuming that u is moreover harmonic in some neighborhood of the origin with
u(0) = 0, the repartition function p associated to the Riesz measure u of u sa-
tisfies (see [9]):

Vy>4  3C>0  pr)<CrNEHT wr>0.

When A<1, this leads to f ’0( )

representation (see [8], pp. 67-69) Where Ky(x, &) = |é|2 N_ le — f|2 N,

dr <+ oo which provides the following

®) u@ = [ Ko, Odu@ Vo e RY

RY

This representation remains valid for A =1 (see [3], pp. 155-156) provided
}OO M, (r)

that moreover u is of convergence class, that is:

M, (r) = max u(x) (see [3], p. 143) or equivalently (see [10])

f sz(r) dr< + 0o where J,,(r) = (N — 2) f p (t)

7"“+1
1
Jensen-Privalov formula (see [8], p. 44), in other words: Nevanlinna’s first fun-
damental theorem (see [3], p. 127), provides another expression:

Ju(r) = f w(rx) doy,
ON
Sy
27N/2

with do the area element on the unit sphere Sy and oy =S 1{ do :—F(N 72)

(see [3], p. 29).

LEMMA 3. — Given u subharmonic in RY , harmonic i B(0,¢) (for some
&> 0) with u(0) = 0, let p denote the repartition function of its Riesz measure.
Then

1
2V=3 p(r/2) o J.r)  Wr>0.
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PrOOF. — This minoration follows from J,(r) > (N —2)p(r/2) f ~7 to-
gether with 2V-2 — 1 > 2N-3, /2

DEFINITION 1. — Given e > 0, let S, denote the set of all subharmonic functions
win RN , harmonic in B(O, &) with u(0) = 0, of order <1 or at most of order 1
convergence class.

For u € S,, note that p = 0 on [0, ¢[ and that hm 7{)(—) =0 (see [10]).

THEOREM 3. — Given ¢ > 0 and two increasing sequences of positive numbers
Mp)rex and (Ry)pen satisfying Ry > 2¢ and klim R}, = + oo together with
—+ 00

,; Ry, [(Rk 1>N1_1

let (uy)uen be a sequence of elements in S, such that

4) Ju, RBy) < My, vn € N Yk € N.

<+ o0,

a) Then there exist u € S, and a subsequence (U, JpeN converging towards u
uniformly on any compact set = c RY distant fmm the supports of the Riesz
measures associated to u and wuy,. Besides that

lim sup Un, () < ulx) Ve € RN,
p—+ oo

b) There exists a set Q@ C RY, with outer capacity zero, such that

lim sup w4y, (x) = u(x) ve € RY \ Q.

p—+o00

LEMMA 4. — Given ¢ >0, u €S, u the Riesz measure of u and p its
repartition function, let wu,x,R)= [ Ko(x,&)du& VeeRY VR >0. If
x| < R/2, then 1E>R

w2, R)| < 2V o] f PO < 5Ny - f 0 g,

R R
PrOOF. — See [3] p. 139 and [10].

REMARK 6. — When R > 2|x|, the representation (3) becomes:

ww= [ WO [ O

N-2 N-2
|f\<R|f| ‘C‘<R| _é|
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with u(x) = —oo if and only if [ % =

| +o00 (both other terms on the
X
) [E|<R

right—hand side being finite

REMARK 7. — Keeping Jensen—Privalov formula in mind, it turns out that (4) is
fulfilled for instance when w,(x) < M}, Y& € B(O,R;) Vn € N Vk € N. It also
points out that the mean convergent subsequence from the works [1] and [5] was
obtained in a different situation than here: the articles [1] and [5] assume that

Vr >0 d4, >0 f|un(7‘ac)| do, <A, vn e N

which implies (4) but the converse is not valid.

Proor oF THEOREM 3a). —The Riesz measures u, (v € IN) associated to u,,
respectively satisfy for all k € N and n € \:

®) 1, (B(O,Ry/2)) = p,(Ry/2) < 2N s M RN ?

with p, the repartition function of x,. Thanks to Theorem 2, a subsequence
(:unp)pE ~ can be extracted, which converges vaguely to a measure u whose re-
partition function, denoted by p, satisfies: p < f on [0, oo[ according to Lemma 2
applied to the increasing piecewise-constant function f defined by:

pt) = 2N MRN P =L, Vte[Re1/2,Rp/2l  Vk>1
B(t) = 2N - MoRV? Vi € [¢,Ro/2l
S =0on[0,¢.
Now
SR 2R N-1 N-1
ﬁ(,r) _N Lk 2 2
= — < = R — — | — .
= | v dr <L [ rar 1|z 7
IR 3R

Thus

+oo 2N71 +00 M]chN_Z 1 N-1 1 N-1
Yisvy e |(ws) @)

This shows that



432 R. SUPPER

Hence the function % defined by (3) is subharmonic in RY with Riesz measure U
according to [8], pp. 67-68. The growth order ¢ of the function r+— 12~ p(r) co-
incides with the convergence exponent

+00
inf{c: Tl’jfﬁc dr < —|—oo} (see [8], p. 66)
0

whence ¢ < 1. Thus
Vy>a  FA>0  pr) <A+rNTET O wr > 0.

For such a fixed y, we compute

F o) A N-2

Julr) = (N — 2)f N1 dt < N T . o Yr>e
The order A of # being given by:
7 = timsup BV _ ) 108
rotoc  logr rotoo logr

(as a consequence of Poisson formula: see [10]), we obtain 4 < 1. When 4 =1, it

remains to check
f Ju(r)
dr< + oo

0

in order to conclude that u € S,. Fubini theorem leads to:

too +00 +00 +00
1 @) p®) dr p(t)
f 7”2< tNldt)d f tNl(fﬂ)dt_ dt.
0 0 0 t 0
N e’
=1/t

For all R > 0 and « € RY such that |x| < R/2, it follows from Lemma 4 that
+00
N-1 pr)
i, , R)| < 287 [a] (N — 1) 1! S dr

Since p,, < ff (vp € N), the same bound holds for [w(u,,, 2, R)| independantly of
p. For all reRY,R>2 |x| and p € I\, the integral representations of u and u,,,

(see (3) and Remark 6) lead to:
[ A, (©) i du(®)

[<I<R EI<R

f :unp(é) f du($)

ei<r 1 [EI<E

[u(a) — wuy, ()| < fw(u, v, R)| +

)

+|7/U(unp>907R)| +
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provided that u(x) # — oo and uy, () # — oo (this is fulfilled for instance for
x € 5). Let D > 0 such that & ¢ B(O, D). Given > 0,let T > 2D be chosen such

that
+

2D -1 [ (—N
T

and such that T is a point of continuity for p. Remark 4 then applies with
E =B(0,T) (since w@OE)=0), hence it follows from (1) with @(&) =

[max (¢, |€))]* that
. A, (O du()
pginoo f N2 n f V2

[<I<T [<I<T

and moreover, according to Lemma 1, there exists P, € N for which

d
f ”””(é)—f WO |y vweE WP,

|90— 5|N 2

N-2
e 1@ = ¢l <r

and

i U, & dp©)| _

N2 Vp > P,

[<I1<T N [gl<T <

For any x € =, we have |w(u,x, T)| + |[w(,,, v, T)| < n (Vp € N) since T > 2|9c\.
Finally |u(x) —uy,(x)| <38y Vo € = Vp > P,, hence the uniform convergence on =.
Besides that, the following holds for all 2 € RY and R > 2 |x|:

du() du, (©) du(d)
unp(‘%') - T N9 S p_ - — + |’I/U(’LL, OC,R)‘
él;f o= |5[R & c*!l% &
w (O
+|w(unp;96>R)| + ulx) — f %

[¢I<R

Given x € RY fixed and # > 0, let T > 2|x| be chosen large enough so that
|w(u,_x, )| + lw(uy,,x, T)] < n Vp € N and satistfying moreover u(0F) = 0 with
E = B(0,T), in order to use (1) and (2). Thus:

d n )
lim sup u,, (@) — f L{?}z < n+ulx) — hm +mf M p(f,iz_.
e i< 1@ = ¢l ier © =<l

When [ du(©) 5 < + 00, we obtain: lim sup u,, (x) < 5+ u(x) Vi > 0.
g<r e — &N o0
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When f % = + oo (in other words u(x) = — 00), then (2) leads to
< | — ¢
du,
lim sup f allh ;,5_)2 =
PoEo dier @~ <l

and the result follows from Remark 6:

d d
U, () = f &) _ f A + w(tt,,, ¢, T)

N-2 N-2
‘é‘ le|<r |9€ - ‘f|

lel<T

the last term being bounded independantly of p.
The proof of Theorem 3b) is postponed to Section 4.

4. — Null capacity sets.

The notion of capacity Cap(K) is first defined for compact sets K in RY (see
[6] pp. 58 and 131-133 with a = 2). This gives rise to the notions of inner capacity

Cap(E) and then outer capacity Cap(E) for arbitrary sets E C RY (see [6] p- 143
with a = 2). Such a set is said to be capacitable if %(E) = CTLp(E’), in which case

this common value defines the capacity Cap(¥). For arbitrary sets (£),),cn, the
following holds:

+00 +00
©) Cap( U E) < Cap(&,)
n=0 n=0
whereas
+00 +00
Cap( U E> <) Cap(E,)
n=0 n=0
requires that the £, are Borel sets (see [6] p. 144 with a = 2).

LEMMA 5. — ([6] p. 190 with a = 2). — Let v, (p € IN) and v be measures such
that (vp)p o converges vaguely towards v and that

dvp(&) . .
V_%oo f B N = uniformly with respect to p.

[E]>r
Then there exists @ C RY , with CTLp(Q) = 0 such that
f O _ lim inf Dp(S)

— = — = Ve € RN Q.
o=V 2 b d e - g '

RY
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+o00
PrOOF OF THEOREM 3b). — For the statement f % dt < + oo, we refer to
the proof of Theorem 3a). For any m € N*, there Oexists T, > 0 such that

2N (V= 1) f Y dt<—

Tm

it may moreover be assumed that 7, is a continuity point for p and that
lim T, = +oco. Given x € R, Lemma 4 provides for all m € N* satisfying

M—+ 00

m > |x| and Ty, > 2 |x|:
1
[k, @, T)| + et 0, Tl < o Vp €N

With m € N* fixed, let B,, = B(O, T,,,) and /‘;lp (resp. i) the restriction to B,
of F, (resp. w). Since w(0B,,) = 0, it follows from [6] (p. 10) that (:u;zp)pGN con-
verges vaguely towards 1. Now

dyt, (©)
fﬂp -0 W>T, VpeN

IS

[E]>r
thus Lemma 5 applies: there exists @, C RY with CTLp(Qm) = 0 such that
d:unp © f du(é)

lim inf = = Ve e RM\ Q.
ey ~ N-2 g N-2 m
P gz, e =l 2, [ = ¢l

Moreover, according to (1)

f dpy, () f du(&)

m = .
T N—2 N-2
o |§‘§Tm |é| ‘é‘STm |é|

+0o0 N
Let @ = |J Q- It follows from (6) that Cap(Q) = 0. Now, given « € RY \ @ and

m=1

m € N* with m > |x| and T,,, > 2 ||, the representation (3):

w@— [ WO [ WO O g

T N-2 N-2 N-2
| _é| |E|<T,, |é‘ |f‘

[¢[<Tm [E|<Tw

du, (&)
+w(ty,, @, Tny) + u(x) — %
|| <Ton @ —¢]

leads to:

1 1
S—— + w(x) < lim sup Un, () < — + u(x)
p—+ o0
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(valid for all sufficiently large m) if | %

du(&) |E1<T |20 —
5=+t has already been studied at the end of Section 3.

N,
el<t,, |2 — ¢|

< + oo. The case where

REMARK 8. — It was not allowed to apply Lemma 5 to the measures H, - of
course

d dp (¢ (¢ oo
f /tnp(f): f ﬂnp()S(N_l) f py;’;é)dtg(N—l) f ﬁ%dt

|6|N71 - thl

[]>r

tends towards 0 (as r — + oo) uniformly with respect to p, but with |5\N -1

replaced by |f|N 2. this result does not necessarily hold any longer, since
1

|t = IfIN ?

REMARK 9. — A similar conclusion as in Lemma 5 is provided by [6] p. 195,
under the assumption that the measures v, have uniformly bounded energies, the
energy of v, being given by

f f s dvy(@) dv,(y).

RY RN

when [£| > 1.

But neither this result can apply to the measures g, of Theorem 3, because
their energy is not necessarily bounded. For instance, the measure u = J,
(the Dirac mass at some fixed point a € RY, @ # 0) has the following re-
partition function

0 if0<t<lal
pit—
1 ift > |al

fﬂ()

hence dt < + oo so that the function u defined by (3) is subharmonic

in RY Wlth Riesz measure J, according to [8] pp. 67-68. Explicitely

11 1
™|

w(x) = <

Thus the growth order of u is 0, hence u € S, (provided that |a| > ¢). However
the energy of J, is not bounded since

f dog(x) _ 1 and f doq(y) o

N-2 N-2 N-2
v e =yl la =yl v la—yl
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5. — Subharmonic functions of arbitrary finite order.

DEFINITION 2. — Given ¢ >0 and q € N, let S;, denote the set of all sub-
harmonic functions u in RY , harmomnic in B(O, &) with u(0) = 0, of order <q + 1
or at most of order (q + 1) convergence class.

For any u € S; 4, Fubini Theorem leads to
+00

dt thus f f]\f—?th<+oo.

+00

f T N-=2  p)

rq+2 r= g+1 tN+q
0 0 0

This provides an integral representation of % similar to (3) but with Ky(x, &)
replaced by

q
Ky@,0 = —|v - &N + 4@, 9 with Ay(@,8) =Y a,(x, &)

m=0

and a,,(x, &) the homogeneous polynomial of degree m (with respect to xy,
X2, ...,xy) in the Taylor expansion of &+ |x — é|27N (see [3] p. 137 or [8] p. 66).
More precisely: there exists a harmonic polynomial H,, € R[xy, %z, ..., xx] of de-
gree at most ¢, such that

) @) = H@ + [ K@ ddu@)  voe RY

RY

(see [3] pp. 141-146 or [8] pp. 67—69).
NOTATION. — For any v = (v1, vg, ..., vn) € N let s() = vy + v2 + ... + vy

LEMMA 6. — Given ¢ > 0, ¢ € N and measures 7, and t such that (rp)pe\j
converges vaguely towards t and that 1,(B(0,¢) =0 Vp €N, let R>0
satisfying ©(S(O,R)) = 0. Then

dim [A,@9d5© = [A,@.9dO)

I<I<R l<I<R

uniformly on any compact of R¥.
N B
PROOF. — Let ®: be defined by ®:(x)=|v—&* ™ = (z(xj - 5]-)2>
Hence: J=1

Ay, = aOayay.. ay

v:s(n<q
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ith
W POD, NG

a"(é) = ax\i’lmax;’\z]\' ) = |§|N—2+Zs(v>

where @, € R[&;, &, ...Ey]. Now it follows from Remark 4 and (1) applied with
p() = Q& [max (¢, |EDFFV > that:
Q) Q\($)

vz 4@ = N2z 47O

p—+ 00
[EI<R

for all v € N¥ such that s(v) < q. Whence

[ a@od,©- [ Aq(x,é)dr(é)‘

[¢|<R [¢[<R

V1 VN
< E ety ]

v:s(n<q

[ w©dn©- [ av(é)dr(é)‘.

[EI<E [EI<R
Given D>1, we have [a}'xy... x| <D"D™... D™ =D < D1 for all x € B(O, D).
Thus the convergence is unlform on B(O, D).

LEMMA 7. — Given ¢ > 0, ¢ € N, u € S, 1 the Riesz measure of u and p its

repartition function, let

wy o, R) = [ K@odu@)  and
|E[>R

wywo.R) = [ K@odu@  veeRY  VR>0.

<R
If || < R/2, then
+o00
dp(t) (t)
N q+1 P N g+1 14
lwq(u, 2, R)| < 4V |x| N 1+q_4 el (N -1+ ¢q) f Niq
If |x| < /2, then
. N —3)!
< |oN-2 — (m+—
o), (u, @, R)| EN 512 +ZO | P®R) with by ==
| |q+1
PRrOOF. — The estimation |K(x, &)| < 49 W @if |¢| < |£]/2) is available

in [3] p. 139. Observing that

1 q
|w:1(7/t, va)| S f [_ + Z |a/m(x7 é)|‘| d,u(ﬁ),

N-2
e<|¢|<R - €| m=0
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| |m

the second result follows from |a,,(x, &)| < W (see [3] p. 137), since

(e/2)" b

m eN+m— 2= om N-2

e — & > | — || > e—¢/2 =¢/2 and |a;,(x, E)| < b

LEMMA 8. — Given q € N, let (Fy),en be a sequence of polynomials in
Rlay, xo, ..., xx] with degrees at most q, which converges pointwise on B(O,q)
towards some function f. Then f is a polynomial of degree < q and (Fy),en
converges towards f uniformly on every compact of RY. If the F,, are harmonic,
then so 1s f.

_ REMARK 10. - This result remains valid if the pointwise convergence holds on
B(O, r) with some radius » > 0 independant of ¢ (Lemma 8 merely applies to
polynomials G,, defined by G, (x) = F,(r 'qx) Ve € RY).

Proor oF LEMMA 8. — For any k € N, let P, € R[t] be defined by
P.t) = % -t -2)...¢t—-k+1)

with Py = 1. Thus P,.(l) = C’“ Vvl € N. These P}, provide a basis for the space of
polynomials with degree < ¢ in R[xl, X2, ..., £y ]. With respect to this basis, let a,,,
denote the coefficients of F’,, with a,,, = 0 for any v € N¥ such that s(v) > q, in
other words:

Fo@) =Y P, @) P(wy) .. Py (ay)  VweRY.
veNV
For any 4 € N¥ we have F,,(1) = >y CL CV2 ) CX‘Z:, this sum being restricted
to the v € NV such that v; < 4; vj € {1,2,. N } together with s(v) < q. When

s(v) = s(4) and v # 4, the correspondmg term _in the sum vanishes since there
exists 7 such that v; > 4;. If s(/) < q, then 1 € B(0O, q) since

N N 2
Y < <Z @) <.
j=1 j=1

If 4 = O, then F,(4) = a,, o hence lim a0 =f(0) := co.
If s(A) =1, then F,(2) = a0 + am, thus hm ay,) =f(A) —co :=c).
More generally, for 2 < s()) < g, we have"
Uy =Fu() = Y, C}CE..CY.
v:s(v)<s(4)
Having defined recurrently the coefficients ¢, for s(v) <s(1), we obtain

lim a,=f)— > ¢CICE.CH
Nn——+ 00 " N
v:s(v)<s(d)
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and this value is denoted by c;. Let F' be the polynomial defined by
F@) = ¢ Py@)Py,s) ... Py (wy) Vo e RY

veNV
with ¢, =0 if s(v) > q. Given K a compact in RY, we will next show that
|1Fy, — F|| := sup |Fy(x) — F(x)| tends towards 0 as n — + co (on K = B(O,q), it

xeK
will provide f = F'). Now
Fu(@) = F@)| < lany — ¢] - [Py @0)] . [Py, (2)] .. [Py ().
veNV
Let R > 1 be such that K ¢ B(O, R). Thus
P, @) SRR +1D..(R+vy—D)<®+v)" <R+9" Veek.

Finally ||F,, — F|| < (R + ¢)?>_, |@y., — ¢,|. This last sum containing only a fixed
number of terms (< ¢V), each of which tending towards 0 as n — + oo, the result

follows.
Now P, (t) = P;(?) Z and Pl) = Pr(t) Si(t) Vt € R, where

k-1 1 k-1
S(t) = (Z tl> Z(t s

l =

with S, = 0 for k = 0 and k = 1. Thus

azF” => a,“(HP (x,>s (@)  VeeRY,

veNV

hence

AF, (@) =) (HPW(%) > Su@).

veNN
As n — + oo, this quantity tends towards

N N
oo (H ij@c]-)) > Su@) = AF ()
1=1

veNY - \j=1

at any point x € RY. Whence 4F, =0 VYn € N implies AF = 0.

THEOREM 4. — Given ¢ > 0, ¢ € N and two increasing sequences of positive
numbers (Mp)pex and (Bp)ren satisfying Ry > 2, klim R, =+ o0 and
—+ 00

Mk Rk N+q-1
ZRkl+q (Rkl) -1

k>1

< + oo,
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let (u_n)ne;\; a sequence of elements  S,, satisfying (4) and w,(x) < Mo
Ve € B(O,¢/2) Vn € N. Then the same conclusions hold as in Theorem 3 (with
here u € S, q).

LEMMA 9. — ([8] p. 47). - Let v, (n € N) be subharmonic functions in a do-
main G of RN. Suppose that:

(i) the sequence (vy),cn 18 uniformly bounded above on every compact
subset of G

(i) there is a compact subset K C G such that (vy),en does not uniformly
converge on K to —oo as n — + oo.

Then we can choose a subsequence (vy,),.n, which converges in the dis-
tribution sense (in D'(G) in other words) to some function v subharmonic in G.

LEMMA 10. — ([8] p. 48). - Let (vi)ren be an uniformly bounded above se-
quence of functions subharmonic in G which converges in the distribution sense
towards some function v. If we assume in addition that the vy, are harmonic,
then they converge uniformly to v on every compact subset of the domain G.

Proor or THEOREM 4. — Each function u,, has an integral representation of
the kind (7) involving a harmonic polynomial H,,, of degree < ¢, written H,, for
sake of brevity. Now

H,(x) < u,(x)+ |w;(un,ac,R)\ + |wg(un, 2, R)| Ve € RY VR > 0.

We obtain for all « € B(0, ¢/2) the following majorants which are independant
of n:

un(ﬁﬁ) < MO
1
|w;(un7x7R0/2)| S —2

1 N-2
o on—5 MoRo

2N-2 4 Eq: b
21’/L

m=0

+00

e\ ¢+1 t
o Raf] <4 ()" 1) [ a
0

according to Lemma 7 and (5). With f and L, defined as in the proof of Theorem 3
@), we now have:
1Ry

[0 g < Nt Ly Ry \V
rN+q - N+ q— 1 (Rk)N+q71 kal ;

1
3Bk
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hence

Rk >N+q1
—1| <+ o0.
(Rkl

Finally: the polynomials H,, are uniformly bounded above on B(O, ¢/2). When
q € N*, the polynomials F',, defined by

&X
F,x)=H, (E)

are uniformly bounded above on B(0, 2q). They are harmonic too:

oF, ¢ OH, (ex e\’
=-"(=] n AF, = (Z) 4H, = 0.
ou; @) 4q Ox; (4q> ence " (4q> n=0

oo q+2

Br) dr < 2 Z
o rN+q N+q 1 Rk1+q
31

Moreover F,,(0) = H,(0) = 0 and deg F,, < q Vn € N. We first apply Lemma 9
with v, = F,,, G = B(0,2q), K = {O} and next, Lemma 10. We thus obtain a
subsequence (F,),.., converging uniformly on B(0, ¢) towards some function f
which turns out to be a harmonic polynomial of degree < q thanks to Lemma 8.

So is H, defined by
4
H@) =f (%) .

Conclusion: up to the extraction of a subsequence, (H,),cn converges to H
uniformly on every compact of RY.

Through Lemma 3 and Theorem 2, a subsequence (x,, )pex is extracted, which
converges vaguely to a measure u whose repartition function p satisfies p < f§
thus

= p(t) dt < L0

tN +q tN+
R0 3R

dt<

Now the function U defined by

U@ = [ K, du®)
RY
is subharmonic in RY with Riesz measure w1 according to [8] pp. 67-68. As in the

proof of Theorem 3a), we deduce that the order A of U satisfies A < ¢ + 1. If
A = q + 1, then moreover

+00 +00
f Ju) o N-2 [ p®)

pl+i - q+1 ) tN+q dt < + 00

0
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thus Ue S,y Nowu=H+UecS,, Forallpe N, x ¢ RY and R > 2|x| we
have

%mfr%%zzm%ﬁﬁ>%mWMMMH%m

dy,, (&)
+ux) — f #7”5,+ f Ay, dp,, (&) — f Ay, &) du(d).

N-2
o=l ¢I<R <R
e Proof of the uniform convergence of (uy,)pex towards u on =.
Let D > 0 such that & ¢ B(O, D). Given 5 > 0, we fix T > 2D in order to be a
continuity point for p and such that

B@)

tN +q dt

+
®) 4NW%DH%N+q—1>f
T

thus |w,(u,, T)| + [we(uy,, x, T)| < nV¥p € N Vo € Z. There exists P, € N such
that the following three estimations hold for all p > P, and x € =:

|H(90) - an(x)| <,

f d,, (O f du(é)

e — N2 o — &N 2

I<[<T l€|<T

and

[ A9, & - [ A &dud|<n

l<l<T l<|<T

Conclusion: [u(x) — u,, (®)] < 4nVp > P, Vo € Z.
e Proof of limsup uy, () < u(x) for all x € RN,
p—+o0
Given z € RY and # > 0, we choose T > 2|«| such that T is a continuity point
for p and satisfies (8) with D replaced by |x|. Thus,
We(Un,, %, R) — wy(u,x, R) < nVp e N.

We next proceed as at the end of Section 3.

e Proof of limsupu,,(x) = u(x) for all x outside a set of outer capacity zero.

p—to00
A sequence (T),)ene of positive numbers tending towards + oo is built in
such a way that each T, is a continuity point for p and that

pO) 4y o 1

tN +q mat2’

NN 4 g - 1) f
Tﬁl
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1
Thus |wg(u, 2, Tn)| 4 [we(tn,, 2, Tr)| < . Vp e N, Va € RY and m € N* such
that |x| <m and T, > 2|x|. The proof now ends as in Section 4.
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