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Greedy Algorithms for Adaptive Approximation (*)

ALBERT COHEN

Abstract. — We discuss the performances of greedy algorithms for two problems of nu-
merical approximation. The first one is the best approximation of an arbitrary
function by an N-terms linear combination of simple functions adaptively picked
within a large dictionary. The second one is the approximation of an arbitrary
Sfunction by a piecewise polynomial function on an optimally adapted triangulation
of cardinality N. Performance is measured in terms of convergence rate with respect
to the number of element in the dictionary in the first case and of triangles in the
second case.

1. — Introduction.

Approximation theory is the branch of mathematics which studies the process
of approximating an arbitrary function f by simpler functions which typically
depend on a finite number N - or O(N) - of parameters. It plays a pivotal role in
the analysis of numerical methods. Typical examples of approximation processes
are algebraic or trigonometric polynomials, finite elements or linear combina-
tions of wavelets.

One usually makes the distinction between linear and nonlinear approx-
imation. In the first case, the simple function is picked from a linear space, such
as polynomials of degree N or piecewise polynomial functions on some fixed
partition of cardinality N. The approximation is typically computed by projection
of f onto this space. In the second case, the simple function is picked from a
nonlinear space, yet still characterizable by O(N) parameters. Such a situation
typically occurs when dealing with adaptive or data driven approximations,
which makes it relevant for applications as diverse as data compression, statis-
tical estimation or numerical schemes for partial differential or integral equa-
tions (see [11] for a general survey). However the notion of projection is not
anymore applicable and therefore a critical question is:

How to compute the best possible approximation to a given function f from a
nonlinear space?

(*) Conferenza tenuta a Torino il 71luglio 2006 in occasione del “Joint Meeting S.I.M.A.I. -
S.M.A.L - S.M.F. - U.M.IL sotto gli auspici del’E.M.S. Mathematics and its Applications”.



392 ALBERT COHEN

Let us translate this question in concrete terms for the two specific examples
that will be further discussed in this paper:

Adaptive triangulations: given a function f defined on a polygonal domain Q
and given N > 0, find a partition of Q into N triangles such that the LP-error
between f and its projection fy onto piecewise polynomial functions of some fixed
degree m on this partition is minimized.

Best N-term approximation: given a dictionary D of functions which is
normalized and complete in some Hilbert space H, and given f € H and N > 0,
find the combination fy = ZkN:1 crgr which approximates f at best, where
{c1,---,cn} are real numbers and {g1,---,gn} are picked from D.

In order to make these problems computationally tractable, one may assume
in the first example that the vertices of each triangle are picked within a limited
yet large number of locations M, or in the second example that the search is
limited to a subset of D of cardinality M. However the exhaustive search for the

optimal solution has the combinatorial order of complexity <M> and both pro-

N

blems are therefore generally not solvable in polynomial time in N and M. A
relevant goal is therefore to look for sub-optimal yet acceptable solutions which
can be computed in reasonable time.

Greedy algorithms constitute a simple approach for achieving this goal. They
rely on stepwise local optimization procedures for picking the parameters in an
inductive fashion, with the hope of approaching the globally optimal solution.
They are particularly easy to implement, yet the analysis of their approximation
performance gives rise to many interesting problems.

We present in §2 and §3 two different types of greedy algorithms corre-
sponding respectively to the two above mentionned nonlinear approximation
problems. The analysis of their performance shows that although they do not
provide with the optimal solution to these problems, they still yield optimal
convergence estimates for the error f — fy measured in the appropriate norm L?
or H.

2. — Greedy algorithms for adaptive triangulations.
In the context of adaptive triangulations, an important distinction is between

1sotropic and anisotropic triangulations. In the first case the triangles satisfy a
condition which guarantees that they do not differ too much from equilateral
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triangles. This can either be stated in terms of a minimal value 0y > 0 for every
angle, or by a uniform bound on the aspect ratio

_
Pr

/i

of each triangle T where hr and py respectively denote the diameter of 7' and of
its largest inscribed disc. In the second case, which is in the scope of the present
paper, the aspect ratio is allowed to be arbitrarily large, i.e. long and thin tri-
angles are allowed. In summary, adaptive and anisotropic triangulations mean
that we do not fix any constraint on the size and shape of the triangles.

Given a function f and a norm || - ||y of interest, we can formulate the problem
of finding the optimal triangulation for f in the X-norm in two related forms:

e For a given N find a triangulation 7y with N triangles and a piecewise
polynomial function fy of some fixed degree m on 7y such that the error
IIf —fvllx is minimized.

e For a given tolerance ¢ > 0 find a triangulation 7 y with minimal number
of triangles N and a piecewise polynomial function fy such that

I =Sllx <&

In this paper X is the LP norm for some arbitrary 1 < p < co.

Concrete mesh generation algorithms have been developped in order to
generate in reasonable time triangulations which are “close” to the above de-
scribed optimal trade-off between error and complexity. They are typically
governed by two intuitively desirable features:

1. The triangulation should equidistribute the local approximation error be-
tween each triangle. This rationale is typically used in local mesh refinement
algorithms for numerical PDE’s [21]: a triangle is refined when the local ap-
proximation error (estimated by an a-posteriori error indicator) is large.

2. In the case of anisotropic meshes, the local aspect ratio should in addition
be optimally adapted to the approximated function f. In the case of pie-
cewise linear approximation (m = 1), this is achieved by imposing that the
triangles are isotropic with respect to a distorted metric induced by the
Hessian d?f. We refer in particular to [6] where this task is executed using
Delaunay mesh generation techniques.

While these last algorithms fastly produce anisotropic meshes which are
naturally adapted to the approximated function, they suffer from two intrinsic
limitations:

1. They are based on the evaluation of the hessian d?f, and therefore do not in
principle apply to arbitrary functionsf € LP(Q)for1 < p < oo ortonoisy data.

2. They are non-hierarchical: for N > M, the triangulation 7y is not a re-
finement of 7.
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The need for hierarchical triangulations is critical in the construction of wa-
velet bases, which play an important role in applications to image and terrain
data processing, in particular data compression [8]. In such applications, the
multilevel structure is also of key use for the fast encoding of the information.
Hierarchy is also useful in the design of optimally converging adaptive methods
for PDE’s [13, 18, 5]. However, all these developments are so far mostly re-
stricted to isotropic refinement methods.

A natural objective is therefore to design adaptive algorithmic techniques
that combine hierarchy and anisotropy, and that apply to any function
f e LP(Q).

A simple greedy algorithm was introduced in [9] in order to fullfill this ob-
jective. The algorithm is based on a local approximation operator.Ay acting from
LP(T) onto I1,, - the set of polynomials of total degree less or equal to m. Here,
the parameters m > 0 and 1 < p < oo are arbitrary but fixed. We define the local
LP approximation error

er(Fp .= IIf — Azfll Loy

The most natural choice for Ay is the operator of best L”(T') approximation, so that

er(f), == ﬂlef}zf 1f = 7ll Loy

In practice, one might prefer to use an operator which is easier to compute, yet
nearly optimal in the sense that

(2.1) ILf - -ATf”LP(T) < Cniel}jf If - 7THLP(T)~

with C a Lebesgue constant independent of f and 7'. This is in particular achieved by
taking Ay = ITy the L?(T)-orthogonal projection onto I7,,.

Our algorithm starts with a a coarse triangulation 7, with Ny triangles.
Given 7 y, the algorithm constructs 7 x.1 by first selecting the triangle 7 which
maximizes the local approximation error er(f),. This T is then bisected into two
sub-triangles of equal area by bisection from one of its three vertices
a; € {ao,a1,az} towards the mid-point of the opposite edge. We denote by 7'
and T2 the two resulting triangles. The chosen vertex is

1" := Argmin,_ 5dr(i,f),
where dr(7, ) is a deciston function that we describe below, defined for any
triangle T'. Stopping criterions for the algorithm can be defined in various ways:
e Number of triangles: stop once a prescribed N is attained.
e Local error: stop once er(f), < eforall T € 7y, for some prescribed ¢ > 0.

o Global error: stop once ||.f — fi|l;» < ¢ for some prescribed ¢ > 0.
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The role of selecting the triangle which maximizes the local approximation
error is obviously to obtain a triangulation which equidistributes the error.
The role of the decision function is to drive the generation of anisotropic tri-
angles according to the local properties of f, in contrast to simpler procedures
such as newest vertex bisection (i.e. split T from the most recently created
vertex) which is independant of f and generates triangulations with isotropic
shape constraint.

Therefore, the choice of dy(i,f) is critical in order to obtain triangles with an
optimal aspect ratio. The most natural choice corresponds to the optimal split

(2.2) dr(i, f) = er, (P + er, (L,

i.e. minimize the resulting L? error after bisection. It was shown in [10] that
optimal aspect ratio can be reached in the case of piecewise linear approximation
with the use of decision functions which are either based on the L? or L™ norm,
namely

(23) drGi, f) = \If = 1, fllizy + 1 = Trof iz,
with I77 the local orthogonal projection operator, or
(2.4) dr@, /) = lf = Ir, fllp=cr,y + 1 = 1 fll e,y

with /7 the local interpolation operator.

REMARK 2.1. — The triangulations which are generated by the greedy pro-
cedure are in general non-conforming, i.e. exhibit hanging nodes. This is not
problematic in the present setting since we consider approximation in the L?
norm which does not require global continuity of the piecewise polynomial
functions.

Let us first illustrate numerically the optimal adaptation properties of the re-
finement procedure in terms of triangle shape. For this purpose, we take f = q a
quadratic formi.e. an homogeneous polynomial of degree 2. In this case, all triangles
should have the same aspect ratio since the hessian is constant. In order to measure
the adequation of the shape of a triangle T with q, we introduce the following
quantity: if (a, b, ¢) are the vectors corresponding to the edges of 7', we define

max{|g(a)], |g(®)], |g(c)|}

IT|/|det(q)] ’

where det(f) is the determinant of the 2 x 2 symmetric matrix associated to q.
Using the reference triangle and an affine change of variable, it is proved in [10] that

er(@), ~ |T|"7a,(T)\/det(g),

ao(T) =
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with equivalence constants independent of ¢ and 7'. Therefore, if T is a triangle of
given area, its shape should be designed in order to minimize g4(7).

In the case where g is positive definite or negative definite, g,(T") takes small
values when T is isotropic with respect to the metric

@, )y = Vg, y)l,

4
the minimal value — being attained for an equilateral triangle for this metrie.

V3

Specifically, we choose g(x,y) := 2? + 100y and display on Figure 1 (left) the
triangulation 7 255 obtained after 8 iterations of the refinement procedure, in-
itialized on a triangle which is equilateral for the euclidean metric (and therefore
not adapted to ). Triangles such that g,(T) < 4+/3 (at most 3 times the minimal
value) are displayed in white, others in grey. We observe that most triangles
produced by the refinement procedure are of the first type and therefore have a
good aspect ratio.

The case of a quadratic function of mixed signature is illustrated on Figure 1
(right) with q(x, ) := 2% — 10y%. For such quadratic functions, triangles which
are isotropic with respect to the positive quadratic form q corresponding to the
absolute value of the symmetric matrix associated to q (here q(x,y) = x% + 10y?)
have a low value of g,. But one can also check that g, is left invariant by any

1
linear transformation with eigenvalues (t, E) for any ¢ > 0 and eigenvectors

corresponding to the the null cone of g (here (+/10,1) and (10, —1)). Therefore
long and thin triangles which are aligned with this null cone also have a low g,.
Triangles T such that o3(T) < 44/3 are displayed in white, those such that
a,(T) < 4+/3 while az(T) > 4v/3 - i.e. adapted to g but not to q - are displayed in
grey, and the others in dark. We observe that most triangles produced by the
refinement procedure are either of the first or second type and therefore have a
good aspect ratio.

Fig. 1. = Toss for q(z,y) := x? + 100y (left) and q(z, y) := 2> — 1042 (right).
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These experimental observations are confirmed by the results in [10] which
show in particular that there exists an absolute constant Cy such that the pro-
portion of triangles such that o,(T") < Cj tends to 1 as the refinement procedure
isiterated. Based on these results optimal error estimates have been established
in [10] for the approximation of more general smooth functions f € C? by pie-
cewise linear functions on adaptive triangulations 7y generated by the greedy
algorithm. The estimates in [10] are of the form

1 1
25) If = flzs < ON Iy et Dl = +1,

and were proved to be optimal in [7, 1]. However the triangulations proposed in
these last papers are non-hierarchical and based on the evaluation of d?f. On the
other hand, the validity of (2.5) for the greedy algorithm is so far limited to
strictly convex functions, although conjectured to hold for any smooth f.

We illustrate the adaptive triangulations produced by the greedy algorithm
for a function f displaying a sharp transition along a curved edge. Specifically we
take

f(ma ?/) :fé(xa ?/) = g&(\/ xz + ?/2)7

2
5_Tzfor0§1”§ L,gs(1+0+7) = —#
for » > 0, gs is a polynomial of degree 5 on [1,1 + J] which is determined by
imposing that gs is globally C2. The parameter J therefore measures the
sharpness of the transition.

Figure 2 displays the triangulation 710909 obtained after 10000 steps of the
algorithm for 6 = 0.2. In particular, triangles T such that o,(T) < 4 where for the
quadratic form associated to d? f measured at the barycenter of 7' are displayed
in white, others in grey. As expected, most triangles are of the first type
therefore well adapted to f. We also display on this figure the adaptive isotropic

where g, is defined by gs(r) =

Fig. 2. — T 10000 (left), detail (center), isotropic triangulation (right).
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triangulation produced by the greedy tree algorithm based on newest vertex
bisection for the same number of triangles.

Since f is a C? function, approximations by uniform, adaptive isotropic and
adaptive anisotropic triangulations all yield the convergence rate O(N71).
However the constant

C:=limsup N f - fwlze,
N—+00
strongly differs depending on the algorithm and on the sharpness of the tran-
sition, as illustrated on the table below. We denote by Cy, C; and Cy4 the values
N|f —fnlly for N = 8192, in the uniform, isotropic an anisotropic case respec-
tively. On columns 2, 3 and 4 we observe that Cy and C; grow as 6 — 0 while Cy
remains uniformly bounded. This is in accordance with the fact that the quantity
A(f) = ||\/det(|d? f]||2s which appears in (2.5) if p =2 remains uniformly
bounded as J — 0, as illustrated on column 5.

o | Cy | Cr| Ca [A()

02 |787|1.78)| 0.74 | 6.74
0.1 [23.7|298| 092 | 852
0.05 655 |4.13| 0.92 | 850
0.02 | 200 | 6.60| 0.92 | 8.47

3. — Greedy algorithm for N-term approximation.

Greedy algorithms for building N-term approximations were initially in-
troduced in the context of statistical data analysis. Their approximation properties
were first explored in [2, 15] in relation with neural network estimation, and in [12]
for general dictionaries. Surveys on such algorithms is given in [19, 20].

We only describe here the four most commonly used greedy algorithms:

1. Stepwise Projection (SP): {g1,---,gr_1} being selected we define f;_; as
the orthogonal projection onto Span{gi, - --,gx_1}. The next g; is selected
so to minimize the distance between f and Span{g,---,9x_1,9} among all
choices of g € D.

2. Orthonormal Matching Pursuit (OMP): with the same definition for f;_1,
we select g; so to maximize the inner product |(f — fi—1,9)| among all
choices of g € D. In contrast to SP, we do not need to evaluate the antici-
pated projection error for all choices of g € D, which makes OMP more
attractive from a computational viewpoint.

3. Relaxed Greedy Algorithm (RGA): fi_1 being constructed, we define
Ji = o fi—1 + B9k, where (ag, f;., ) are selected so to minimize the distance
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between f and af;,_1 + fg among all choices of (a, 8, g). It is often convenient
to fix a; in advance, which leads to selecting g; which maximizes
(f — apfi-1,9)| and f, = (f — arfi-1,9x). A frequently used choice is
ay := (1 —¢/k), for some fixed ¢ > 1. The intuitive role of the relaxation
parameter oy is to damp the memory of the algorithm which might have
been misled in its first steps. Sinee no orthogonal projection is involved,
RGA is even cheaper than OMP.

4. Pure Greedy Algorithm (PGA): this is simply RGA with the particular
choice a;, = 1. We therefore select g; so to maximize the inner product

|(f = fi-1,9)| as in OMP, and then set fi; = fi—1 + (f — fi—1.9%)9%-

It should be noted that in the case where D is an orthonormal basis, SP, OMP
and PGA are equivalent to the procedure of retaining the largest coefficients in
the expansion of f which is known to produce the best N-term approximation.

For a general dictionary, D a natural question is wether a similar property
holds: if f admits a sparse representation in D, can we derive some corre-
sponding rate of convergence for the greedy algorithm ? By analogy with the
case of an orthonormal basis, we could assume that f =3 ., cgg for some
sequence (¢y)yep € wf? and ask wether the greedy algorithm converges with
rate N—° with s = % — % However, the condition (cy),ep € wf? is not anymore
appropriate since it does not generally guarantee the convergence of
> gep Cg9 In H.

A first set of results concerns the case where f admits a summable expansion,
ie. (cy)yep € ' or equivalently f belongs to a multiple of the convex hull of
(=D)UD. In this case, the series > ,cyg trivially converges in H since

lglls, =1 for all g € D. We denote as L' the space of such f, equiped with the
norm

Fllp= iif > el

=2.%Y geD
Clearly £! ¢ H with continuous embedding. The following result was proved in
[15] for SP and RGA with the choice a; := (1 — ¢/k),. and in [12] for OMP.

THEOREM 3.1. — Iff € L', then
I = fll < CIFI 2N,

with C a fixed constant.

Note that the exponent s =1/2 is consistent with p = 1. The case a more
general function f € H that does not have a summable expansion can be treated
by the following result [3] which again holds for SP, OMP and RGA with the
choice gy, := (1 — ¢/k),.
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THEOREM 3.2. — Iff € H, then for any h € L, we have
If =l < IIf = Rlly + CllR|| N2

with C a fixed constant.

This result reveals that the accuracy of the greedy approximant is in some
sense stable under perturbation, although the component selection process in-
volved in the algorithm is unstable by nature.

An immediate consequence is that the greedy algorithm is convergent for any
f € H since we can approximate f to arbitrary accuracy by an & € £' (for ex-
ample with a finite expansion in D).

We can also use this result in order to identify more precisely the classes of
functions which govern the approximation rate of the algorithm. Indeed, since
the choice of i € £! is arbitrary, we have

I =il < inf {1 = Rl + CllYL N7},

The right hand side has the form of a so-called K-functional which is the central
tool in the theory of interpolation space. Generally speaking, if X and Y are a pair
of Banach function space, the corresponding K-functional is defined for all
feX+Yandt>0by

K(fa t) = K(f>taXa Y) = inf h*f{Hg”X +t||h||Y}

m
geX heY g+h=

One then defines interpolation space by growth conditions on K(f,?). In parti-
cular we say that f € [X, Y] (wWith 0 < 0 < 1) if and only if there is a constant C
such that for all £ > 0,

K(f,t) < Ct.

We refer to [4] for general treatments of interpolation spaces. In our present
setting, we see that

If —fvlly < K(f,CN 2, H, LY,

and we therefore obtain

.0
feleH, Lyoo = |If —fully <CNT" s =3

This result is consistent with the particular case of an orthonormal basis since in
this case H ~ (2(D) and L' ~ 2(D) so that [H, £y ~ [¢?,£]p Which is known
1-0
2
fact that ||f —fyll;; < CN~° when (cy)yep € wlP with %: % +s. For a more

=. We therefore recover the

to coincide with the space wé? with ;0 =0+
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general dictionary, if we are able characterize the space £! by some smoothness
condition in H, then [H, El]@,Oo will correspond to some intermediate smoothness
condition.

The above results show that greedy algorithms have the convergence rate

. 1 .
N7 with0<s < 5 when f has a moderately concentrated expansion in D.

At the other end, one might ask how the algorithm behaves when f has a
highly concentrated expansion, ie. =3 pcg with (¢j)yep € ¢F for some
p < 1. The limit case p = 0 of a finitely supported expansion corresponds to the
sparse recovery problem: from the data of f can we recover its exact finite ex-
pansion by a fast algorithm?

For a general dictionary, it was proved in [12] that (¢cy)yep € # with p <1
implies the existence of a sequence fy of N-terms approximant which converge

towards f with the optimal rate N~* with s = % — % However SP, OMP and RGA

may fail to converge faster than N 5. They may also fail to solve the sparse re-
covery problem.

On the other hand we know that SP, OMP and PGA are successful in the
special case where D is an orthonormal basis. A natural question is therefore
to understand the general conditions on a D under which the convergence of
greedy algorithms might fully benefit of such concentration properties, si-
milar to the case of an orthonormal basis. Important progress has been re-
cently made in this direction, in relation with the topic of compressed sen-
sing. We refer in particular to [14] in which it is proved that OMP succeeds
with high probability in the sparse recovery problem for randomly generated
dictionaries.

Other open questions concern the PGA algorithm for which it was proved in
[12] that f € £; implies that

If —fvl <CNw.

This rate was improved to N ~# in [16], but on the other hand it was shown [17]
that for a particular dictionary there exists f € £; such that

If —fwll = N~

The exact best rate N—* achievable for a general dictionary and f € £ is still
unknown, but we already see that PGA is sub-optimal in comparison to SP,
OMP and RGA. An interesting problem is thus to understand which condi-
tions should be imposed on the dictionary in order to recover an optimal rate
of convergence for this particular algorithm.
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