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A Variational Model for Quasistatic Crack Growth
in Nonlinear Elasticity:
Some Qualitative Properties of the Solutions (¥)

GIANNI DAL MASO - ALESSANDRO (GIACOMINI - MARCELLO PONSIGLIONE

Abstract. — We present the main existence result for quasistatic crack growth in the
model proposed by Dal Maso, Francfort, and Toader, and prove some qualitative
properties of the solutions.

1. — Introduction.

In this paper we present an existence result, proved in [7], for an evolution
problem in fracture mechanics, and study some very weak regularity properties
of the solutions. The mathematical formulation of the problem is based on a
variational model for quasistatic crack growth developed by Francfort and
Marigo [11]. The model is based on Griffith’s idea [12] that the equilibrium of a
crack is determined by the competition between the elastic energy released if the
crack grows and the energy dissipated to produce a new portion of crack. This
model not only predicts the crack growth along its path, but also determines the
crack path on the basis of an energy criterion, and can also be used to study the
process of crack initiation (see [5]).

The first mathematical results on this model were obtained in [8] for linear
elasticity in the antiplane case in dimension two, assuming an a priori bound on the
number of connected components of the crack set. This simplifies the mathema-
tical treatment of the problem, but has no mechanical justification. These results
were extended by Chambolle [4] to the case of plane elasticity. A remarkable
improvement was obtained by Francfort and Larsen [10], who developed a weak
formulation in the space SBV(Q) of special functions with bounded variation, in-
troduced by De Giorgi and Ambrosio [9] to study a wide class of free discontinuity
problems. This new formulation allows to study the problem in any space di-
mension, and without any restriction on the number of connected components of

(*) Conferenza tenuta a Torino il 5 luglio 2006 in occasione del “Joint Meeting S.I.M.A.I. -
S.M.A.L. - S.M.F. - U.M.IL. sotto gli auspici dell’E.M.S. Mathematics and its Applications”.
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the crack sets. The results of [10] deal only with a scalar displacement field, since
the compactness theorem in SBV(Q) requires a bound in L () that is obtained
through a truncation argument. Moreover, the techniques used in all papers
considered so far cannot be extended to the case where exterior volume or surface
forces act on the body.

The result we present here allows to deal with the case of a vector valued
deformation field defined in Q C R" with values in R™, including both the case of
antiplane shear (n = 2 and m = 1) and » dimensional elasticity (n = m > 2). The
bulk energy is not necessarily quadratie, although the polynomial growth (2.6)
excludes, for the moment, the case of genuine finite elasticity. Moreover body
and surface forces can be considered, under some natural assumptions which
imply that the deformed body remains in a bounded region even if the cracks
split it into several connected components.

The variational formulation of the problem presented in this paper is based on
the space GSBV(Q; R™) introduced by De Giorgi and Ambrosio [9], and fits the
general framework of rate independent evolution problems developed by
Mielke [14].

The second part of the paper is devoted to the proof of some qualitative
properties of the solutions, that are not studied in [7]. We show that, given
any quasistatic evolution, we can construct another quasistatic evolution,
whose crack sets are left continuous in time. We also prove that the crack set
is minimal, in the sense that, at each time ¢, it is the smallest set containing
all discontinuity sets of the deformation at times s < t. Moreover, we prove
that, given any quasistatic evolution, we can construct another quasistatic
evolution, with the same crack set, whose deformation is measurable in time.
Finally, under some convexity assumptions, we prove that, if the crack set is
left continuous, so are the deformation, the deformation gradient, and the
stress.

2. — The quasistatic crack growth.

In this section we describe in detail the hypotheses of the quasistatic evolu-
tion problem studied in [7] and state, without proof, the main existence result
of [7].

The reference configuration. The reference configuration is a bounded open
subset 2 of R" with Lipschitz boundary. Let oyQ C 92 be closed and let
OpQ = 02\ InQ. We fix an open subset Qp of 2 with Lipschitz boundary and a
closed set 9sQ C OyQ such that Qp N 052 = . The set Qp represents the
brittle part of the body, dpQ2 is the part of the boundary where the deformation is
prescribed, while the surface forces are applied to 9sQ.
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Admissible cracks. The set of admissible cracks is given by
R(Qp) := {I': I is rectifiable, I' C Qp, H"(I') < 4+ occ}.

Here and henceforth H" ! is the (n — 1)-dimensional Hausdorff measure, C and
=~ mean inclusion and equality up to a set of 4"~ !-measure zero, while rectifiable
means that there exists a sequence (M;) of C' manifolds of dimension (n — 1)
such that I" € |J M;. If I' is rectifiable, we can define 1" !-almost everywhere on

(2
I’ a Borel measurable unit normal vector field v (see, e.g., [1, Definition 2.86]),
which is unique up to a pointwise choice of the orientation.

Admissible deformations. Given a crack I, an admissible deformation is
given by any function u € GSBV(Q; R™) such that S(u) CI". We refer to [1,
Chapter 4] for the definitions and properties of the spaces SBV(Q;R™) and
GSBV(2; R™), as well as for the definition of the jump set S(u), of the approx-
imate gradient Vu, and of the trace on 92 of a function v € GSBV(Q; R™). Let us
fix p > 1 and g > 1. We define

GSBVP(Q;R™) := {u € GSBV(QR™) : Vu € LP(Q; R™™), H" 1(S(w)) < + oo},
GSBVI(Q; R™) := GSBV?(Q; R™) N LI(2; R™).

We say that u;, — u weakly in GSBV](@; R™) if

up — % in measure on Q,
(2.1) Vauy, — Vu  weakly in LP(Q; R™*™),
up, — u  weakly in LI1(Q; R™).

The surface energy. The energy spent to produce a crack I is given by

2.2) &)= [ e w)an @,
I\oyQ

where v is a unit normal vector field on I'. Here x(x,v(x)) represents the
toughmness of the material, which depends on the position « and on the tangent
space to the crack, determined by v(x). Since we are dealing only with brittle
cracks, the toughness does not depend on the size of the jump of w.

We assume that x: QpxR” — R is continuous, that x(x, -) is a norm in R” for
all x € Qp, and that

(2.3) Ki]v| < k(w,v) < Kp|v| for all x € Qp and v € R”,

with Ki, Ks > 0. Notice that, since « is even in the second variable, the integral
(2.2) depends only on the geometry of I', and is independent of the choice of the
orientation of v(x).
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The bulk energy. Let p > 1 be fixed. Given a deformation 4 € GSBVP(2; R™)
the associated bulk energy is given by

(2.4) W(Va) = f W, Vu() de,
Q

where W:Q2xR™" — [0,+ cc) is a Carathéodory function satisfying the fol-
lowing conditions:

(2.5) W (x,-) is quasiconvex and C* on R"™*" for every x € Q,
2.6)  al &P — by (x) < Wi, &) < al |&]F + b)Y (x) for every (x,¢) € QxR™ ",

Here af/ >0 and a}’ > 0 are constants, while by’ and b} are nonnegative
functions in L'(Q). The quasiconvexity assumption means that

W,8) < [ W, &+ Vo) dy
Q

for all x€Q, £eR™™", and ¢ € C(Q2;R™). The rank one convexity of
Er= Wi, &) on R™" and the growth assumption (2.6) imply (see, e.g., [6]) that
there exist a positive constant @) > 0 and a nonnegative function by € LP(Q),
with p’ := p/(p — 1), such that

2.7 10:W (e, &) < al [P + bY () for all (x,&) € QxR™",
where 9:W: QxR™*" — R™*" denotes the partial gradient of W with respect to
£ By (2.6) and (2.7) the functional W, defined for all @ ¢ LP(Q; R™") by

WD) = f W, b)) di,
Q

is of class C!' on LP(Q;R™"), and its differential 9 : LP(Q; R™") —
LP(Q; R™™) is given by

(OW(D), W) :faéW(ac, & (x))¥ (x) dc for every @,¥ c LP(Q; R"™™),
2

where (-,-) denotes the duality pairing between the spaces LP(Q; R™"") and
LP(Q; R™™).

The body forces. Since we consider only conservative body and surface for-
ces, it is convenient to describe them by means of their potentials, that will be
denoted by F' and G, respectively. Let ¢ > 1 be fixed. The density of the applied
body forces per unit volume in the reference configuration relative to the de-
formation u at time ¢ € [0, T] is then given by 0,F(t, x,u(x)). We assume that
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F:[0, T1x2xR™ — R satisfies the following conditions:
x+— F(t,x,2) is £ measurable on Q for every (¢,z) € [0, T]xR™,

2+ F(t,x,2) belongs to C1(R™) for every (t,x) € [0, T]xQ.

We assume that for every ¢ € [0, T] the functional

2.8) Ft)w) = f Ft, o, u(@) de
Q

is of class C' on LY(Q;R™), with differential F(t): LI(Q; R™) — LY(Q; R™),

q = %, given by

(OF (), v) = f 0. F(t, x, u(x)v(x) dx for every u,v € LY(Q; R™),
0

where (-,-) denotes now the duality pairing between LY(Q; R™) and LI(Q; R™).
We assume also the following semicontinuity condition:

F@®)(u) > lim sup F(&)(uy)

k—o0

for every wuy, w € LI(Q; R™) such that u;, — u a.e. on Q.

As for the regularity with respect to time, we assume that there exist a
constant 1 < ¢ < q and, for a.e. t € [0, T], a functional F(t): LI(Q; R™) — R of
class C?, with differential F(t): L4(Q; R™) — LY(Q; R™), ¢ = %, such that
for every u, v € LI(Q; R™) the functions t— F@t)u) and t— (8.75 () (w),v) are
integrable on [0, T'], and

t
F&)w) = FO)w) + f Fs)u)ds,
0

¢
(OF ) (w), v) = (OF (0)(u),v) +f<6]5(s)(u),v> ds
0

for every t € [0, T']. . _
We assume that F(t), 0F (), F(t), and OF () satisfy the following growth
conditions for every u, v € L4(Q; R™) and a.e. t € [0, T':

aj lull? — b < ~FO)w) < af [lul? + b7,
[(OF B, v)| < (af lullZ" +0F) [[v]l,,
IFO@)| < af O)l|u]] + b5 ®),

[(OF B, )| < (af Dl +0F ®) [lul,,
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where a} >0, a] >0, al >0, b >0, bf >0, and b] > 0 are constants, af,
aj, b, and b] are nonnegative functions in L'([0,T]), and || - ||, denotes the
norm in L*.

The positivity of a} is a crucial assumption for the coerciveness of the elastic
energy defined in (2.11) below. Since it implies that —F(¢)(u) is large for large
values of ||u/|,, the forces cannot send portions of the body to infinity, even if the
cracks happen to split it into several pieces. This allows to obtain an existence
result of the quasistatic evolution for arbitrarily large times.

The surface forces. The density of the surface forces on 9gQ at time ¢ under
the deformation u is given by 0,G(,x, u(x)), where G:[0, T]1x9gQxR™ — R is
such that

x— G(t,,2) is H" ! —measurable on dsQ for every (t,z) € [0, T]xR™,
z+— G(t,x,z) belongs to C1(R™) for every (¢, x) € [0, T]x Q.

Let us fix an exponent 7, whose value is related to the trace operators on
Sobolev spaces: if p < n we suppose that p <r < nr%p’ while if p > n we sup-
pose only p < r. We assume that for every ¢t € [0, T'] the functional
(2.9) G(u) == f G(t, x, u(x)) dH" (x)

850
is of class C' on L"(0sQ2;R™), with differential 0G(): L"(0s2; R™) —
L7 (0sQ: R™), v/ := i given by
(G (), vy = f 9.G(t, x, u(@)w(x) dH" (x), for every u,v € L"(9sQ; R™),
050

where (-,-) denotes now the duality pairing between L"(9sQ;R™) and
L"(05 Q: R™).

As for the regularity with respect to time, we assume that for a.e. ¢t € [0, T']
there exists a functional G(t): L"(9sQ; R™) — R of class C!, with differential
OG(t): L"(05€2; R™) — L"(8sQ; R™), such that for every u, v € L"(9sQ2; R™) the
functions t— G(t)(u) and t— (ag(t)(u), v) are integrable on [0, '], and

t
G(t)w) = GO)(u) + f G(s)(w) ds,
0

4
(0G()(w), v) = (9G(0)(w),v) + f (0G(s)(w), v) ds
0

for every t € [0, T].
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We assume that G(t), 9G(), G(t), and dG(t) satisfy the following growth con-
ditions for every u, v € L"(0s2; R™) and a.e. t € [0, T:

—aglull, g0 — b5 < —GO@) < af|[ul; 50 + b7,
(0GB @), v)| < (af][ull} a0 + 09) 19].550-
GO < )|l 50 + D®),

(0GB, v)| < (af®l[ull] oo + D{D) [0].550-

where ag , alg, ag , bg , bf, and bg are nonnegative constants, ag, af, bg, and bf are

nonnegative functions in L!([0, 7]), and || - ||T’ 90 denotes the normin L"(9sQ; R™).

Configurations with finite energy. The deformations on the boundary 9pQ
are given by (the traces of) functions y € WhP(Q; R™) N LI(Q; R™). Given a crack
I' € R(2p) and a boundary deformation y, the set of admissible deformations
with finite energy relative to (w, I') is defined by

AD(y, T :={u € GSBVI(Q;R™) : Sw) CI', w =y H" '—a.e. on 9pQ\ I'}.

Note that, if u € GSBV?;(Q; R™), then W(Vu) < +o0 and |F(t)(w)| < +oo for
all t € [0, T]. Moreover, since I" € R(Qp), S(w) CI' C Qp, and 8sQ N Qp = &, we
have that G(t)(w) is well defined and |G(#)(w)| < + oo for all ¢ € [0,71] (see [7,
Section 3] for the details). Notice that there always exists a deformation without
crack which satisfies the boundary condition, namely the function y itself. This
means that, if some cracks appear, this is because they are energetically con-
venient with respect to the elastic solution, and not because the presence of a
crack is the only way to match the boundary condition.

The total energy. For every t € [0, T] the total energy of the configuration
(u, I), with w € AD(y, I), is given by

(2.10) B, I) = ENtYw) + E(I),

where the surface energy & is defined in (2.2), while the elastic energy E°(t) is
given by

(2.11) ENB ) == W(Vu) — Ft)w) — GB)w),
with W, F(t), and G(t) defined in (2.4), (2.8), and (2.9), respectively.
The time dependent boundary deformations. We will consider boundary
deformations y(t) such that
t—y(t) € AC(0, TT; WHP(Q; R™) N LYU(Q; R™)),
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so that
b it) € LN, T WH(Q; R™) N LI(Q; R™)),
tis V() € L1(0, T, LP(Q; R™™)).

Quasistatic evolution. The notion of quasistatic evolution of a cracked
configuration is made precise by the following definition.

DEFINITION 2.1. — A quasistatic evolution with boundary deformation
t—y(t)is a function t — (u(t), ') from [0, T1to GSBVE(Q; R™)x R(Qp) with the
following properties:

(a) global stability: for all t € [0, T] we have u(t) € AD(w(t), I'(t)) and
EQu®), I'®)) = min{EGQ)(w, ) : I € RQp), T®CT, ve ADW(t), D)};

(b) irreversibility: I'(s) C I'(t) whenever 0 < s <t < T;
(c) energy balance: the function t— E@) := E@)(u(t), I'(t)) is absolutely
continuous on [0, T] and

E(t) = (OV(Vult), Vi) — (OF @)u(t)), @) — FE)u(t)

(2.12) .
—(0GO(®), y(®)) — GO(wu(?))

fora.e.t €[0,T]

If the solution is sufficiently regular, an integration by parts shows that the
right-hand side of (2.12) represents the power of all external forces acting on the
body, including the unknown forces on dpQ\I'(f) that produce the imposed
boundary deformation w(t) (see [7, Section 3.9] for details).

The existence result. We are interested in quasistatic evolutions with a
prescribed initial condition (ug, o) with I'g € R(2p) and uy € ADw(0), I'y).
Since in the definition we require that the global stability condition is satisfied
for every time, a necessary condition for the solvability of the initial value pro-
blem is that

(2.13) EO)(uo, I'g) < EO)u, I')

for every I € R(Qp), with I'g CI', and every u € AD(y(0), I).
The next Theorem, proved in [7], establishes the existence of a quasistatic
evolution with prescribed initial and boundary conditions.

THEOREM 2.2. — Let I'y € R(Qg) and ug € ADw(0), I'y). Assume that (2.13) is
satisfied. Then there exists a quasistatic evolution with boundary deformation
w(t) such that (w(0), I'(0)) = (uo, I'o).
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3. — Qualitative properties of the quasistatic crack growth.

In this section we consider a quasistatic crack growth ¢— (u(t), I'(t)) with
boundary deformation ¢+ w(t) according to Definition 2.1. In the sequel we will
derive some qualitative properties of the cracks 7'(¢) and of the deformations w(t).

3.1 — Left continuous envelope of the crack

For every t € 10, T] we define '~ (f) as the rectifiable set
=@ = Jrep,
k

where (s;) is a sequence converging to ¢t with s; <t for every k. We define
I'~(0) := I'(0). Since I'(-) is increasing in time, it turns out that I"~(¢) is in-
dependent of the choice of the sequence (si).

PROPOSITION 3.1. — For all t € [0, T] we can find v(t) € AD(y (), '~ (t)) such
that t— ((t), '~ (1)) is a quasistatic evolution with boundary deformation y(t).

Proor. — If follows from the definition that I"~(f) is increasing with respect
to t. Since t+— I'(t) is increasing, it turns out that ' (¢) = I'(t) for all ¢ € [0, T']
except for a countable set C' C 10, T]. For every ¢ € [0, T]\C we set v(t) := u(?),
while for ¢t € C we take as v(t) any minimizer of

min{ &) : u € ADy(t), '~ (1))}

Let us check that the three conditions for quasistatic evolutions hold for the
function t— (v(t), I~ (t)). Irreversibility has already been proved. As for global
stability, let I” be such that I'~(t) C T, and let v € AD(w(t),I"). We notice that
I'(s) CTI for every s < t, so that by the global stability of (u(s), I'(s)) we get

ENS) () + EXI(8)) = EB)uls), I(8)) < E(S)(W — w(t) + w(s), ).

Let (s;) with s — ¢ and s;, < ¢ for every k: up to a subsequence we have that
u(sy) — % weakly in GSBVé’ (Q; R™) for some @& € AD(w (), (t)). By lower
semicontinuity the previous inequality gives

ENtYm) + EWA @) < EQ, I,
so that by the minimality of v(¢)
EB@®), I~ 1) = EX Q) + ET 1) < EB@, I).
Let us come to the energy balance. Since (v(t), I’ (t)) = (u(?), I'(t)) for all t up
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to a countable set, it is sufficient to prove that E@&)(v(t), I~ (t)) = E@)(u(?), I'(t)) for
all ¢ € [0, T]. By global minimality for every s < t we have
ES)uls), I'(s)) < EEE) — y(@) +y(s), I @)
and so, since t+— E@E)(u(t), I'(t)) is continuous by definition, we get for s — ¢
E@O®), I'@®) < EB@), I @)).

The opposite inequality comes from the global stability of (v(t), I"~()), so that the
proposition is proved. a

We can also consider the right continuous envelope of the crack. For every
t € [0, T[ we define I'"(t) as the rectifiable set

(@) = () s,
k

where (s;) is a sequence converging to ¢t with s; >t for every k. We define
I'™(T) := I'(T). Since I'(-) is increasing in time, it turns out that I'"*(f) is in-
dependent of the choice of the sequence (sy).

PROPOSITION 3.2. — For all t € [0, T] we can find v(t) € AD(w®), '™ (t)) such
that t— (), ' (1)) is a quasistatic evolution with boundary deformation y(t).

PROOF. — As in the proof of Proposition 3.1 we find that I""(£) = I'(¢) for all
t € [0, T'] except for a countable set C C [0, T'[, and for every t € C we take as v(t)
any minimizer of

min{E%(t)(w) : u € AD(y(t), " (t))}.

Let us check global stability and energy balance for the function
t (u(t), I'"(t)). As for global stability, let I" be such that I'*(t) CI', and let
v € AD(w(t), I'). For every s > t the global stability of (u(s), I'(s)) gives

EE)uls), I'(s)) < E)w —w@) +w(s), I UT(s)).

Let (s;) with s; — t and s;, > t for every k: up to a subsequence we have that
u(sp) — o weakly in GSBVI(Q; R™) for some u € AD(y(t), I'*(t)). By lower
semicontinuity the previous inequality gives

ENtY@m) + ETT @) < EQ, I,
so that by the minimality of v(t)
EQ®), I @®) = ENOWR) + EWT @) < EBW, D).

Let us come to the energy balance. As in Proposition 3.1 it is sufficient to
prove that E&)(u(t), I'®) = EX)wE), It () for all ¢ € [0, T]. The global stability
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of (v(t), 't (t)) gives, for every s > t,
EBO@®), I (1)) < ES)uls) — w(s) + w(d), ['(s) < EE)uls), I(s)) + w(s),

where w(s) — 0 as s — t (see the estimates of [7, Section 5]). By the continuity of
t— E@)(u(t), I'(t)) we obtain for s — ¢

EOW®), I (B) < EDu), I'D)).

The opposite inequality comes from the global stability of (u(t), I'(£)), so that the
proposition is proved. a

3.2 — Structure of the crack set

Francfort and Larsen, in their approach to quasistatic crack growth [10],
define the crack set at time ¢ as the union of the jump sets of the displacements at
previous times. In the next proposition we prove a similar structure result for
any quasistatic evolution according to Definition 2.1.

PROPOSITION 3.3. — There exists a countable and dense set D C [0,T] such
that for all t € [0, T]

(3.1) rey=rou (J s%9ws)),
seD,s<t

where

(3.2) SY(u) == Su) U {x € dpQ : u(x) # w(x)}

for every y € WHP(2; R™) and u € GSBV](Q2; R™).
Proor. — By [7, Lemma 4.12] there exists a sequence of subdivisions (t}c)ogigik
of [0, T'], with

33) 0=t <tl<.. <tr'<tF=T and lim max (£ — ') =0,

k—o00 1<i<i;,

such that
, t
/Lk . . . . ' .

(3.4) Tim > |t — 6 D) - [ Bt =o.
i=1 t']i—l

Moreover, we can assume that {t] : 0 <4 <4} C {t | :0 <4 <7} for all k.
Let us define

Io:={ti:keN, 0<i<i}.
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For all t € [0, T] we set
r®)=rou (J $ws),

s€ly,s<t
and
E(t) := EUt)ut) + ET ().

Notice that I'(0) = I'(0) and I'(t)CI'(t) for all t€[0,T]. As a consequence
E(0) = E(0) and E(t) < Et) for all t € [0, T.

Let us fix ¢ € I.. For every k sufficiently large there exists j. € {0,..., %}
such thatt = }*. For every i = 1,...,ji — 1, by the global stability of (u(t}), I'(t}))
we get

E @) < EMEI ) — ™) + ) + E S D N\ Tt
< EME@ET) — pE) + ) + ES @\ ),
so that
ENt @) + ETE) < EMD@ET) —wt™) +yE) + ETEM),

Using the error estimates contained in formula (7.46) in the proof of [7,
Theorem 3.15], we deduce that there exists a sequence e (f) — 0 such that

- e oo
E@®) > EQ©) + Z @t — - HE®E) — e ().
j=1

By (3.4) we deduce that for all t € I,
t
) > EO) + f E(s)ds = E(?).
0

Since we have already proved the opposite inequality, we obtain E(t) = E(t) for
all t € I.. As a consequence for all ¢t € I, we have I'(t) = I'(t), hence

(3.5) rey=rou J S$%auws).

sely,s<t

Equality (3.5) extends to all continuity points of t — H" 1(I'(t)).
Let us set D :=J U I, where J is the (at most countable) set of jumps point
of t— H" U(I'(t)). Notice that

(3.6) rey=royu J s"9ws)

seD,s<t

for every t € [0, T']\J. To conclude the proof it is thus sufficient to show that (3.6)
holds also for ¢ € J. Let I'(t) be the right-hand side of (3.6), and let us prove that
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') Zr@). Let t € J and let t; € I, with t;, — t and t; <t for every k. Since
v = ult) — w(t) + w(ty) satisfies S¥@ (vy) = S¥O(u(t)) C I'(t) and I'(t;) CI'(t), by
the global stability of (u(t;), I'(t;)) we get

E(t) = ' G)ut) + ET () < )W) + EUT(@)).
Letting k¥ — oo, by the continuity of {— E(f) we obtain
E@®) < £0t) + E @),

which jmplies ET @) < (). Since I'(t)CI'(t), we conclude that
¢ =I@. O

The structure result can be improved under suitable convexity assumptions
for the bulk energy and for the potentials of the applied forces.

LEMMA 3.4. — For every t € [0, T] assume that W and —G(t) are convex and
that —F (@) is strictly convex. Then for every countable dense set D C [0, T]
containing the jump points of t— H" 1(I'(t)) we have
(3.7) rey=rou (J s"9aus).

seD,s<t

Proor. — By Proposition 3.3 we know that there exists a countable and dense
set D' C [0, T], containing the set of jumps of ¢ — H " }(I"(t)), such that

(3.8) re)=rou [J s"ws).

seD’ s<t

Let D be a countable and dense subset of [0, T], containing the set of jumps of
t— H""Y(I(t)), and let

ry:=rou (J $%ws).
seD,s<t

Recall that I'(t) CI'(t) for all t € [0,T] because u(t) € AD(w(t), I'(t)) for all
t € [0, T]. Let us show that the opposite inclusion holds. By (3.8), it is sufficient to
prove that for all s € D’ with 0 < s <t we have S¥®(u(s)) C I'(t). If s is a jump
point of t — H " 1(I'(t)), we have s € D and the inclusion follows. If s is not a jump
point of t+— H"NI(t)), let us consider s, € D with s, — s and s < s. We have
that (up to subsequences)

u(sy) — u weakly in GSBV](Q; R™),

and S¥® (@) CI(s), since S¥¢¥(u(sy) CI'(s) for all k (see [7, Remark 2.9]).
Moreover % is a minimizer of

(3.9) min{€/(s)(v) : v € GSBVI(Q; R™), 8"®(v) CI'(s)}.
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Indeed for all ve GSBVY(;R™) with S¥®@)CI(s) we have that
SYER (v — w(s) + w(sy) = S¥®(v) C I'(s), so that

ENsi)usy)) < EUsp)W — wis) + wisy) + E5(I(s)\ T'(sp)).

Taking the limit for ¥ — oo we obtain
ENs)@) < Es)(w),

hence % is a solution of problem (3.9). By the convexity assumptions, the solution
of problem (3.9) is unique. By the global stability condition for (u(s), I'(s)) the
function u(s) is a minimizer of (3.9). This implies % = u(s), which gives
S¥®)(u(s)) C I'(s) CI'(t) and concludes the proof. O

3.3 — Measurability properties of the deformation.

In the quasistatic evolution ¢ — (u(?), I'(t)), the deformation u(?) is, in general,
not uniquely determined by I"(t). Indeed, if v(t) is another minimizer of ENt) in
AD(w(t), I'(t)), then the global stability condition still holds and the value of E(t)
does not change. Therefore t+— (v(t), I'(t)) is a quasistatic evolution provided
(2.12) is satisfied by v(t). The following result shows that we can select ¢ +— v(t) so
that certain measurability properties hold. Similar results for a different evo-
lution problem have been obtained independently in [13].

THEOREM 3.5. — We can choose t — v(t) in such a way that t— (@), ') is a
quasistatic evolution with boundary condition t— w(t) and t— (Vo(t),v(t)) is
measurable from [0, T] to LP(Q; R™*™)x LI(Q; R™).

PROOF. — Let ¢! and I, be as in Proposition 3.3. For all k we set

(3.10) wp(®) =), i)=Y, &) = B¢ fort e[t Ll

Arguing as in the proof of [7, Lemma 6.1], we deduce from (3.4) that for all
t € [0, T'] there exists ¢, (t) — 0 as k — oo such that

4
E@ug @), I'@)) = E0)(w(0), I'k(0)) + f Gi(s) ds + ex(?).
0

Let us define

rty= |J re.

s€ly,s<t

Using the definition of ¢”-convergence, introduced in [7, Section 4.1], and
Proposition 3.3 it is easy to prove that for every ¢ € [0, T] there exists 7°(¢)
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such that

S0 and @) =TO)UR@.

It is clear that I'(t) = I'(¢) for all t € I... As~a consequence of the monotonicity
with respect to ¢ we obtain that I'(t) = I'(f) for all ¢ € [0,T] except for a
countable set C.
Setting
A(t) := lim sup I (2),
k—o0
let us consider the sets
A() == {(Vv,v) : v € GSBVF(Q; R™), uy, () — v weakly in GSBV!(Q;R™),

(3.11)
&, (1) — J(t) for some sequence k; — oo},

where uy(t) is defined in (3.10). Arguing as in [7, Section 7] we can prove that for
every selection t+— (Vo(t), v(t)) € A(f) the function £ — (v(t), @) is a quasistatic
evolution. Since I'(t)=I'(t) for t¢ C, the global stability condition gives
E@t), It) = Eut), ['¢)) for t ¢ C, and the continuity condition in the energy
balance ensures that £@@), ['(t)) = Eu(t), I'(t)) for every t € [0, T']. Therefore, if
we define v(t) = v(t) for t € C, and v(t) = u(t) for ¢t € C, the function ¢ — (v(¢t), I'(f))
is still a quasistatic evolution, and t+— (Vo(t),v(t)) has the same measurability
properties as t+— (Vo(t), 0(t)).

In order to conclude the proof, it is enough to show that we can choose v(¢) so
that ¢ — (V(t), 9(t)) is measurable from [0, T] to LP(Q; R"™ ") x L1(Q; R™).

To this aim, we notice that (Vv,v) € A(t) if and only if there exists a sequence
kj — oo such that & (&) — I(), Vu,(t) — Vo weakly in LP(Q; R™™), and
Uy, t) — v weakly in Lq(.Q R™). Indeed the convergence in measure of Uy, @)
requlred in (2.1) can be obtained from the GSBV compactness theorem (see [1,
Theorem 4.36]), since H"~ 1(S(u;C (®)) is uniformly bounded. Moreover, in view of
the coercivity estimates proved in [7], there exists a bounded closed convex set
K C LP(Q; R™™)x LI(Q; R™) such that

(Vug (@), ur () € K

for all t€[0,7T] and for all k. On K we consider the weak topology on
LP(Q; R™ ™M= L1(22; R™), so that K is a compact metrizable space. In Lemma 3.6
below we will prove that

(a) A(?) is closed in the weak topology for every ¢ € [0, T'];
(b) theset {tc[0,T] : A{)NU # &} is measurable for every open set U
in the weak topology of LP(Q; R™*™) x LI(Q; R™).

Then we can apply the Aumann-von Neumann selection theorem (see, e.g.,
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[3, Theorem III.6]) and we obtain that we can select (Vo(t), v(t)) € A(f) in such
a way that ¢ — (V(t), 9(t)) is measurable from [0, T to LP(Q; R™*"™)x LI(Q2; R™)
endowed with the weak topology. The measurability with respect to the strong
topology follows from the Pettis theorem (see, e.g., [16, Chapter V, Section 4]).
a
In the rest of this subsection we prove the lemma concerning the measur-
ability of the set valued map ¢ — A(t) used in the proof of Theorem 3.5. We settle
the problem in the context of compact metric spaces.
Conditions (a) and (b) in the proof of Theorem 3.5 follow from the next lemma,
applied to X = K and f;,(t) = (Vu(t), ux(t)), with a metric d inducing on X the
weak topology of LP(Q; R™"™)x L4(Q; R™).

LEMMA 3.6. — Let (X,d) be a compact metric space, let f;.:[0,T] — X be a
sequence of measurable functions, and let S, and 9 be measurable functions
from [0, T] to R. Forall t € [0,T] let

(8.12) A@®):={x € X: there exists kj — oo such that fi, (@) — x and &) — IO}
Then

(a) A(t) is closed for all t € [0, T];
(b) theset{te[0,T]: A®t) N U # &} ismeasurable forevery open set U C X.

ProOF. — Let us fix t € [0, T] and let us prove that A(¢) is closed in X. Let
x; € A(t) with x; — « in X. Since x; € A(f), we can find k; > j such that

1 1
A, fir, ®) S] and |, () — I@)| < i

Clearly fj,(t) — x and 7919 () — J(t), hence x € A(t) by the very definition of A(t).
This proves that A(t) is closed in X.

In view of [3, Theorem II1.9], in order to prove (b) it is sufficient to show that
for all x € X the function ¢ — d(x, A()) is measurable. For every j we define

Ai@) = {x € X : there exists k > such that d(f;.(t),x) < ]1 and |3(1) — I@)| < jl},
and we observe that A(¢) = () A;(t). We claim that
J

(3.13) d(x, A(®)) = sup d(x, 4;(@)).
J

Since A() C A;(t), we have d(x, A®t)) > d(x, A;t)) for every j, and hence
d(x, A(®)) > sup; d(x, A;(). To prove the opposite inequality, we may assume
that the right-hand side of (3.13) is finite. For every j we fix y; € A;(¢) such that

1
d(x,y;) < d(x, A;() + J_ As X is compact, there exists a subsequence (y;,, ) of (y;)
which converges to a point . Since y;,, € A, (t), there exists k,, > j,, such that
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= m

d(fr,, @), y;,) < Ji and |G, (H) —J@)| < ]i It follows that f; ({) — % and
Iy, (t) — Ht) as m — oo, hence y € A(t) by the very definition of A(t). Therefore

d(x, A®) < d(x,y) = lim d(x,y;,) < supd(x, A;?)),

which concludes the proof of (3.13).
On the other hand we have A;(t) = |J A;-C (t), where
k>

A= {a e X a0 < 5 and 1500 - 50 <},

so that
d(z, Aj(t)) = ;Crg A, A ().

Therefore (3.13) gives
d(x, A(t) = supinf d(x, A(t)).
J k=j

Since t — f;.(), t — Ji(t), and t — I(t) are measurable, the functions ¢t — d(zx, A;“ )
are measurable for every « € X, and this concludes the proof of (b). O

3.4 — Continuity properties for stress and deformation.

The following proposition shows that, under suitable convexity assumptions,
the stress is left continuous when the crack is left continuous. The same property
holds for the deformation and the deformation gradient, if some energy terms
are strictly convex.

PROPOSITION 8.7. — Lett € [0, T be such that I'(t) = I'~(t) and W, —F(t), and
—G(t) are convex. Then

(3.14) IWVu(s)) — OW(Vu(t)) weakly in LP(Q; R™ ™) as s — t~.
If, in addition, W and —F (&) are strictly convex, then

(3.15) YVu(s) — Vu(t) strongly in LP(Q; R™™) as s — ¢,
(3.16) w(s) — u(t) strongly in L1(Q;R™) as s — t~,
(8.17) u(s) — u(t) strongly in L"(0sQ,R™) as s — ¢.

PrOOF. — Since I'(t) = I’ (t), using Proposition 3.3 it is easy to prove (see
[7, Section 4.1]) that for every sequence s; — ¢~ there exists I" such that

rsp) ST and  T®=TOUT.
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Arguing as in [7, Sections 4 and 5] we deduce that there exist a subsequence,
not relabelled, and a minimizer % of &) on AD(y(t), I'(t)) such that

(3.18) u(sj) — % weakly in GSBV}I"(Q; R™),

(3.19) INV(Vu(s)) — OW(Vi)  weakly in LP(Q; R"™*").

Since u(t) is a minimizer of £%(t) on ADWy @), (@), by (3.19) the first part of
the theorem is proved if we show that the triple

(3.20) (OW(V), —0F (t)(w), —0G@)(w))

is the same for all minimizers.

To prove this property, we show that for every minimizer & of £%(t) on
AD(@y (@), I'(t)) the triple (3.20) is a solution of a dual problem which, in our as-
sumptions, admits a unique solution. Let us consider the linear space

(3.21) V(I(#) = {v € GSBV2(Q; R™) : S°(w) C T (1)},

where S°(v) is defined as in (3.2) with y =0. Note that AD(y (), I'(t)) =
w(t) + V') = u+ VUI(t). For every
1= (1,1, m3) € LP(Q R™ )X LA(Q; R™)x L7 (952; R™),

we set
Y(n) == W(p) — Ft)n) — G ns).

Let us consider

22 d(m) = inf W -7).
(3:22) ) uea1+r11/<r(t)) (Vo2 0) = 1)

Notice that @ is convex, lower semicontinuous, and proper, since
(0) = P (Vit, i, ) = E(t)@) < + oo.

As a consequence (see [15]), we have that

(3.23) @(0) = &*(0) = —inf @7,

where @* denotes the convex conjugate of @, and @** denotes the convex conjugate
of &*. For ¢ := (01, 02, 03) € LP(Q; R™ ™)< LI(Q; R™)x L"(0sQ; R™) we get
@*(0) = sup{(a, (Vu,u,w)) + (—a, (Vu,u,u) —n) = ¥(Vu,u,u) — n)}
(3.24) “

= (o,(Vu,u,u)) + ¥ (—0o)+ sup (o,(Vv,v,v)).
veVI(H)

Since V(I'(t)) is a linear space, the last term is either zero or + oo, so that we get

(0, (Vit, i, @) + ¥ (— ) if (a,(Vv,v,)) =0 for all v € V(I'Q)),

+ 00 otherwise.

(3.25) &*(0) :{
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By (3.23) we get that
(826) — W (Vil, i, i) = inf{(—a, (ViL, i, i) + ¥*(0) : (a,(Vv,v,0)) = 0
for all v € V(I'(¥))}.

We claim that the triple (3.20) is a solution to the problem on the right-hand side
of (3.26). To prove this fact we observe that the Euler’s equation associated to the
minimum problem satisfied by # yields

(P (Vu, u,n), (Vo,v,v)) = 0 for all v € V(I'()).
Moreover by duality we have that
Y (Vi i, ) + P (0P (Vi, &, ) = (0P (Vit, &, i), (Vi u, ),
so that we conclude
— Y (Vi u,u) = — (0P (Va, w,w), Vi, &, ) + P (0¥ (Vi u, ).

Since
¥ (Vu, u,u) = (OW(Vu), — 0F )(w), — 0G(E)(w)),

this proves our claim. By the assumption that W, —F(f), and —G(t) are convex
and C!, we obtain that

P (a) = Wi(o1) + (= F())'(o2) + (= G(t))*(o3)

is strictly convex, so that the problem in the right hand side of (3.26) admits a
unique solution. This proves that (3.20) is uniquely determined, concluding the
proof of the first part of the proposition.

Let us assume now the strict convexity of W and —F (). As a consequence
&l is strictly convex, hence u = u(t). By (3.18) this proves (3.15)-(3.17) with the
weak convergence.

Since I'(t) = ' (t), we have that £(I'(s)) — £°(I'(t)) as s — ¢~. By continuity
of the total energy we have that

lim ENS)u(s)) = EXt)(ult)),

Using the lower semicontinuity of all terms in (2.11) we get

(3.27) }HR WVu(s)) = W(Vu(t)) and gllrgl F(s)u(s)) = FO)(u)).

Then the strong convergence in (3.15) and (3.16) can be derived from (3.27), using
a general argument which allows to deduce strong convergence from weak
convergence and convergence of strictly convex energies (see [2]). The strong
convergence in (3.17) follows from (3.27) in [7]. O
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