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The Hamilton Principle for Fluid Binary Mixtures
with two Temperatures

HENRI GOUIN - ToMMASO RUGGERI

Abstract. — For binary mixtures of fluids without chemical reactions, but with compo-
nents having different temperatures, the Hamilton principle of least action is able to
produce the equation of motion for each component and a balance equation of the total
heat exchange between components. In this nonconservative case, a Gibbs dynamical
identity connecting the equations of momenta, masses, energy and heat exchange
allows to deduce the balance equation of energy of the mixture. Due to the unknown
exchange of heat between components, the number of obtained equations is less than
the number of field variables. The second law of thermodynamics constrains the
possible expression of a supplementary constitutive equation closing the system of
equations. The exchange of energy between components produces an increasing rate
of entropy and creates a dynamical pressure term associated with the difference of
temperature between components. This new dynamical pressure term fits with the
results obtained by classical thermodynamical arguments in [1] and confirms that
the Hamilton principle can afford to obtain the equations of motions for multi-
temperature mixtures of fluids.

1. — Introduction.

The theory of mixtures considers generally two different kinds of continua:
homogeneous mixtures (each component occupies the whole mixture volume)
and heterogeneous ones (each component occupies only a part of the mixture
volume). At least four approaches to the construction of two-fluids models are
known.

The first one for studying the heterogeneous two-flows is an averaging
method (Ishii [2]; Nigmatulin [3]). The averaged equations of motion are ob-
tained by applying an appropriate averaging operator to the balance laws of
mass, energy, etc..., valid inside each phase [4, 5]. A second approach known as
Landau method [6, 7] was used for the construction of a quantum liquid model
and was purposed for the homogeneous mixtures of fluids [8]. For the total
mixture, the method requires the balances of mass, momentum, energy, com-
plemented with the Galilean invariance principle and the second law of ther-
modynamices [9]. A third approach is presented in extended thermodynamics; the
mixtures are considered as a collection of different media co-existing in the
physical space. This approach is done in the context of rational thermodynamics
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[10] founded on the postulate that each constituent obeys the same balance laws
as a single fluid [11, 12, 13]. The thermodynamical processes must verify the
second law of thermodynamies and it is possible to purpose phenomenological
constitutive equations which allow to obtain the structure of constitutive or
production terms (as Fick’s law, Fourier’s Law etc.) and to close the system of
equations.

There exists a different approach based on the Hamilton principle which is
used for the construction of conservative (non-dissipative) mathematical models
of continua. The principle was initiated by Lin [14], Serrin [15] and many others
to obtain the governing equations of one component continua [15, 16, 17] and
involves an Hamilton action. The variations of the Hamilton action are con-
structed in terms of virtual motions of continua which may be defined both in
Lagrangian and Eulerian coordinates [15, 16].

Here, we use variations in the case of fluid mixtures. The variational ap-
proach to the construction of two-fluid models has been used by many authors
(Bedford & Drumbheller [18]; Berdichevsky [19]; Geurst [20]; Gouin [21];
Gavrilyuk & Gouin [22]; Gouin & Ruggeri [23]).

To study thermodynamical processes by the Hamilton principle, the entropy
of the total mixture or the entropies of components are added to the field
parameters instead of temperatures. The Lagrangian is the difference between
the kinetic energy and an internal potential per unit volume depending on the
densities, the entropies and the relative velocities of the mixture components
(and a potential due to external forces). The internal potential per unit volume
can be interpreted as a Legendre transformation of the internal energy. In this
case, it is not necessary to distinguish molecular mixtures from heterogeneous
fluids when each component occupies only a part of the mixture volume [24, 25].
Consequently, the terms including interaction between different components of
the mixture do not require constitutive postulates difficult to interpret experi-
mentally. They come from the direct knowledge of the internal potential per unit
volume.

The assumption of a common temperature for all the components is open to
doubt for the suspensions of particles [26] as well as in the mixtures of gases in
the early universe [27]. By using the Hamilton principle, the existence of several
temperatures (one temperature for each component) must be associated with the
existence of several entropies (one specific entropy for each component). That
will be the aim of this paper: the internal potential per unit volume is a function of
the densities, the entropies and the difference of velocity between components.

The plan of the article is as follows:

In section 2, we formulate an extended form of the Hamilton principle of
stationary action allowing to produce the governing equations of motion for each
component of a binary mixture. From the invariance of time, we deduce an
equation of the exchange of heat between components. With two temperatures
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(one temperature for each component), the system of governing equations to-
gether with the balance of masses is not closed: Hamilton’s principle is not able to
get a complete set of equations when exchange of energies occurs between
components. In this case, we need an additive constitutive equation to close the
system.

In section 3, we obtain a Gibbs dynamical identity. This identity allows to
obtain the equation of energy for the total mixture. The equation of motion for
the total mixture and the equation of energy are in divergence form; as in [28], it
is not the same for the component equations of motion.

In section 4, we consider the case of weakly dissipative mixtures and in-
troduce an average temperature of the total mixture. The average temperature
corresponds to a local equilibrium different from the real state, with nonequal
component temperatures but with the same total internal energy. The total
pressure of the mixture in the real state is different from the pressure associated
with the mixture at the local equilibrium [29, 30]. The entropy variation rate of
the mixture must be in accordance with the second law of thermodynamics which
implies an additive constitutive equation for the pressure. The constitutive
equation depends on the physical properties of the two constituents and we focus
on the fact that the new pressure term does not obey the same rule than the
other terms due to dissipation.

In section 5, as an example, we reconsider the special case of a mixture of
perfect gases.

Finally, we compare our results with the conclusions obtained in [1] by using
classical arguments of rational thermodynamics.

2. — Governing equations in conservative cases.

In a Galilean system of coordinates, the motion of a two-fluid continuum can
be represented by two diffeomorphisms

Z,=P,2), (a=1,2)
or

A=t and X, = ¢,(t,x),

where z = (t,x) denotes Eulerian coordinates in a four-dimensional domain w in
the time-space and Z, = (4, X,) denotes Lagrangian coordinates of the compo-
nent a in a four-dimensional reference space w,. The conservation of matter for
each component requires that

ox

1 F, = X, ‘hFa:—7
( ) pa det pao( ) Wlt aXa
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where p,, is the reference density in w, and det(dx/0X,) is the Jacobian de-
terminant of the motion of the component a of density p,. In differentiable cases
equations (1) are equivalent to the equations of density balances

op, . _
(2) 5t + div (p,v,) =0,

where v, denotes the velocity of each component a.
The Lagrangian of the binary system is

2
1
L= 2 (E Pub —pa9a> — 1Py, p2; 51, 52, W),
a=

where the summation is taken over the fluid components (¢ = 1, 2) and s, are the
specific entropies, u = vy — vy is the relative velocity of components, Q, are
the external force potentials, #is a potential per unit volume of the mixture. The
Lagrangian L is a function of p,,v,, s, and we introduce the quantities

oL 1 , oy

a = - - - Qaa
? o =5, 2% "oy,
1 oL (—=1D* on
4 K= = vl — —=
( ) * pa ava Ua pa 8u’
oL  on

T, = —— =—,

®) P 9sy  0sq
T . oL  On . .

where * denotes the transposition and 0. o e linear forms. Equation (5)

defines the temperatures T, (¢ = 1,2) which are dynamical quantities depending
on pq, P, 81,82 and u.

To obtain the equations of component motions by means of the Hamilton
principle, we consider variations of particle motions in the form of surjective
mappings,

Xu = Ea(tvx§ Ka)a
where scalars x, are defined in a neighborhood of zero; they are associated with a
two-parameter family of virtual motions. The real motions correspond to x, = 0

such that Z,(,x;0) = ¢,(t,x); the associated virtual displacements generalize
what is obtained for a single fluid [16, 24],

_ asa(tax; K(l)

5(1Xa =0
(6) O, lia =0

The Hamilton action is

a:f L dvdt.
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We first consider the Hamilton principle in the form

_ (da
5aCL = (d}ca>

under constraints (1), with J,a being the variations of a associated with
equation (6).

From the definition of virtual motions, we obtain in Appendix A the values
of 04U, (x,1), dgp, (x,1) and 48, (x,t) where J,0(t,x) is the variation of v at (¢, x)
fixed. By taking into account the formulae in Appendix A and the definitions
(3-5), we get

zéadevdtzo

lea=0

dlt = f (Raéapa +p,kl duva — paTaéasa) dvdt

w

_f <R dive(pyy 0uX o) — puok? F (5X) T

Wq

080 X OX )dva dt,
). ¢

where div, is the divergence operator with respect to the coordinates X . In the
last expression all quantities are considered as functions of (¢,X,); the functions
are assumed to be smooth enough in the domain w, and J,X, =0 on its
boundary. Hence, we get

9 .7 0840
Sott = f pao( o LR OR aX“)éX dv, dt,

2%

and we obtain the equations of component motions in Lagrangian coordinates,

o . r OR, 0sa0
m(ka Fa) - aXa - T(l 8Xa - 0’
T, : i
where k, is defined by equation (4). d.F. v,

By taking into account the identity F, =0 and for 1 =t, we re-

. . . . . dt 8x
write the equations in Eulerian coordinates,
dk! Qv OR, 05,
7 —* +k = o — .
@ dt * Ox ox + ox

The covector kf is an essential quantity; indeed, p,k, (and not p,v,) is the
momentum for the component a of the mixture.

To obtain the equation of energy, we need a second variation of motions
assoctated with the time parameter. The variation corresponds to a virtual mo-
tion in the form

A= o(t; ),

where scalar x is defined in a neighborhood of zero. The real motion of the
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mixture corresponds to x = 0 such that ¢(f;0) = ¢; the associated virtual dis-
placement is

_ Op(t; x)

0% = o |,

For a single fluid, the entropy is defined on a reference space w, associated with
Lagrangian variables; in conservative motion the specific entropy is conserved
along the trajectories and in the reference space the entropy depends only on
Lagrangian variables X and not on 4.

In multi-component fluids, due to exchanges of energy between the compo-
nents, the entropies cannot be conserved along component paths; in the re-
ference spaces w,, the specific entropies s, depend also on 4

Sy = Sa0(4,X4).

The variation of Hamilton’s action associated with the second family of virtual
motions yields

5az(5dexdt=f%5zdvdt=o.

w

OL 2. 0L 9sy OL 2 AySa

F - = R h A= = — a )
rom 91 2 05, 01 we deduce when t, 2 a; Pu i
where usa _ 050 | Ou v, is the material derivative with respect to velocity v

dt ot ox e P ¥ Va-

We obtain for the total mixture
2
dys
(8) > puT % =0.
a=1
Due to equations (2) we obtain the equivalent form

2
. 8,0(18(1 :
9) az:; Q.,=0 with Q. = <7 + dlv(pasava)> T,.

Equation (9) expresses that the exchange of energy between components has a

null total amount.

3. — Gibbs dynamical identity and equation of energy.

Let us prove that equation (9) leads to the equation of energy of the mixture.
We introduce the quantities M,, B,,S and E such that
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r dk” 7 O, OR, s,

Ma = Pu dt + pakaa—x pa% — Pa aa_x’

ap .
Ba = = als
50 + div(p,U4)

2
S = ZQ(M
a=1

2
0 1 87’] . T a[211
E = E - = 2 Qa - 5 a a — 1vg - Tar
on . . .
where 5 — = f is the Legendre transformation of # with respect to u and

corresponds to the volume internal energy of the mixture. We prove in Appendix
B the following property:

THEOREM. — For any motion of the mixture, we have the algebraic identity
2
(10) E — (Z MTv, + kv, — Ry + Tus,) Ba> -S=0.
a=1

Relation (10) is the general expression of the Gibbs identity in dynamics.
Analogous identities were obtained earlier for thermocapillary mixtures [24] and
bubbly liquids [31] . Due to the equations of balance of masses (2), momenta (7)
and energy (9), deduced from Hamilton’s principle, which are respectively

B,=0, M,=0 (¢=1,2) and S=0,

we obtain from identity (10):

COROLLARY. — The motions of a mixture satisfy the equation of energy bal-
ance i the form

2

9 1, . r 09,
(11) Z g (pa (2 v+ Qa) +f) + d1v<p(,va (ka Uy — Ra)) ~Pagy = 0.

a=1

Equation (11) appears as the equation of energy when f is the total internal
energy.

The equations of component motions are not written in divergence form.
Nevertheless by summing equations (7) in the form MZ = 0 and taking into
account equations (1) in the form B, = 0, we obtain by a calculation similar
as in [23, 24, 25] the balance equation for the total momentum in a diver-
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gence form:
2 T
ap U T 87’] 89,1
12 -4 ok, + ——n |l — =
(12) El T le(pav ( “ o, 77) P =0,

where I is the identity tensor In the following, pv = Z p. ke = Z pUq 1s the
total momentum and p = Z p, 1s the mixture den51ty

System ((2), (7), (11)), corllsequence of the Hamilton principle, is a non closed
system of equations. In a single conservative fluid, the system of motion equa-
tions is closed by the entropy conservation. In case of mixtures with two en-
tropies, the Hamilton prineciple is not able to close the system of motion equa-
tions; we need additional arguments to obtain the evolution equations for each
entropy s, by considering the behaviors of Q,,.

A possibility to close the system of equations is to consider the case when the
momenta and heat exchanges between the components are rapid enough to have
a common temperature. This case is connected with a conservative equation for
the total specific entropy [24].

Another possibility, used by Landau for quantum fluids [7], is to assume that
the total specific entropy s is convected along the first component trajectory

af)l
ot

In this case, the constitutive functions are p;, s,v1, py, U2, Where p, (o = 1,2) are
submitted to the constraints (2) and the case of Helium superfluid is a special
case of our study corresponding to s; = s and s = 0. Such an hypothesis is not
acceptable for classical fluids. These assumptions are not valid for heterogeneous
mixtures where each phase has different pressures and temperatures [26, 27].
In the following we consider the case when the mixture is weakly out of
equilibrium such that the difference of velocities u and the difference of tem-
peratures T — T7 are small enough with respect to the main field variables.

+ dw (pisvr) =

4. — Mixtures weakly out of equilibrium.

For the sake of simplicity, we neglect the external forces. Generally, the
volume potential # is developed in the form [22, 31](})

’7(p17/72>317327u) = e(plap2781782) - b(p17p2581782)u27

M In [1], the internal energy is the sum of the internal energies of the components
2

<p8 = ;pug(l(/)m S(l)) .
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where b is a positive function of py, ps, s1,S2. Properties of convexity of the
function # are studied in [25]. When || is small enough, the equations of motions
are hyperbolic [25]. We consider the linear approximation when |u| is small with
respect to |v1] and |vz|. In linear approximation the volume potential is equal to
the volume internal energy e,

H(p1s P2, S1, 82, U) = e(py, pa, S1,82) = pe(py, P, S1,82),

where ¢ denotes the internal energy per unit mass. Let us note that the diffusion
vector j = p;(v1 — U) = po(v — v2) is a small momentum vector deduced respec-
tively from velocities and densities of the components. The equations of density
balances can be written in the form

dp dc
(13) dt+pd1vv7 and pdterWJ
where ¢ = 41 denotes the concentration of component 1 and — d_9 + a— .U 18
P P dt ot ox

the material derivative with respect to the average velocity of the mixture.

The divergence of a linear operator A is the covector div A such that, for any
constant vector a, (divA)a = div (4 @) and we write vavf =v, U,

Let us denote by h, = de
P,

For processes with weak diffusion, the equations of component motions get
the form,

the specific enthalpy of the component a.

P T = 8%“:“ + div(p,v, @ V)T = p, T, grad s, — p, grad h,.

The equation of total momentum (12) is reduced to

T
apv 2
a0 + div (Z(pava ®Uy) — t> =0,

a=1

2
where t = > 1, is the total stress tensor such that
a=1

. p(le
tavy = —Pa (31’}’7 with Pa = PPubp, = Poebp, ——— > D= Zpa .

The equation of energy (11) writes in the simpler form

d 21,
§<e+;§pava>+dw<ev+z< R a—ta>va> =0.

The internal energy is a natural function of densities and entropies. Due to
equation (5),

Oe Oe
(14) pTi=p 8—&@17/72,81,82) and p, T2 =p 6—82@1,/12781,82).
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Let us denote by ¢ the expression of the specific internal energy as a function of
p, ¢, 81,82 such that &(p, ¢, s1, s2) = &(py, ps, 81, 52); we get

de g dp 0z dc 0z ds; 0z dsy

Pat=Papat Pacdi P os dt P osy dt

Due to the fact that p2 & = % = h1 — hg, We obtain
ap dc
de _pdp ds

(15) P = dt+ phy — h2) +p1T1 i

p and

dss

1
T
+,02 2 dt

By taking into account that

d“Sa_@ %(v —v)
da  dt  ox

and by using equations (8), (13), equation (15) yields

(16) +pdive + (b — hg)divj + (T grad s; — Ty grad sp)” j = 0.

”d

Due to equations (14), the internal energy can be expressed as a function of
densities and temperatures of components

é(phva Tl» T2) = 8(ﬂ1,p2731,82).

As we did in [1], we define the average temperature 7" associated with 7'; and T’
through the implicit solution of the equation

(17) &py,p2, T, T) = &py, po, T1, T2).
We denote by @, =T, — T the difference between component and average

temperatures which are non-equilibrium thermodynamical variables. Near
equilibrium, equation (17) can be expanded to the first order; then

M)

(18)

Q

a 3 a a’g
0.=0  with = (00T D)

a=1

Due to the fact that

2
pde = Z Do Ty dsy +& dp,,

a=1 a

then

2 2
Js 0s
19 1——TE = T,T) and 2——TE —_ T,7).
( ) pcy s Pa 6T1 (p17p27 ) )an /)Cv - Pa 8T2 (/717/)27 ) )
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The definition of the total entropy s of the mixture is

2
(20) ps= Zpasll(phpZa T17 T2)

a=1

The first order expansion of equation (20) yields

2
88(1 aSa
P =D Pusip1s 2, T D) 4 pusa gy (012 T, 1) 1 4 pusa (1o, T, 1) €2

a=1
Due to Relations (18), (19)
2
ps= pasa(p17p27T> T)

a=1

and the specific entropy s does not depend on ©; and @, but only on p;, p, and 7.
We denote by & the internal specific energy as a function of p,c, T

é(pa ¢, T) = é(,Dla P2, Ta T)7

which satisfies the Gibbs equation

Tds = dé — % dp + (ue — pyde,

where p,(p,c,T) is the equilibrium pressure at temperature 7' and p, — 14, dif-
ference of component chemical potentials, is the chemical potential of the whole
mixture.

By taking into account of equation (13), we get

dé . .. ds
p %—&—podwv + (g —pp)divj —p T e 0.
Moreover,
ds z deSq . ,
(21) P = Zpa 7 +div[(s2 —s1)Jj 1.

Equation (21) yields the relation between the material derivatives of entropy
s and entropies s; and sq. By taking into account of these results in equation (16)
and &(p,c,T) = &(py, ps, 51, 82), We obtain

2

d(L a . . .

(22) 7Y p, o+ (p=pdive + (U = ho) = (i — o) + T (s = 51)) v
a=1

+(01 grads; — @y grad Sz)Tj = 0.

The differences of temperatures @; = Ty — T'and &, = Ty — T are small with
respect to 7" and j is a small diffusion term with respect to the mixture mo-
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mentum pv; consequently, in an approximation to the first order, the term
(61 grads; — @, grad sz)Tj
is negligible. Let us consider
K = ((hy — h2) = (uy — pig) + T (s2 — 1)) divj ;
we get
K = ((h1 — T181) — (hg — T2s2) — (g — 1) + O151 + Ogs2) divj .

In an approximation to the first order, the term (@15, + @ss2) divj is negligible.
Due to the fact that u,(p;, po, T1,To) = by — Ty, is the chemical potential of
the component a, when j is a small diffusion velocity with respect to average
velocity v, the term

(,ul(plﬂp27 T17 TZ) - ﬂz(/)17/727 T17 TZ) - /ll(/)p/)27 T7 T) - ﬂz(l)1>P27 T7 T)) lej

is vanishing in an approximation to the first order.
Consequently, in an approximation to the first order, equation (22) reduces to

2

dyS 1
(23) o~ = =7 (P — po)divy.
20 =T

The exchange of energy between components must obey the second law of
thermodynamics: the total entropy rate is an increasing function of time and we
consider the second law of thermodynamics in the form

2
(24) > (8’(;‘%3“ + div (pasava)> >0

a=1
Due to relations (2) the Clausius-Duhem inequality (24) is equivalent to

2 S,

D Pugp 20

a=1

Relation (23) implies that the second member must be positive. Therefore, as
usual in thermodynamics of irreversible processes, the entropy inequality re-
quires

(25) T=p-—p,=—Adivy.
This expression defines the Lagrange multiplier 4 of proportionality such that

A > 0. The dynamical pressure 7 is the difference between the pressure in the
process out of equilibrium with different temperatures for the components and
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the pressure of the mixture assumed in local thermodynamical equilibrium with
the common average temperature 7. Let us notice that equations (9, 25) allow to
obtain @, values. In fact,

p T (T — Tl)@: ATy (dive)? and p,T(Ty — Tz)d2 2= AT, (dive)?

and the system of field equations is closed.

5. — Special case of mixture of perfect gases [13].

The internal energy of the mixture is the sum of the internal energies of the
different gas components. We represent these energies as function of density
and temperature of components

&(p1,p2, T1,T2) = p1&1(p1, T1) + po &2(ps, To).
Then,
p = p1(py, T1) + p2(py, T2),

where p; and ps are the pressures associated with &, and &. An expansion to the
first order in Ty — T = @1 and Ty — T = O, yields

p = pr(py ) + palpy, T) + 221 m@+pmbn@

o7, (P17
From the definition of the average temperature 7 we obtain as in [29],
préw(py, T) + pa&2(py, T) = py é1(py, T1) + po &2(py, T2).
Consequently, from equation (25), we get

0
m%fmﬁ 7 (721 6.

Let T'=T+p06, To=T+ 1+ ) O, where ©® =T, — T, an expansion of

equation (17) to the first order yields the value of

0g,

oT,

C(1>(p1,T)ﬁ@+C(2)(pg,T)(l+ﬁ)@ 0, with C'(a> (Pa, D).

Consequently, when p, = k.p,T., we obtain

o P1P2 (1) @)
=——="2"2 _ (kpCY -k CE
pCP + py CF ’ ’

In accordance with results obtained by Ruggeri & Simié¢ [30] and Gouin &
Ruggeri [23], to verify the Clausius-Duhem inequality (24), ® must be in
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the form

0 = Ly(y, — p)dive with Ly =M’ lcfz) (7 CY + p,C?) and M >0

where y, is the ratio of specific heats of component a.

6. — Conclusion.

The method by Hamilton can be easily extended to multi-component mixtures
with multi-temperatures. We obtain the equations of component motions and the
equation of the total mixture energy. The entropy is not conserved and the
second law of thermodynamics reveals the existence of a new dynamical pressure
term. As diffusion is a property of fluid mixtures with different component ve-
locities, the dynamical pressure term is a property of fluid mixtures with dif-
ferent component temperatures. The dynamical pressure can be measured with
the change of volume. In the special case of mixture of gases, the dynamical
pressure term comes from the fact the gases are molecularly different.

The Hamilton principle points out that the dynamical pressure can be obtained
by neglecting viscosity, friction or external heat fluxes. This is a main property of
mixtures with multi-temperatures and this fact may have some applications in
plasma of gases and in the evolution of the early universe [32].

In Appendix C, we highlight that constitutive equations for diffusion, viscosity
and heat flux for mixtures without chemical reaction are consequence of dis-
sipative terms whereas the dynamical pressure term can exist with different
component temperatures even if the bulk viscosity is null.

The results are in complete accordance with the ones by Ruggeri & Simic [30]
and Gouin & Ruggeri [1]. This is an important verification of the fact that the
Hamilton principle can be extended to nonconservative mixture motions when
components have different temperature. A difference with classical thermo-
dynamies methods is that the volume internal energy is not necessary the sum of
the volume internal energies of the components. In this paper, the volume in-
ternal energy is a nonseparate function of densities and entropies (or tempera-
tures) and is consequently more general than in [1] and [30].

Appendix A.

0X, 0X,

ot ox
By taking the derivative with respect to x,, we obtain the following equation for
virtual displacements (equation (6)) associated with the first virtual motion

The definition of Lagrangian coordinates X, implies v, = 0.
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family
G AR N PP
ot ox Y ox YT
Then, we get

da
0o (6,1) = — Fu o (0aXo).

Equation (1) yields

(26) Supy (6,1) det Fy (6, 8) + p, 04 (det F,) = gﬁ"‘;" 0.X,.

By using the Euler-Jacobi identity
Su(det F,) = det F,(x,t) tr (F,;'6,F,)

with
0uF, (x,t) = — F, (x,1)0,F;" (x,t) F, (x,t)
and
5(1F(:1 (x,t) = %a
ox
we deduce
0,(detF,) = —detF, tr (5,,Fa’ 1 F,l) = —detF, tr( agj‘,X“ ),
or,
27 O,(det F') = —det F, div,0,X,).

By substituting equation (27) into equation (26), we obtain

_ . P_a 8/)(10 _w
5a/)a(xvt) =Py dlva(éaXa) + P 8Xa 5(1Xa = detFa ’

0450 (X,1) = %m’a.

Appendix B.

The proof of the Gibbs identity is obtained by summing the following alge-
braic identities a — e.
For the external potentials €,
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a.
— Qa a) — a.. Ya — BaQa - =
o T 90 Pl — pug v Pigy =0
For the velocity fields v,,
b.
0 (1 9 . s 1,
5 (2 pava> + dw <pavu (va ~ 5V
d, vt ov 0 1
_ 2 1.9\ aUyg 7004 ) _
Ba (Ua zva) ( a dt + pava ax aax (2 u>>va - 0
. T on
Let us introduce i =~ Then

d on ai’ E. /dn dp s,
I, -9 =2 a T,
ot (’7 au”> T2 <8pa ot Pty >

a=1
and the three following identities ¢ — e prove the formula
c.

o dp, . (O 9 (on on (0p, , _
R 8t+dw<8pa Pua ) = Pige Gy )0 " ap, o T W b)) =0,

a

0s 0s d( Sa
Pa T(l—a + P Taa_xav(l — Pa T(lﬁ

5t = 0,

e.

o (i Ao, i o 90
W’H— ; dw((— 1) (p_ava>pava> - (/’a$<( -D Pu +tru(=1) p, Ox ba

o (35N (Opa | _
— (— 1) (p—ava <8t +dl/l)(pava)> = 0.

Appendix C.

We consider a more general case of a mixture when the Hamilton principle
cannot be applied. This case consists of a weak dissipative process with diffusion,
viscosity and heat transfers. The balance of masses, momenta and energy are
simply expressed by adding dissipative terms to the expressions obtained in
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section 4
(28) B,=0, M?=0 (a=1,2) and E?=0,
such that
Ba a
3t va),
M? =M, — (div oD —m,,

2
E'=E+) divq,—olv,.

a=1
On the right hand side, g, is the heat flux vector, m, is the momentum production
and ¢ is the viscous part of the stress tensor of constituent a. Due to the total
2
conservation of momentum of the mixture, > m, =0 [12].

a=1

The dynamics Gibbs identity (10) can be transformed as

2
1
d ar ., — pd
S+ ;Ma Uq (2 ha + T{zsa> Ba =F )
with
2
8'=S+divg+ > mlv,—tr @Dy,

1{0v, v,
WhereDa§<ax ( x> )andq an

The second law of thermodynamics is expressed in the form

2

duSa .
(29) > pa g v > 0.

a=1

In the second order approximation, with small external heat fluxes ¢, and small
difference of temperature 77 — Ts, equation (29) is equivalent to

2

dgs
D opgp i

a=1

If we write m = m; = — my, we obtain by calculations similar to section 4

2. dys
lepa dt T

a=1

)
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where

2
X =(p-p,dive +% grad T —m"u — ;tr (@?D,) <0
is the entropy production.

Classical methods of thermodynamics of irreversible process (T1P) yield
equation (25) for the dynamical pressure term together with Fourier and Navier-
Stokes laws [11].

Term m”u yields the coefficient y of proportionality such that y > 0 and

m=—yu =y —vs).

For slow isothermal motions, the difference between the components of equa-
tions (28)y yields in an approximation to the first order
M, M,

12 rad (g — ).
P P2

0 . .
Here y, = a—n — T,s, denotes the chemical potential of component a at tem-

perature 7' ‘
By neglecting the viscous terms, we obtain

graduzim (u=pu; —u) or gradu=—-rxu with K:LX,

P1P2 P1Pe
which is an expression of the Fick law.
Therefore, in this formulation, our results coincide with the ones obtained by
arguments of classical thermodynamics [1].
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