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An Elliptic Problem with a Lower Order Term
Having Singular Behaviour

DANIELA GIACHETTI - FRANCOIS MURAT

Dedicated to the memory of Guido Stampacchia

Abstract. — We prove the existence of distributional solutions to an elliptic problem with a
lower order term which depends on the solution u in a singular way and on its gradient
Du with quadratic growth. The prototype of the problem under consideration is

|Duf?

{Au+),u:i | |k +f inQ,
u
u=0 on 02,

where 2> 0, k> 0, f(x) € L=(Q), f(x) >0 (and so u > 0). If 0 < k < 1, we prove the
existence of a solution for both the “+” and the “—” signs, while if k > 1, we prove the
existence of a solution for the “+” sign only.

1. — Introduction.

Second order quasilinear elliptic problems involving a first order term
b(x, u, Du) depending on the solution % and on its gradient Du with a quadratic
growth with respect to Du have been studied by many authors. Let us just quote
[6], [7], [8], [9], [10], [11], [12], [13] and [17] and references therein.

The first order term b(x, u, Du) appears in a natural way when one considers
the Euler equations of functionals of the type

1 2
(1.1) 5 fa(x,wlDul —ffu,
Q Q
which are perturbations of the classical energy functional
1
5 [ 1Dul~ [ fu,
Q Q

since the Euler equation of (1.1) reads as

. 10a 2 .
—div (a(x,u)Du) + 5%(90, w)|Du|” =f in Q.
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More in general, the literature deals with the case where b(x,s,&) is a
Carathéodory function, which implies, in particular, that b(x, s, &) is continuous in
the s variable.

In contrast, in the present paper, we want to study the case where b(x, s, £) is
singular in s = 0. In particular, since we are interested in homogeneous Dirichlet
problems in a bounded open set Q of RY, the function b(x, u, Du) is singular at
each point of the boundary of Q.

As far as we know, only few results have been obtained in this case, see [1],
[2], [3], [4], [5], [14], [15], and [16]. The papers [14] and [15] are concerned with the
parabolic case. In [4], the authors consider the equation

{ —Au + g(u)|Du|2 =f(x) inQ,

(1.2)
u=0 on 02,

with g > 0, lim sup sg(s) < + oo and a datum f which is supposed to satisfy

s—0

fel®@), inf{ff@):xcw}>0 Voc.

In [1], a variation on the hypothesis g > 0 is considered. In [2], existence and
nonexistence results are given for the previous problem. In [5],if 0 < f € L™(Q),
existence results of strictly positive solutions are proved for

1 .
(1.3) —adu + o |Dul” = f(x) in Q,
u =20 on 00,

*\/

2 2N
for a > 0 and m > <%) if0<lc<landfora>2andm2N—+zifk:1(see

also [16]). In [3], the case of variational inequalities with obstacles associated to
(1.3) and k& = 1 is considered.

The problem that we consider in the present paper is actually
{ —div (a(x, u, Du)) + Ju = b(x,u, Du) + f(x) in Q,

(1.4)
u=0 on 09,

where the principal part —div (a(x, u, Du)) of the equation is a Leray-Lions op-
erator acting on Hy(2) and where A > 0. The datum f is supposed to satisfy
feL>(€Q), f) >0,

so that, in view the assumptions made on the term b(x,u, Du), it results that
u > 0. As for the nonlinear term b(x, u, Du), we will assume that

b, s, )| < L2 ¢
"
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if 0 <k <1, this will be the sole assumption on b, and in particular no sign
condition will be imposed on b. We make a more restrictive assumption if k¥ > 1,
assuming in this case that for some C; > 0

&

L2 < b, 5,8) < |C—2|é|2.

(15) "

5]

In both cases, we will prove the existence of a solution of problem (1.4),
namely of a function « which satisfies

D 2
we H (QNL¥Q), u>0, |u—1z|%u>0 e LY(Q),

loc

fa(x,u,Du)D(I) + Afu@ :fb(ac,u,Du);(Wo(D +ff(157 Vo elCrQ).
Q Q Q Q

Moreover, when 0 < k < 1, the function u satisfies u € H})(Q) (and not only
ueH }OC(Q)), and therefore satisfies the boundary condition % = 0 in the usual
weak sense, while in the case k > 1, the function u satisfies w(u) € H (1)(.(2), where

S

, 1
w(s) zfe"(”>da, y(s) ~ — =) when k > 1,
0

which also expresses the homogeneous Dirichlet boundary condition, but not in
the usual weak sense.

The fact that nonlinear functions of % appear in the formulation of the pro-
blem is not really surprising. It is indeed well known that, in this kind of pro-
blems, functions which are related to the behaviour of the nonlinearity b(x, s, &) in
the s variable play an essential role. In particular test functions of the type
'™ p(u) (wWith ¢ a convenient function) are often used to get a priori estimates.

Let us emphasize that there is an important difference between the case
0 < k < 1and the case k > 1. In particular, the stronger hypothesis (1.5) made in
the case k > 1is probably a crucial and not only a technical hypothesis. Indeed it
has recently been proved in [2] that there is no solution u € H(l)(.Q) of (1.2) in the

1
case where g(u) = o and k£ > 2, see Remark 2.5 below.

To conclude this Introduction, let us note that, as far as we know, the case
where the datum f (and therefore the solution %) takes both positive and negative
values is an open problem. Also, as far as we know, the problem with f positive
but where the singularity in u takes place in a point 7 > 0 (and is therefore of the

1 1. .
type W and no more of the type W) is an open problem, which seems to
s—m s

exhibit difficulties similar to the previous one.
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The plan of the present paper as follows: In Section 2 we give the precise
hypotheses and statements of our results. In Section 3 we define the approx-
imating problems. In Section 4 we prove Theorem 2.2 (case 0 < k < 1), while in
Section 5 we prove Theorem 2.3 (case k > 1). Let us explicitly note that the first
two steps are the same in the proofs of Theorems 2.2 and 2.3.

2. — Hypotheses and results.

In the present paper we consider the problem

21) { —div (a(x, u, Du)) + iu = b(x,u, Du) + f(x) in Q,

u=20 on 022,
where 2 is an open bounded set of RY, where
(2.2) A>0,
2.3) f@ e L@, f@ >0,
where the function
ar,s, &) 2 x R x RY s RN

is a Carathéodory function which satisfies for some a > 0

(2.4) a(@, s, OE > a|é?,
(2.5) lae, s, &)| < v|E],
(2.6) (a(x,s,8) —ale,s,MIE—n) >0, VE#u,

ae.xeR VseR, erRN,

and where the function
b(x,s, &) : Q2 x (R—{0}) x RN - R

is a Carathéodory function on Q x (R — {0}) x RY , i.e. a function which is, for
every (s, &) € (R — {0}) x RY, a measurable function x € Q — b(x, s, &) € R, and
which is, for almost every & € Q, a continuous function (s, &) € (R — {0}) x RN —
— b(x, s, &) € R (see Remark 2.6 below concerning the definition of b(x, s, £) when
s=0).
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As far as the behaviour of b(x, s, &) near s = 0 (for & and ¢ fixed) is concerned,
it is worth to distinguish two cases, the case 0 < k¥ < 1 and the case k > 1, that
present different features and that will be treated separately.

We will suppose either that

0<k<l,

b(m,s,é)§§—|2k|f|2, ae. xeQ VseR, s#0, vé e RY,

or that for some Cy; > 0,

k> 1,
2.8
- ETI’“I5|ZSb<x,s,¢>S%Ié|2, ae. x€Q VseR, s#0, Ve RY.

Note that (2.8) is much more restrictive than (2.7), since (2.8) is a growth con-
dition for b(x, s, &) both from above and from below, while (2.7) is only a growth
condition from above. In particular, when (2.7) holds true, b(x,s, &) is not as-
sumed to have a specified sign, while b(x,s, &) has in particular to be strictly
positive (for ¢ # 0) when (2.8) holds true.

Let M > 0 and f: (0,M] — R be defined by

_ lls 1
(2.9) M=22 )=

In the case where 0 < k < 1, the function f8 belongs to L(0, M), while in the case
where k > 1, the function £ is not integrable in 0.
Let us introduce the following function y(s), defined for s € (0, M], which is a

primitive function of the function % f(s), defined by

Cz 1 _Cg Sl_lc .

70 gda—?l_k, if 0<]{:<17

Cofl, Gy s o
210) =4 gdafglog(]w), if k=1,

M

Cof 1 C; 1 (1 1 .

o) o :m—_l(M—w‘sk—J if k>1.

Let us finally define, for s € [0, M], the function w by

S

2.11) w(s) = f ¢ do,
0
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and, for m > 0 and s € R, the function S,, by

m if s <m,
(212) Sm(S) = .
s ifs>m.

REMARK 2.1. — Let us point out that, in the case where 0 < k < 1 (i.e. when
(2.7) holds), the function y(s) is an increasing, non negative bounded function on
[0, M], while in the case where k > 1 (i.e. when (2.8) holds), the function y(s) is an
increasing, non positive function on (0, M] with 8111(1)1 y(8) = — o0.

In both cases ¢’® is a bounded function on [0, M] and, therefore, the function
w(s) is well defined by (2.11).
Our results are the following.

THEOREM 2.2. — Suppose that (2.2)-(2.7) hold true. Then there exists at least a
function u such that

(2.13) u € HY(Q)NLXQ), u>0,

2
(2.14) w(u) € HYQ), [D|

Tk K0 € LY(Q),

(2.15) f ae, u, Du)DD + ) f ud— ] b, 1, Du)y, .o @ +f P, ¥PeCx(Q).
Q Q Q Q

THEOREM 2.3. — Suppose that (2.2)-(2.6) and (2.8) hold true. Then there exists
at least a function u such that

(2.16) we Hp (QNL¥(Q), u>0,

Dul*
217 S, e H(Q), Ym >0, ) c HyQ), |u—k|){u>o € Ly, (Q),

(2.18) f ale, u, Du)D + 1 f ud = f b, w, D)y, o® + f 1D, YoeCQ).
Q Q Q Q

D 2
REMARK 2.4. — In view of assumptions (2.7) and (2.8), the fact that |M—Z£| A0

belongs to L}OC(Q) implies that b(x, u, Du)y,,-, belongs to LIIOC(Q), which gives a

meaning to the first terms of the right-hand sides of equations (2.15) and
(2.18).
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REMARK 2.5. — Let us observe that in Theorem 2.2, where (2.7) is assumed to
hold true, we can consider a general term b(x, u, Du) without any sign condition,
while hypothesis (2.8), assumed in Theorem 2.3, obliges b(x, s, &) to be strictly
positive for & #£ 0.

It is likely that the more restrictive condition (2.8) is necessary in order to
have the existence of a solution of (2.18) if £ > 2. Indeed, it has been proved in [2]
that for 1 > 0, f strictly positive on every compactly embedded subset of 2 and
k > 2, there is no solution of the problem

u€H(Q), u>0,

— M+ %|Du|2 =f@) inD(Q).

REMARK 2.6. — The first terms of the right-hand sides of equations (2.15) and
(2.18) involve the function b(x, u, Du)y,, -, Which can also be written as b(x, w, Du),
where 5(90, s,&) is the function defined on Q x R x RY (and no more on
Q x (R—{0}) x RY) by

- b if 0
b(x,s,é):{ (x,8,8) ifs#0,

ifs=0.

Note that b is not a Carathéodory function since it is not continuous at the point
s = 0. Nevertheless, for 4 and v measurable functions with values in R and RY ,
the functionx € Q — 13(90, u(x), v(x)) is measurable (M) under the assumption made
on b(x, s, &) that b is a Carathéodory function on Q x (R — {0}) x RY,
We could therefore have replaced the first terms of the right-hand sides of
(2.15) and (2.18) by f B(ac,mDu)@, but we chose not to do so, in order to em-
Q

phasize the fact that b is not a Carathéodory function.
On the other handlin the case where hypothesis (2.8) holds, it is natural to
consider the function b(x, s, £) defined by
b(x,s, &) if s#0,
bw,s,8) = { 0 if 5 =0, & =0,
+o0 ifs=0,¢+#0,

(!) Consider indeed a sequence (uy,,v,) of step functions which converge almost
everywhere on Q to (u,v) and which satisfy u,(x) # 0 for every x and every = (it is always
possible to build such a sequence u, from a given sequence of step functions i, by

. o o 1.,
defining the functions u, by wu,(x) = w,(x) if @, () £ 0, u,(x) = " if 4, (x) = 0). Then

l:)(xmn(ac),vn(m)) is a measurable funection and B(xmn(ac),vn(m))xwo converges a.e. to
b(x, u,v), which is therefore a measurable function.
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since the function I:) is continuous for every s € R and every ¢ € RY, except in the
point s = 0 and ¢ = 0. With this definition, we have

6(967 S, é) = 6('%'7 S, é) + ( + OO)X{s:O}ﬁ{Cf#O} .
But for w € H: (Q), we have

loc
I:)(ac,u,Du) = lN)(ac,u,Du) a.e. in Q,
since, when u € H%OC(Q), one has Du = 0 almost everywhere on the set where
u = 0.
Therefore, since Theorem 2.3 asserts that u € H} (Q), we could also have

loc

replaced the integral [ b(x, u, Du)y,.,® by the integral [ b(x, u, Du)® in the first
Q Q
term of the right-hand side of (2.18).

3. — Approximating problems.

In order to prove Theorem 2.2 and 2.3, we introduce in this Section a sequence
of approximating problems.
For n € N, we consider the problems

1) Uy € HY(Q) N L*(Q),
' —div (@, 1, D) + Mty = by (@, 1, Duy) +f(@)  in D/(Q),

where, for almost every x x @, for every s € R and every ¢ € RY, the function
by, : QxR x RY — R is defined by

b(x,s, &) if s> l,
n

bn(%‘, S, é) = 1 1
b(ﬂ% ) é) if S S .
n n

We also define, for s € IR,

pls) if s> l?
Ba(s) = n o
ﬁ(g) if s< o

Cs .
;f/fn(a)da if0<k<l,
(3’2) yn(s) = C 08
2 .
Fl'w[ﬂn(a)da if k> 1,
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S

(3.3) W@:fwwm.
0

In contrast with the function b, which is defined on Q x (R — {0}) x RN , the
function b, is a Carathéodory function defined on 2 x R x RY and we have

(3.4) b, 5,0 < Cof S|P, ae.weQ, V(5,8 e RxRY,

which implies in particular that

(3.5) |mm&@gam@)w,a@megvmaeRxRN
For n fixed, the function b, is now a classical Carathéodory function with
quadratic growth with respect to &, and since f € L*(Q), it is well known that
problem (3.1) has at least one solution u, (see e.g. [7]).

Moreover, since f > 0, this solution satisfies u,, > 0 a.e. in Q. Indeed, de-
noting for every s € R

(s)y = max{s,0}, (s)_ =max{—s,0},
the result u,, > 01is easily obtained, in the case where b(x, s, £) > 0 (Which implies

bu(x,s,&) > 0), by using —(u,,)_ as test function in (3.1); in the general case, the
result u, > 0 is proved by using in (3.1) the test function —(u,)_e %%, with

1
ak, > Cofp (%>, since

ky, a(e, wy, Du)Duge ™" () + by (e, w0, Dy e ™% (uy)_ > 0.

This proves the existence of a function u,, such that

Uy € HY Q) NL>(Q),  uy >0,
(3.6)
—div (@@, Uy, Duy)) + Ay, = by (@, y, Duy) + f(x) in D(Q).

4. — Proof of Theorem 2.2.
We begin by proving Theorem 2.2 and divide the proof in several steps.
Let us explicitly note that the first two steps of the proof of Theorem 2.3 will

be identical to the first two steps of the present proof.

STEP 1. — Uniform estimate of (uy),cn in L°(Q).
Let us use as test function in (3.1) the function v, = @) (y,, — M ), which
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belongs to H3(2) N L>(Q) since u, belongs to H}(Q2) N L>(R2), where M is de-
fined by (2.9). Using (2.4), (3.2) and (3.4) we get

“f DG, — M), [P
Q
+ CZf |Dun‘zﬁn(un)e%(un)(un - M), -l—f/lune}’“(”")(un - M),
Q Q

< G [ B D P, — M) + [ fo " aw, — M), .
Q Q

We simplify the two terms which are equal, forget the first (non negative)
term in the left-hand side and add to both sides —AM [ e (u,, — M), getting
Q

2[ = Mzt < [ — i, — M), <0,
Q Q

which implies u,, < M. Therefore we have
(4.1) 0<u, <M VnelN.
STEP 2. — Uniform estimate of (y(u,)),ex in H(€).

Let us take as test function in (3.1) the function v, = w(u,)e’»™ which be-
longs to H3(Q). Using (2.4), (3.3) and (3.4), we get

2 9y 2 "
a f | Dun| 62;,7,(%) + CZ f | Dun| ew(un) ﬂn(un)wn(un) 4+ f un,/,n(un)eMW,)
Q Q Q

< Cy f B ()| Dy [Pe" Dy, () + f fe Oy (u,) .
Q Q

Recalling that, by Step 1, fe’"“y, (u,,) is uniformly bounded in %, we get

(4.2) af \Dy,, ()| = af |Du, |26 < est Wm e N.
) 2

Note that, in these first two steps, only the growth condition of hypothesis
(2.7) (and never the growth condition from below of hypothesis (2.8)) is used.

STEP 3. — Uniform estimate of (uy),cn in H, (1)(.(2), of (a(x, uy, Duy))yen in
L2Q)N and of (b, (, %y, Duty))ye~ in L1(Q).

In this step we use for the first time the fact that &k < 1.

Since here 0 < k < 1, the functions y and y,, defined by (2.10) and (3.2) are non
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negative. Therefore y,(%,) > 0 and (4.2) implies that

4.3) f IDu, > < est ¥ne N,
Q

and from (2.5) and (4.3) it follows that

(4.4) f|a(ac,un,Dun)|2 < vzf |Dun|2 <est VnelN.
Ie) Ie)

We then use as test function in (3.1) the function v,, = ¢”»®» — 1 which be-
longs to H(l)(Q). Sinee y,,(u,) > 0, we have v, > 0, and using (3.4) we get

C. ; ;
72 f a(@e, wy, D) Dy, f, () € + ) f Uy () 1)
Q Q

< o[ By D@~ 1)+ [ e~ 1),
Q Q

Using (2.4), simplifying the two terms which are equal, then using the fact
that the last term of the left-hand side is non negative, and the fact that e’ is
uniformly bounded in 7, we get

(4.5) Co f B )| D < est ¥ e N,
Q

which by (3.4) gives
(4.6) f|bn(x, Uy, Duy)| < cst Vn e N.
Q

STEP 4. — Weak convergence of (2,),cx in H, (1)(!2) and strong convergence of
(DS, (Up))pen in L2@Q)N for any fixed m > 0.

By estimate (4.3), we deduce that, up to a subsequence, there exists a function
u € HY(Q) N L>(Q) such that

U, — u  weakly inH(l)(QL U, — % a.e. inQ.
Therefore, for every m > 0,
Sp(y) — Sy () weakly in HY(Q),  Sy(uy) — Sp(u) ae. in Q

where S, is defined by (2.12).
We want now to prove that

(4.7) lim f ID(S) — Sp@)E =0 V> 0.
Q



360 DANIELA GIACHETTI - FRANGOIS MURAT
We first use as test function in (3.1) the function
vy = DSy () — Sm(u))Jr)ey"<%7')_77"(Sm(un))7

where &(s) = e — 1, for some u > 2f(m). Using (3.2) and (3.4), we get

J a0, Du DS 1 012) =8, 00) B (S0 = S5 ) oS00
Q

+ % f (@, U, D) Dty DS () — S (1)) ), (Y @) 7St}
Q

- % @ U0, D )DS 1y W) DS W) =S @) ) Sty 77 S r)
Q

+ 4 f U DS (1) — S () Y7 )7 ia))
Q
<G f B )| Dty P DS (21) — Sy () Y707 Sl
Q

+ f f¢((8m(un) _ Sm(u))+e}'n(un)fy7,(Sm(un)).
Q

Using (2.4), then simplifying the two terms which are equal and forgetting the
last term of the left-hand side, which is non negative, we get

f alx U, Dy )D Sy () —Sm, (u))+¢l((s m (W) —Sm, (u))+ Yeln @)= S @)
Q

- % a(xvu’n 7Dun )D (Sm (un)) ¢((SW[ (un,) - S'm (u))+ )/))% (Sm (un ))ey77 (u"'%y" (Sm (u"))
Q

< [ RS nlen) = ) oS
Q

Due to (4.1) and to the almost everywhere convergence of (u,),cn to u, we
have

JF oSt = S e — o),
Q

where here and in the sequel w(n) is a sequence of real numbers for which
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lirp w(n) = 0. Therefore

f aO)D( )+ @' (( )+)e"/?,(un)f}'n(Sm(un))

Q

“8) = G [ DS, PO B, (S 500
Q

=1+1 = o).

Let us split the term I as

4.9) 1= [+ =r+p
U <M Uy >M
Now
I'=0

I* = f [a( 2, D) — a2, DSy (U ID @y — S (1)) @ (0, — Sy (w)) 1)

Uy, >M

+ [ @, DS @)D, — S,0) B (@t — Su@),)

Uy =M
The last term tends to zero as n tends to + oo by the fact that

DS, (uy) — DS, (u)
weakly in (L2(Q))" while

a(xa U, Dsm(u))dy((%n - Snz(u))jL)){uan){u>m —0 StI'OIlgly in (Lz(.Q))N .
Therefore, by (4.8), we have

f[a(xﬂ'Ln 7Dun) —a(x, Uy, DS, @)1D(uy, — Sy, (u))+ ¢l((un - Sm(%))Jr) +11
(4.10)  w,>m

=H+1I =wn)

where we have defined

(4.11) H= f [a(eun,Duuy) — (@1, DS @)D @y, — S (). @ (=S () 1)

Uy =M
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We now estimate term II in (4.10)

1= =2 [ a0, D) Doty 8, — $,00). )8, )

U =M

=& [ 0@t D) ~ 0,0, DS, )
a

Up >M
Dy — Sy (u) Py, — Sy () 1), ()
(4.12)
_% f a(@, Uy, DSy () Dy, — Sy (W) D2y, — Sy () ), (W)

= % a(@, Uy, Dy )DS,, () D2y, — Sy (w)) B, (1)

=I'"+ I +1P°.
We have
(4.13) I > —é(m) f [ 1Dy, — Sy () Dy, — Spp(u)),) > — %H

Uy >M

where H is defined in (4.11) and

c¢(m) = max f,(s).
se[m,k]
Here we used the fact that we can choose 4 sufficiently large that
- 1
cm)d(s) < écﬁ’ (s).

Moreover it is easy to check that

(4.14) II% = w(n)

1

(4.15)  |IPP| < c(m) ( f D*((Syu () — Sm(u))+)DSm(u)Iz) = w(n)
Q

(here we used estimate (4.4)).
By (4.10)-(4.15), by the fact that @'(s) > 1 for all s > 0 and by [8], we have

n—-+00

lim f|D(Sm(un) - Sm(u))+|2 =0 VYm>0.
Q
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In a similar way, using as test function in (3.1)
v =@ — (S, () — Sm(u)L)eyn(Sm(un))—y,,(un)

we get

lim f ID(S () — Sp@) E=0 ¥m >0
N—+00 )

which conecludes the proof of Step 4.
STEP 5. — In this step we prove that for every C € Q, we have

(4.16) lim0 f |0, (2, %y, Duty,)] = 0 uniformly in % .

Cn{u,<m}
Let us take as test function in (3.1)

Vy = _(e;"71,(n7‘)7}’n(u)l) _ 1)+(p2 ) c CCOO(Q) )

By (2.4)

- 2] (1(907 u/n,Dun)D(p (eyw(m)*}’n(un) _ 1)+¢
Q

+Cy f | Dun|2(pze"f'"(”“’"*"l(“">ﬁn(un)— y) f Wy (770 _ 1)

{w,<m} {up<m}

< f 1By, (22, 2y, Dty)| (€777 W) _ 1) s

{up<m}

where we used the fact that f(x) > 0 and the test function is non positive.
Using (2.7), cancelling similar terms, we have, by Holder inequality, obser-
ving that in this case y,(m) < y(m):

f |bn(%,un,Dun)|(p2§,1 f uner(m)(/)z

{un<m} {un<m}

3 3
+c( f Ia(ac,un,Dun)Izwz) (waz(pz) =A+B.
Q

{un<m}

(4.17)

We have

(4.18) A <cstm;
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we are going to prove that we have also
(4.19) B <cstm.

Indeed, to see the last inequality, it is sufficient to take —(u, —m)_¢?
p € C(Q), as test function in (3.1):

f alx, Uy, Dun)Dun(ﬂz -2 f ax, Uy, Duy)Do (U, —m)_g

{up<m} {up<m}
(4.20) <A f W (M — )% + f |b(a, w, D) (0 — ,,) g
Up <M {up<m}

+ f Fuy, —m)g*.

{un<m}

The last integral is non positive, while the second one at the right-hand side is
bounded as

bO)|(m — un)fﬂz <cstm,

{u,<m}

taking into account (4.5).
The same holds true for the first integral in (4.20) by Step 1. Let us finally
estimate:

|CL(9€, Un, Duﬂ)' |¢| |D¢|(m - un)

{un<m}

Sm(f |D¢I2) ga(w,un,Dun)lz(pZ)
Q2

< est m

by (4.4).
Therefore, by (4.20), [ \Du,|P0% < est m for all n € N, which implies,
by (2.5) {1, Zm)

(4.21) f |a(ac,un,Dun)|2(p2 <estm VnelN
{unSWL}

and, consequently, also (4.19).
Therefore (4.17) and (4.19) imply (4.16), taking ¢ = 1 on the compact set C.
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STEP 6. — Equintegrability of the sequence (b, (x, %y, Duy))yen on C €.
In this step we are going to prove that for any fixed C cQ

422) Ve>0, 30,>0:VECC, |E| <9, supf 1, 2, Dt)| < &
n
E

Indeed

[1bu Dl = [ [bute, e, D)
E

En{u,<m}

+ [ b D) =L+ I

En{u,>m}

By (4.16) in Step 5, we have lim0 I = 0 uniformly in n, so that

m—

Ve>0 Imy:Vm < my Il<§ VneN.

Therefore, for such an m, due to the strong convergence of |DS,,(u,)| in LA(Q)
(see Step 4), we can choose |E| so small that

I < Cofi(m) f DS, (un)|? < g VneN.
E

STEP 7. — Passage to the limit.
By (4.22), taking into account the a.e. convergence of (Du,,),cn and of (4,,),en
(up to a subsequence), we have, for any compact set C c

by (@, 2y, Duy) — b, u, Du)  strongly in LY(C N {u > 0}).
It remains to prove that
b, (@, 2y, Duy,) — 0 strongly in LY(C N {u = 0}).
To this aim, for any ¢ > 0, we have

[ G, Du)
Cn{u=0}

= f |bn(%a unaDun)| + f ‘bn(-%'a U, Dun)| = Jl + J2;
C:n{u=0} (C-Co)N{u=0}

where C* is a subset of C (such a subset exists by Egoroff’s theorem) such that
|C?| < 6, and in C — C* the sequence (uy,),cn converges uniformly. Here J, is the
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number defined in (4.22), and, in fact, by this condition it follows

J1<g Vn e N,

while, for m sufficiently small, m = m(¢), by (4.16), we get

&

5 V1 > no(m(e)) = nole).

Jo < f |bn(907unaDun)| <

Cn{u,<m}
So we have proved that

lim b, (x, u,, Du,) = 0 strongly in L}(C N {u = 0}),

Nn——+00

and we can pass to the limit in the term [ b,,(x, %,,, Du,,)® in the weak formulation
of (3.1). Q
As far as the term f ay (@, Uy, Duy,)De is concerned, we can use (4.21) and
Q

Step 4 and repeat exactly the same arguments used for the term b,,(x, u,,, Du,,),
obtaining

(2, Uy, Duy) — aae,u, Du)  strongly in LY(C N {u > 0}),
(20, Uy, Dutyy) — 0 strongly in L}(C N {u =0}).

Therefore we proved the existence of a distributional solution u for (2.1), in
the sense that (2.15) holds true.

5. — Proof of Theorem 2.3.

As observed at the beginning of Section 4, the first two steps of the proof of
Theorem 2.2 remain valid here, since these steps only use the fact that

|b(x, s, 8)| < % |¢[%. Let us emphasize that the main difference in the proof below

consists in the fact that we cannot achieve global estimates on the main terms,
but only local ones.

STEP 3. — Uniform Llloc—estimate on (b, (x, Uy, Duy))pex.

Let #(x) € C(2).

We use v = (¢ — 1) € Hy(Q) as test function in (3.1). Let us explicitly
point out that we need to use a cut-off function #%(x), since, in this case, by the
definition (2.10) of y,,(s), e’ — 1 does not vanish on Q. Note also that v < 0.
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Since y,,(uy,) < 0, we have f f(e""(“") — 1);72 <0, and
Q
Ca [ 171D, e, )
Q

< vf a- e)'n(un))2|,7| ‘D’7| \Dun| + ;qun(l _ eyn,(uﬂ))qz
Q Q

(5‘23) +fbn(ac,un,Dun)(e’”(un) _ 1);72 +ff(6;m(un) _ 1);72
Q Q
< 2 [ 1nl D/ 1D, + 2 [ P
Q Q

+CZfﬁn(un)|Dun|2eyn(un)’72 _fbn(x;uw:Dun)']z
Q Q

We absorb the term Cs, [ S, (un)|Dun|2e"'”(“">172 by the term in the left-hand side
of (5.23). Q
Moreover, for any ¢ > 0, there exists C(¢) such that

20 [ 1o} \Dal [Dun| < CCe) [ |Df?
Q Q

iy f 2D 2 < C(e) f Dyl + eM* f 2B, )| Dit [
Q Q Q

We have also, by Step 1,
},fungcst Vn e N.
2

Using the last two estimates in (5.23), recalling (2.8) and taking ¢ = zcﬁ’ we get

(5.24) f B, ()| Dt |21 () < est V€ N
Q

which, by (2.8) and the fact that f,(u,) > C > 0, gives also, for € C°(©2)

(5.25) fbn(x, U, Duy )P () < est Vme N
Q

(5.26) f|Dun|2;72(90) <est VnelN.
2]
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o7l
STEP 4. — Weak convergence of (uy),ex in Hy,,

(DS, (Uy))yen in (L?OC(Q))N for any fixed m > 0.

By the previous steps we deduce that there exists u € H}.(2) N L>(Q) such
that, up to a subsequence,

(9) and strong convergence of

ol
Uy, —u  in Hy . (Q)
U, — % a.e.in Q.

Moreover, with minor modifications, we can prove, as in Step 4 of Theorem 2.2,
that

dim [ 1D, - Su@IFiE =0 ¥y e C@).
Q

To prove this, it is sufficient to take the same test functions used in Theorem 2.2,
multiplied by a cut-off function #* € C(£2) and use the local estimates available
from the previous Step 3 (estimates (5.25), (5.26)).

STEP 5 In this step we prove that for every C €2, we have

lirn0 f by (e, Uy, Duy) = 0 uniformly in 7 .
" Cnfu, <m}

Note that we cannot use the same arguments of Step 5 in Theorem 2.2 since now
we do not have y(s) > 0 and bounded. We choose as test function in (3.1)

v=— (T —1) ¢ € Hy@Q), g€ CFQ).

By (2.4), noticing that v < 0:
—2 [ alw,w,, D YDl — 1)
Q
+ C2 f |Dun |2(ﬂ2eyn(un)i},’xm)ﬁn(un)
{%n SWI/}

<A f un(eyn(uﬂ)—yn(m _ 1),(p2

{wp,<m}

— [ bue,w, D 1) g2
Q

We use condition (2.8) to cancel similar terms; observing that (e =7 _1)_<1,
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we have, by Holder inequality

f b (@, 14, Dt )2 < 7 f U

{un<m} {un<m}

1

1
2 2

+2 f |an(xaun,Dun)|2(ﬂ2 f(ﬂ2|D(ﬂ|2 <cstm.
Q

{u,<m}

The last inequality follows by (4.21) which still holds true.

This concludes the proof of Step 5.

Step 6 and Step 7 can then be achieved in the same way as the corresponding
ones in the proof of Theorem 2.2. This concludes the proof of Theorem 2.3.
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