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On Dieudonné’s Boundedness Theorem

GIUSEPPINA BARBIERI

Abstract. — We generalize the classical Dieudonné boundedness theorem for modular
measures on lattice ordered effect algebras.

1. — Introduction.

A famous theorem of Dieudonné [3] states that for compact metric spaces the
pointwise boundedness of a family of Borel regular measures on open sets im-
plies its uniform boundedness on all Borel sets.

In this note we furnish an abstract formulation of the boundedness
Dieudonné theorem for group-valued modular measures on lattice ordered effect
algebras. We use an abstract concept of regularity (see Definition 2.6) where F
and G play the role of compact sets and open sets, respectively. We generalize
Guariglia’s work [5].

Effect algebras have been introduced by Foulis and Bennett in 1994, they are
a generalization of orthomodular lattices and MV-algebras, in particular of
Boolean algebras.

2. — Notation and Preliminaries.
In this section we shall give some basic definitions and fix some notations.

DEFINITION 2.1. — Let (L, <) be a poset with a smallest element 0 and a
greatest element 1 and let © be a partial operation on L such that b © a is defined
if and only if @ < b and for all a, b, ¢ € L:

Ifa<bthenbea<bandbo (boa) =a.

Ifa<b<cthenceb<coaand(cca)c(ccb) =bSa.

Then (L, <,©) is called a difference poset (D-poset for short), or a difference
lattice (D-lattice for short) if L is a lattice.

If not otherwise specified, let L be a D-lattice and (G, | |) be a seminormed
Abelian group. We recall that a real-valued function | | on the group G is a
seminorm if and only if [0/ =0, | —x|=|x| and |x+y| < ||+ |y| for any
x, Yy €G.
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One defines in L a partial operation @ as follows:
a @ b is defined and a & b = ¢ if and only if ¢ © b is defined and c© b = a.

The operation & is well-defined by the cancellation law [4, page 13] (@ < b, ¢
and b©a =coa implies b =c¢), and (L,®,0,1) is an effect algebra (see [4,
Theorem 1.3.4]).

Write a* = 1 © a for a € L. We say that a and b are orthogonal if a < b* and
we write a L b. Therefore a & b is defined if and only if L b. If a4,...,a, € L
we inductively define a; ®---®a, = (a1 P -+ P ay_1) ® a, if the right-hand
side exists. The sum is independent on any permutation of the elements. We say
that a finite family (ai)?zl of (not necessarily different) elements of L is ortho-
gonal if a; & - - - @ a,, exists.

We say that a sequence (ay),ex of L is orthogonal if the set {a4,...a,} is
orthogonal, for every n € N. If (a,),en is an orthogonal sequence, we set
OneNy = SUP{@cra, : F finite subset of N} provided the right hand side
exists.

A function ¢ on L with values in G is called a measure if for every a,b € L,
with a L b,

$(a @ b) = ¢la) + ¢(b).

A modular measure is a measure which also satisfies the modular law, that is for
alla,be L

$a vV b) + $a A D) = ¢a) + (D),

Forthe rest of the paper let F, G be two sublattices of L. Moreover, we suppose
that f+e G for every f€F, G is closed under finite sums and that
go(fAg eGforeverygeG,feF.

According to Avallone and Vitolo, we give the following definition:

DEFINITION 2.2. — We say that L has the SIP (Subsequential Interpolation
Property) if for every orthogonal sequence (g,, ), in L and every infinite M C 1IN,
there exist an infinite A C M and an element b € L such that b > ®,cpg, for
every finite ¥ C A and b L ®,,c¢gy, for every finite G C N\ A.

As observed in [2], the previous definition corresponds to the one introduced
in the Boolean case.
Imitating Guariglia’s work we say that

DEFINITION 2.3. — Gis a (D)-SIP lattice if, for every orthogonal sequence g,, in
G, there exists a subsequence (g, e of (¢n)nen and a sub-effect algebra of G with
SIP containing the g,,’s.
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DEFINITION 2.4. — A modular measure ¢ on L is called G-exhaustive if for
every orthogonal sequence (¢, ),cx in G we have lim,, ¢(g,,) = 0.

NOTATION 2.5. — Let ¢ be a modular measure on L, C C L and a € L. We put
$(a) := sup{|g(h)| : h € L, h < a}
and

Co=1{heC h<a).

DEFINITION 2.6. — We say that a modular measure ¢ is regular if for every
&> 0and
e for every a € L, there exist f € F and g € G such that

f<a<g and ggof<e
e for every f € F, there exist e € G, h € F, g € G such that
f<e<h<g and q~5(q®f)<g

3. — The theorems.

LEMMA 3.1. — Let @ be a set of reqular modular measures from L to G such
that

® (@) Supyeq [9(9)| < + oo for every g € G;

o (B) for every sequence (¢,)nen tn @ and every othogonal sequence
@nnen i G there exists an infinite subset M of N such that
sup{|¢,(gn)| : n € M} < + 0.

Then sup{|¢(a)| : ¢ € D,a € L} < + 0.

Proor. — Assume that sup{|¢(a)| : ¢ € ®,a € L} = + cc.

We will show that @ satisfies the following property:

(») For every a € G with sup{¢(a) : ¢ € P} =400 and for every n e N
there exist ¢€® and g,a*€G, such that |¢(g)|>n, g< a* and
sup{¢(a*) : ¢ € P} = + o0.

Fix a € G with sup{¢(a) : ¢ € @} = + o0 and n € I\.

Let & € N such that sup{|¢(a)| : ¢ € @} < h. There are two possibilities.

C{&SE 1. — There exist ¢ € @ and t € F A a such that |¢(t)| > 2(n + k) and
sup{e(®) : ¢ € } = 4 0.
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In this case take g*, g € G, f* € F such that t <g" Aa <f*ANa<aArng”
and ¢((a Ag™) ©t) <n+h, so |p(f* Na)| >n+ h.
Then if we put

g:=a5(f"Na) and a* =9 Aa,

one can check that (¢,g,a") € @ x G, x G, are as desired.

CéSE 2. — For every ¢ @ and teFAa, |p@)>2n+h) implies
sup{¢(t) : ¢ € P} < + oo.

In this case, let f € F, and ¢* € @ such that |$"(f)| > 4(n + h); then we can
find g*, g € G, f* € F such that f < ¢* <f* <g** and ¢"(g"* ©f) < n+ h. So
|7 ( f*Ana)| > 2+ h) and |¢"(g* A )| > 2(n + k). Therefore by assumptions
sup{e(f* ANa): ¢ € P} < + 0.

Put

9g:=9"Na and o =a0(f"Na),

then they are as desired.

We can choose a; € G such that sup{¢(a;): ¢ € &} = 4+ 0o (Simply, take
ar =1). By (7), we can find (¢;,91,a2) € @ x Gy, X Go, such that |¢,(g1)] > 1,
g1 < ag, sup{¢(az) : ¢ € P} = + 0.

Continuing we can find, for every ne N, |¢,(.) >n, g, <a,,, and
sup{¢(a,+1) : ¢ € @} = +o0. Then we obtain a sequence (¢,),cn € @ and an
orthogonal sequence (¢,)nen € G such that |¢,(g,)| > n for every n € N, a con-

tradiction with (f). O

THEOREM 3.2. — Suppose that G is a (D)-SIP lattice and @ is a set of G-ex-
haustive regular modular measures from L to G such that supgeq |$(9)] < + oo
for every g € G. Then sup{|¢(a)| : ¢ € &, a € L} < + oo

Proor. — It suffices to prove (f) of Lemma 3.1. For this, let (¢,),<x be a se-
quence in @ and (g,),en be an orthogonal sequence in G; then by assumptions
there exists a subsequence (g, rexn 0f (gn)nen contained in a sub-effect algebra £
of L with SIP. By [2, 4.6] we have

sup |y, (G| < sup{|@,(@)| : m € N,g € B} < + oo,
eN

and this completes the proof. O

We now offer a version of the theorem for measures with values in a topo-
logical Abelian group. First we give the definition of boundedness in this fra-
mework.

DEFINITION 3.3. — Let G be topological Abelian group. A subset M of G is
called bounded in G if, for every 0-neighbourhood U in G, there is a finite subset F'
of G and an integer n € Nwith M C F' + U".
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PRrOPOSITION 3.4. — ([6, 6.8]) Let G be a topological Abelian group. A subset M
of G is bounded if and only if, for every continuous seminorm | | on G,
sup,ey |yl < + oo

DEFINITION 3.5. — Let G be a topological Abelian group and 2/(0) be the set of
the neighborhoods of the neutral element in G. A modular measure on L with
values in G is regular if for every U € U(0) and

e for every a € L, there exist f € F and g € G such that
f<a<g and ¢r)eU for r e Lyy
e for every f € F, there exist e € G, h € F, g € G such that
S<e<h<g and ¢(r)eU for r e Lyy

THEOREM 3.6. — Suppose that G is a topological Abelian group, Gis a (D)-SIP
lattice and @ is a set of G-exhaustive pointwise bounded regular modular mea-
sures from L to G. Then @ is uniformly bounded.

PrOOF. — Observe that the topology of G is generated by a family of semi-
norms and a modular measure is regular if and only if it is regular with respect to
this family of seminorms. Apply Proposition 3.4 and Theorem 3.2 to complete the
proof. d

Theorem 3.6 generalizes the main result contained in Guariglia’s paper [5].
We continue offering a version valid for G satisfying the Subsequential
Completeness Property:

DEFINITION 3.7. — We say that G has the SCP (Subsequential Completeness
Property) if for any orthogonal sequence (g,),en in G, there exists an infinite
subset A of IN such that @,,c4 g, exists in G.

We recall that a Boolean algebra R has the SCP if for any disjoint sequence
(ap)en in R, there is an infinite subset A of N such that v,c4a, exists in R.

THEOREM 3.8. — Suppose that G is a topological Abelian group, G has the SCP
and @ s a set of G-exhaustive regular modular measures from L to G such that
D(g) :={plg) : p € ®} 1is bounded for every gec G Then PL):={Pa):
¢ € d,a € L} is bounded.

Proor. — As in Theorem 3.6 we may reduce to the seminormed case. It suf-
fices to prove () of Lemma 3.1. For this, let (¢,),cx be a sequence in @ and
(gn)nex be an orthogonal sequence in G; then by assumptions there exists a
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subsequence (gy, Jrex of (9 )nex such that ©p,engy, exists and belongs to G. Define
vu(A) == ¢, ( Drea Gn,) Whenever @pecagn, € G. With the aid of [1, 2.5], one can
check that they form a sequence of finitely additive measures. Moreover, the set
A:={A CN: Bpeagn, € G}isaBoolean algebra with SCP. By [6, 7.1.2] we have

sup @, (9n,)| < sup{[v,(A)|: n € NA € A} < + o0,
heN
and this completes the proof. O
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