BOLLETTINO
UNIONE MATEMATICA ITALIANA

DANILO PERCIVALE, PAOLO PODIO-GUIDUGLI

A General Linear Theory of Elastic Plates and
its Variational Validation

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 2 (2009), n.2,
p. 321 341.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2009_9_2_2_321_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per mo-
tivi di ricerca e studio. Non ¢é consentito I’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim. eu/


http://www.bdim.eu/item?id=BUMI_2009_9_2_2_321_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2009.



Bollettino U. M. 1.
(9) II (2009), 321-341

A General Linear Theory of Elastic Plates and
its Variational Validation

DaNILO PERCIVALE - PAoLO PoD10-GUIDUGLI

Dedicated to the memory of Guido Stampacchia.

Abstract. — We provide a variational justification for shearable-plate models that gen-
eralize the classic Reissner-Mindlin model. Firstly, we give an argument leading to
choose a fairly general linearly elastic monoclinic material response. Secondly, we
prove that, for materials in such constitutive class, the variational limit of certain
suitably scaled 3D energies is a functional whose minimum over a maximal subspace
of admissible functions coincides with the minimum of the generalized Reissner-
Mindlin functional.

1. — Introduction.

All classical theories of thin elastic structures admit a variational formulation,
consisting in the minimization of a peculiar energy functional on a peculiar
function space. An attractive manner to capture structure thinness is to establish
the position of such a ‘lower-dimensional’ energy functional with respect to the
energy functional of some three-dimensional parent theory of elasticity. A
fashionable analytical approach to achieve this is based on the notion of
I'—convergence (2, 1].

Roughly speaking, given a family of minimum problems Iurél)? F.(u) with ¢ a

thickness parameter, it may happen that a minimum problem mi}r} Fo(u) is found,
ue.

such that minimizers and minima of the problems ruled by the functionals F,
converge to minimizers and minima of the problem ruled by the functional F'y. To
establish the relationship with three-dimensional elasticity of a given structure
model through the notion of I"—convergence, one has to find a family of three-
dimensional functionals that, as ¢ — 0+, I"'—converges to a three-dimensional
target functional (see our Theorem 1 below) in tight kinship with the lower-di-
mensional structure model at hand (our Theorem 2). Thus, I"—convergence is
basically a method to justify and validate a given structure model, not to deduce
it, and even less to propose a new one.

When the parent theory is linear elasticity, a method to arrive at an ex-
ahustive list of ¢—families and target functionals associated to both two- and one-
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dimensional structure problems has been proposed by Miara and Podio-Guidugli
in [6, 7]. Prompted by those results, Paroni, Podio-Guidugli, and Tomassetti,
have produced a three-dimensional energy functional that reduces to the
Reissner-Mindlin plate functional via thickness integration when evaluated over
a Reissner-Mindlin displacement field [8, 9]; and they have proven that this
functional is the I"—limit of a parametric family of energy functionals of three-
dimensional linear elasticity. As suggested in [6, 7], all functionals in the family
have two key features in common: (i) the material response they reflect is a
constrained type of transverse isotropy; (ii) they include a second-gradient
contribution to the stored-energy density, which proves expedient to recover the
Reissner-Mindlin form of the minimizing displacement.

While the mathematical techniques we here use do not differ much from those
in [9], our setting does. To begin with, we take time to motivate and construct the
energy functionals of both a general parent theory of linear elasticity and the
related plate theories; this is a delicate task, carried over in Section 2. The
material response our three-dimensional parent theory embodies is a con-
strained type of monoclinic response; more importantly, it does not involve any
second-gradient contribution. Needless to say, the Reissner-Mindlin plate
functional is nothing but a special case of the general plate functional we obtain.
This may seem surprising; it certainly surprised us: over and above having, as we
had, a faultless proof of variational convergence, we wanted to understand the
mechanical significance of the corresponding, but different, ingredients in the
proof given in [9] and in ours. Here is what we found, in short.

A short premiss helps putting us on the right track. As best exemplified by
the classic work of Saint-Venant on the problem that bears his name, an efficient
method to solve linear elasticity problems is the semzi-tnverse method, consisting
in searching for exact solutions in a class specified by a short list of parameter
fields, under assumptions on the data consistent with the parametrization. As
one of us advocated since long (see e.g. [11] and the literature cited therein), any
such a priori partial representation of candidate solutions may be regarded as
the stipulation of certain internal constraints, to be maintained by suitable re-
active stress fields. Consider, for example, the standard representation (2.14) of
the Reissner-Mindlin displacement field:

upy (e, x3) = (V,(x) + x30,(x))e, + wlx)es,

and note that, at a point x of the mid cross section of a plate-like body, uzy, is
linear in the transverse fiber coordinate x3. This representation — which is
quickly shown equivalent to requiring that transverse fibers are inextensible,
remain straight, and deform homogeneously — may be seen as the combination of
two internal constraints:

ug,3=0 and u,33=0,
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of the first and second order, respectively, both 1mposed pointwise. Now, in
variational elasticity, there are two not mutually exclusive ways to take a con-
straint into account: either it is made part of the definition of the function space
over which the functional to minimize is defined or that functional is penalized by
addition of a term that vanishes only if the constraint in question is enforced. In
[9], the latter way has been followed to take into account the second-order point
constraint implicit in the Reissner-Mindlin representation of the displacement
field. In this paper, we follow the former way as well and, at distinct variance with
[9], we replace that second-order point constraint with a suitable first-order
constraint imposed fiberwise (see Subsection 2.3)L.

Our variational convergence results are expounded in Section 3. The family of
functionals F, we select and its candidate I'—limit Fy are introduced in
Subsection 3.1, where a detailed proof of I"'—convergence of F, to Fy is given
(Theorem 1). In the next subsection we make precise the relation of ¥y to our
target, the shearable-plate functional, defined to be a generalization of the
classic Reissner-Mindlin plate functional consistent with the constitutive theory
developed in Subsection 2.1; in particular, we show that F, takes the same
minimum value as the shearable-plate functional at a displacement field that can
be represented in the Reissner-Mindlin form (Theorem 2). Interestingly, if the
fiberwise constraint is dropped as we do in Subsection 3.3, a I'—convergence
result (Theorem 3) can be proven along the same lines of Theorem 1 for a family
of functionals J, that we regard as more general than family #; in that the
functionals J, do not feature any constraint-related penalization; the minimum of
the unconstrained limit functional Jy corresponding to the family J, is strictly
greater than the minimum of the shearable-plate functional (unless shearing
deformations are constitutively banished, so that the sherable-plate functional
reduces to the generalized Kirchhoff-Love functional for unshearable plates). In
fact, our last result (Theorem 4) is that the fiberwise-constraint space is the
largest subspace of admissible functions over which Jy has the same minimum as
the shearable-plate functional.

2. — The parent theory.

All structure theories should be mathematically simpler than their three-
dimensional parent theories: were they not, they would miss their goal, which is

() We believe that fiber constraints are the ‘natural’ ones to use in the case of plate
and shell theories (and that, likewise, cross-section constraints are ‘natural’ in the case of
straight and curved rod theories). There are various reasons to support this views: for one,
it can be shown that fiber constraints of higher and higher order are at the roots of the so-
called hierarchical theories of plates.
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to furnish a low-cost fair approximation to the solution of a three-dimensional
problem, a solution one chooses not to bother and find. Such relative simplicity
results from a number of ad hoc assumptions, reflecting certain specific sym-
metries in the data and including certain crucial kinematical Ansdtze, that is,
certain peculiar representations of the solutions to the original three-dimen-
sional problem. The purpose of this section is to describe the most general as-
sumptions of this sort.

2.1 — Symmetries built in the data.

a. Domain. The domain on which the three-dimensional problem is posed has
to be plate-like, i.e., aright cylinder C with constant cross section. It is convenient
to choose a cartesian frame with origin o and x,-axes (a = 1,2) in the plane of the
middle cross section P, a simply-connected regular region; the x3-axis is then
aligned with the axis of C, with x3 € (— &, k), h > 0. With the use of the ortho-
normal unit vectors e; (i = 1,2 3), the components of x := x — o, the position
vector with respect to o of a typical point x of P, are the cartesian coordinates of x
itself: « = o0+ xqe,; likewise, a typical point p of C, has position vector
P = Xx + xzes; the transverse fiber through the point x € P is the set of points
F@):={pelClp—x)-es € (—h,h)}.

b. Material Response. Recall that the response to deformation of a linearly
elastic material is described by an elasticity tensor C, a symmetric linear
transformation of the space of symmetric second-order tensors into itself; as
such, C has at most 21 independent components

(2.1) Cijnt = sym (e; @ €)) - Clsym (e, @ ep)]l,  Cyjng = Cpayjy

a number that becomes smaller and smaller as the material response to de-

formation becomes less and less anisotropic (a transversely isotropic material has 5

independent material moduli, an isotropic material has 2). When it comes to de-

riving plate theories, the elasticity tensor of the material of which C is comprised

should agree with the symmetries intrinsic to the geometry of C, in two ways.
Firstly, C should be such that

(2.2) Clx,x3) = C(x, —x3) forall x € P, x5 € (— h,h);

that is to say, the material should be distributed in C in a mirror-symmetric
manner with respect to the plane x5 = 0. Secondly, at all points of C, the material
should be monoclinic with respect to the direction es, i.e., for R the mirror re-
flection about the middle plane and P the orthogonal projection on the axis of C:

(23) R:=1-2P, P :=e3®es3,
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C should satisfy
(24) \C[RERT] = R‘C[E']RT for all symmetric second-order tensors K’

(2.4) implies that the whole monoclinic class is parameterized by 13 independent
material moduli.?

REMARK. — The classic plate theories of Kirchhoff-Love and Reissner-
Mindlin are derived under the more special assumptions that C is constant and
coherently transversely isotropic (that is to say, transversely isotropic with
respect to the direction e3). Assumptions more general than (2.2) and (2.4)
would lead to plate theories unnecessarily complicated for most of applications
(but not all, see [4]).

We shall make use of an implication of (2.4) that we now derive. Let

1
C(l = —= ®es3t+e ®e(l):ﬁs m(e(l®e )
\/Q( 3+ e3 y 3)

and let the space Sym of all symmetric second-order tensors be split in the direct
sum of the two-dimgnsional subspace Sym := span(C1, Cs) and its four-dimen-
sional complement Sym :

Sym = Sym & Sym ;
accordingly, each E € Sym is split into two orthogonal addenda:
(2.5) E=E+E, EcSym, EcSym.
As is easy to verify,
RC.R" = -C,,
and, in view of (2.4),
C[C,JR = —RC[C,] = C[C,]€ Sym;
hence,
(2.6) C[E] € Sym.
Moreover, if E € Sym is split into the orthogonal addenda

() A version of the corresponding general representation of C, that dates back to the
pioneering work of Voigt in crystallography, can be found at p. 88 of [3].
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then (2.4) implies that both C[E] and C[P] belong to Sym, and hence that
2.7) C[E] € Sym.

Relations (2.6) and (2.7) yield the following partial representation result for a
es—monoclinic elasticity tensor:

(2.8) C=C+C, C:=C C:=C

|Sym ) |§ym )

with
A~ 1
(2.9) C= éGa/}(Ca ® C/; + C/; X Ca), Ga/; = G/;a =G e, ® eg.

Consequently, the stress § = C[ET] associated with the strain E also consists
of two orthogonal parts:

(2.10) S=8+8, S=CIEl, §=CIEl=GC;s EX,.
Finally, the stored-energy density per unit reference volume takes the form
(2.11) o(E) := % E - C[E]1=a(E) + 6(E),
with
_ = 1. — = Lo 1., 4 -
(2.12) a(E) = 3 E-C[E], 6F) = QE - C[E].

In linear elasticity, it is standard to require that the stored-energy density be
convex; in the case of (2.11), this holds true if and only if both & and & are convex:

(2.13) E-CIE1>7|E® G>0) E-CIE]>7|EF (> 0).

A glance to the rightmost side of formula (2.11), in which the energy due to
transverse shearing is split from the rest, makes clear that a three-dimensional
parent theory based on a stored-energy functional with density specified by
relations ((2.2), (2.9), and) (2.11)-(2.12) accomodates effortlessly two families of
plate theories, that of shearable plates, to which the Reissner-Mindlin theory
belongs, and that of unshearable plates, exemplified by the Kirchhoff-Love
theory.?

() In particular, the Reissner-Mindlin theory obtains when both C and C satisfy (2.4)
over the continuous group of all rotations about an axis parallel to es, a requirement that
reduces the 10 independent components of C to 4 and the 3 independent components of
to 1. The rotations in question may be written in the form

R =1+singlez ®e; —e1 ®ez) — (1 —cosp)ler ®e; +ex®ez), ¢ € [0,2n).

As independent components of C and C one can take, respectively, Ci111, Ci12, Ci112, Cris3
and ‘CISIS'
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2.2 — Kinematical Ansétze and pointwise-powerless internal constraints.

We already remarked that an essential ingredient of classic plate theories is
the kinematical Ansatz they begin with, consisting in one or another partial
representation of the admissible displacement fields in C. For example, the
Reissner-Mindlin theory begins by presuming that the displacement field in a
three-dimensional plate-like body can be well approximated by a field of the form

(2.14) ury (e, 03) = (,(2) + L30,(2))e, + wlr)es,
while the Kirchhoff-Love theory confines attention to
(2.15) ugr, (@, 3) = (Va() — T300,4 ()€, + wxes;

the Reissner-Mindlin’s Ansatz is richer: it features 5 scalar parameter fields over
‘P, while Kirchhoff-Love’s has 3 and may be seen as the subcase where one takes

O = —W,q -

Interestingly, (2.15) is the general solution of the following system of first-
order PDEs:

(2.16) u33=0 & g3 +u3,6=0,

in all respects a standard (= imposed pointwise in terms of the linear strain
measure E(u) = sym Vu) internal constraint; such constraint precludes both
transverse stretching and transverse shearing. Similarly, (2.14) is the general
solution of

(2.17) ug,3 = 0 & Ug,33 = 0,
again a point constraint — this time nonstandard, due to the presence of the

second-order PDEs — imposing that transverse fibers be inextensible and re-
main straight. In terms of E, these constraints read, respectively,

(2.18) P -Eu(x,x3)=0 & C, -Eu(x,x3))=0,
and
(2.19) P -Eu(x,x3)=0 & C,-E3Wx,x3)=0.

Recall now that an internal constraint is generally thought of as maintained
by a nondissipative reactive stress field. In a first-gradient theory such as
standard linear elasticity, the reactive stress S® that maintains a given point
constraint is whatever field is pointwise powerless, i.e., satisfies the orthogon-
ality condition

(2.20) S®.E=0
at each point for all admissible strain fields E. Accordingly, as its form (2.18)
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makes evident, the Kirchhoff-Love constraint may be thought of as maintained
by a pointwise powerless reactive stress field of the form

(2.21) SB(x, 23) = s{ (e, w3)P + sB (e, 23)C, in C,

where the constitutively undetermined fields SER) are to be chosen in such a way
as to satisfy the balance equations [10]. However, strictly speaking, a point
constraint involving the second gradient of displacement, such as (2.17),, makes
sense only if some second (or higher)-gradient theory of elasticity is taken as a
parent theory (see [5] and the literature cited therein); indeed, within such a
theory, a formal deduction of the Reissner-Mindlin plate theory can be as-
sembled with little effort [7]. We here adopt a different course of action.

Briefly, we stay within the framework of standard linear elasticity, and we
replace the point constraint (2.17), by a suitable fiber constraint, maintained by
reactive stress fields being fiberwise powerless, i.e., such as to satisfy the fol-
lowing weak-orthogonality condition:

f S® .E =0, at each point x € P and for all admissible strain fields E.
F(x)

We discuss the fiber constraint in question in the next subsection.

2.3 — The fiberwise-powerless constraint for shearable plate theories.

Recall that we have regarded the form of the in-plane components of the
Reissner-Mindlin displacement field (2.14), namely,

(2.22) W@rM)a = V() + 230,(),

as dictated by the imposition of the internal constraint (2.17)s at each point
p = & + x3e3 of C. We now introduce an internal constraint which, if required to
hold at each point x of P (that is to say, fiberwise), has the same mathematical
consequences as far as variational convergence is concerned (we shall prove that
this is the case in Section 3.1).

For v € H'(C), consider for a.e. x € P the following integral condition:

+h
(2.23) [ @n e — g das = 0.
“h
It is the matter of a simple calculation to show that condition (2.23) is equivalent to
+h
(2.24) f (1 — 3h 2252 s ds = 0
hn
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as well as, granted regularity, to

+h
(2.25) [ @ = gdas = 0.
—h

Clearly, all functions « which are even with respect to x3 satisfy (2.23); the odd
function
v(w, x3) = b(w)xs,
also does, whatever the function b € H(P). Thus,
f® = a@) + by (a,b € H(P)),
satisfies (2.23); needless to say, such a u is the general solution of
uzs =0,

the differential equation corresponding to the second-gradient constraint (2.17)s.
These are the reasons why we regard an a priori condition of the form (2.23) on
each in-plane component of the displacement field as an internal constraint,
weaker than if it had the representation (2.22), but of the same nature; and we
regard (2.24) as a characterization of the corresponding fiberwise powerless
reactive stress fields that, on taking into account (2.17);, can be written as

fS(R) Edes =0, with S®(,25) =1 - 323)C,.
Fx)

One may ask what odd functions satisfy (2.23). We offer the following char-
acterization.

PROPOSITION. — Let w € HY(C) such that

h
(2.26) w(x, x3) = wlx, —a3), fw(x,ocg)dxg =0
0

for a.e. x € P. Then, the function v € H'(C) defined by

(2.27) v(x, x3) = g% (%3)2 f w(x, s)e’%(}%)z ds
0

Syl

1s odd with respect to xs and satisfies condition (2.23). Conversely, if v € H'(C) is
odd with respect to xs for a.e. x € P and satisfies (2.23), then there is w € H'(C)
satisfying condition (2.26) such that (2.27) holds.

Proor. — That v in (2.27) is odd, if w satisfies (2.26) , may be verified by direct
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inspection; in particular, then, v(x, 0) = 0 for a.e. x € P. Formula (2.27) is nothing
but a representation of the unique solution, for a.e. & € P, of the following

Cauchy problem in [0, 22]:
hvs — 3hlasv = w,
(2.28) ’

v(x,0) = 0.

To prove the converse assertion, it is enough to take w as defined by (2.28);, for v
odd with respect to x3 and compliant with (2.23).

COROLLARY. — For every u € H'(C) there exist v € H'(C) satisfying (2.23) and
¢ € HY(P) such that

(2.29) w(x, x3) = v(x, 23) + ((0)my,(x3),
where
(2:30) my,(x3) = %e%(%)z f e 30 gs.

0

PROOF. — If u € H'(C), let u,qq be its odd part with respect to xs, and u, its
even one. Then, on setting

o) = hed 2 (0 ),

a direct inspection shows that

&3
1 3my? _3(s)?
Uoga(x, 23) = Eeg(ns) ,0[ w(x, S)e g(h) ds
and hence
1 3/23\2 P 4 N2
Uoqae, 23) :Ee'?(f) f (v(x,s)—fv(m,r)dr)e_%(%) ds
0 0
1 2 ps 2 4
—1%622’(75) fe’g(%) dsf v(x, 7)dr.
0 0

Relation (2.29) is recovered by taking

€3 h

”(W’WS):ue(%,ws)Jregtzf (v(:)c,s)—fv(9c,r)olr)e*382 ds
0 0
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and

h
() = f W, Ddr.
0

3. — The variational validation.

To set our three-dimensional stage, we identify our three-dimensional do-
main, the cylinder C, with the cartesian product P x ( — h, k), we assume that the
two-dimensional flat domain P has a Lipschitz boundary 0P, and we introduce
the function space:

V={veH"C):v =0in 0P x (— h, h)};

next, given f € L?(C), we consider the variational problem:

(3.1) min F@©), F©):= f () dedzs — f f v dads,
C C

for o the monoclinic stored-energy density (2.11) discussed in Subsection 2.1.
For brevity, here and henceforth we write H(C) for H*(C; R?), L2(C) for L2(C; R?)
et sim.; we also denote by dx the integration measure over P.

With a view toward constructing pairs consisting of a continuous family of
functionals of this type and its /"—limit, we recall, again from Subsection 2.1, that
any E € Sym can be split as follows:

E=E+E,
with
E=E + EgP,
(32) E=Enei®e +Enler®es+es@er) +Enes @ e,
E =V2EC,,

and that, consistently, ¢ can be split into two convex addenda:
o(E) = 6(E) + 6(E).

Moreover, we introduce here for later use another monoclinic and convex
quadratic form in E, namely, the relaxed stored energy density

(33) ¢*(E) :=minoE +yP) =*E) + 6(E), & (E):=mino(E +yP). *
S weR

(*) It can be shown that ¢* satisfies the following relation:
" =oal,, A={EecSym|C[E]-P=0}

(see [9] for a discussion of the nonstandard internal constraint that enters the definition of A).
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It is to be noticed that

F@) +ff - v dxdaxs
C

= [(7(B®) +6(B®)) ) dedas = *@) > = @)= [ (7 (E®) + 6 (E@)) ) dids.
c

c
3.1 — A family of functionals and its I'—limait.

For each fixed ¢ € (0, 1], we set
xg=(ht, te(-11),
so that
(x,23) € C,:=P x (—¢h,eh), (@, )eD:=Px(-1,1);
and we scale the data f and o as follows:

84 fo(x,23) = 3 9. (x)e, + (eh)Pgs@)es, ga, g3 € L2(P);
. o.(E) = 5(E) + £6(E).

Next, we introduce the function spaces:
V,:={v € HYC,) : v = 01in OP x (— eh,eh)},
U:={ucH D) :u=0in 9P x (—1,1)},
whose typical elements v and u we mutually scale as follows:
(3.5) v(x, x3) = ehug(x, e, + ux, tes;

and we provisionally consider the following ¢—family of functionals G, defined
over V,:

h
e,

G,@) == &3 (1 f o (E@)) dwdas — % f f,. vdxdx3>
(3.6) “

9 ch ?
g 2 f (% f a —3(sh)‘2x32)Ea3(v)dx3) dz.
a=1p —eh

We now proceed to show how this definition induces the definition of the family
F. of functionals over i/ we make the object of our I'—convergence theorem
below.

We have from (3.4); and (3.5) that

(3.7) f. v = (ch)*(tgaua + gsus) .
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We also have from (3.5) that
Vap=(ERVUap, Va3 =tart, V3a=TUta, Usgz=(h) tpy;
hence, by (3.2),,
E@) = (h)Ep@), Eps®)=Eym), Es®)=(ch) 'Eyw),
or rather
E@®) = GhE@®) + ) 'Ey@P), E@®) = E@).

Thus, on taking into account the fact that & is homogeneous of degree 2, (3.4),
becomes:

(3.8) o(B@) = & (a(hE@ + 20 Bu@P) + 6(Ew) ).
In conclusion, in view of (3.7) and (3.8), we have from (3.6) that

G,(v) = f (a(hE(u) + e 2 B,)P) + &(E'(u)))dacdt
D

(3.9) ,
~ [ tga, + gy dadt + 62y [ (
D

a=1 p

1 2
f - 3t2)Eat(u)dt) dx =: F).
1

With this definition, we are in a position to formulate our main result.

THEOREM 1. — Let F, be the family of functionals over U defined in (3.9);
moreover, let

1
Uy = {u ceU:u=wmx) & f(Stua — Ugyp ) dE = O}
4

and let
[ (o nB@) + 6 (Ew) ) dadt — [ Gtgana + gsuo dedt if u < thy,
Fo(u) =43 D
+ oo otherwise in HX(D).
Then,
(3.10) [y — lim F(w) = Fo).

Proor. — (Lower-bound inequality) Let u, — u in w — H'. Then, either
liminf F.(u,) = 400 or F.(u,) < C (here and henceforth C denotes a positive
constant, whose value may vary from case to case). In the former instance, there
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is nothing to prove; in the latter, due to the definition of F', and to the convexity of
g, we have that

1 2
both f \Esu,)Pdeedt < Ceh)* and f < f 1 —StZ)Eat(u)dt> dz < C(eh)?,
D P\

whence, by letting ¢ — 0 and by appealing to the lower semicontinuity of the L2-
norm with respect to the weak topology, we deduce that

Eyu)=0 ae. in D,
(3.11) 1
f (1= 32)E,)dt =0 (a=1,2) ae.in P.
|

Then, not only the first of (3.11) implies that
(3.12) ur = (),

but also, given that
1
(3.13) f (1—3t%)dt =0,
21

integration by parts of the second yields:
(3.14) uciy’

On the other hand, in view of a definitional property of the relaxed stored energy,

Fow) > [ ("B @) + 6(aw,)C.) dudt — [ (g, + gs(a)y) dadt.
D D

Given that all stored-energy densities involved are convex, we conclude that the
following lower-bound inequality holds true:

(3.15) liminf F.(u,) > Fo(u).

(Recovery sequence) We have to prove that, for every u € H(D), there is a se-
quence u, € H (D) such that u, — u in w — H' and that, moreover,

(3.16) lim sup F,(u,) < Fo(u).

(® To reach this conclusion, it is enough to make use of (3.12) to verify that

+1 +1 +1
0= [ (1 — 3B )dt — 2 f (1 — 38yt — [ Btaty — )it

-1
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We begin by assuming that u € C2(D) N U,. Then, there is a unique y € C'(D)
such that

(3.17) g(E@w) + yP) = " (E)).
For

t
W t) = f v, 1) dr,
0

and for

9, € Co(P), 0< 8, <1, Sx)=1 if dist(x,dP) > Ve,
we choose
(3.18) u (1, 1) = u, (@, e, + (us@) + b S,(x)¥ (x,1))es

which, by recalling that y € C'(D), belongs to C'(D). Consequently, we have that

7(E@,) = (Ew) + eSyP),
(3.19) . . 1,
o(E(u,)) = G<E(u) + Eg h(&sgl),a Ca)
By (3.19), we have that o(E(u,.)) — o(E(u)) a.e. in D; moreover, given that o is a
quadratic form, there exists 4 > 0 such that

(3.20) a(E,) < A|E@,)|*;

therefore,

(3.21) f o(E@,)) dudt — f (7" E@) + 6By ) dudt
D D

As a further consequence of (3.18), by recalling (3.13) and by noticing that
|79H‘(L(x)| < C/\/é%, we get:

1 1
2 _ 1 2\ 2
(3.22) f1 (= 3OB@)dt = 5 fl (1 — 32 SWP), dt,
whence
1 2
(3.23) f ( f a —3t2)E‘at(u£)dt> dx < C'eh f V.
P \-1 D

Then, with the use of (3.21) and (3.23), we easily get:
(3.24) limsup F,(u,) < Fo(u).



336 DANILO PERCIVALE - PAOLO PODIO-GUIDUGLI

By observing that F is continuous with respect to the strong H'(D) topology, a
standard density argument shows that, for every u € H'(D), there is a sequence
it, such that i, — u in w — H' and that, moreover,

(3.25) limsup F,(u,) < Fo(u).

This concludes the proof.

3.2 — The relationship between the I'—limit and the Reissner-Mindlin func-
tional.

The equilibria of a Reissner-Mindlin plate are determined by minimizing an
energy functional whose quadratic principal part is

1
(326)  Zrup.w) =5 [(Slo+ Val* + BA - DE@P + vdive)) ) da
P

S = Soh, B= Byh? and v are, respectively, the shearing stiffness, the bending
stiffness and the lateral contraction modulus; the constitutive parameters
So, By, and v are chosen so as to guarantee positivity of the integrand of (3.26).

In order to show the link between functional Fy and shearable plate theories
more general than Reissner-Mindlin’s, we introduce the shearable-plate func-
tional

RM(p,w) ::7[ (g 7" (hE(p)) + 26 (%((oa + W,q )Ca>) dux —! (g a0y + 293@0) du,
defined over the space for H}(P; R? x R); for each admissible pair for (p,w),
(3.27) Fote +we3) = RM(p,w),
an observation crucial to the proof of the following theorem.

THEOREM 2. — Let u € argmin Fy. Then, there exists ¢ € H 3(73; R?) such that
both u = tp + wes and (¢, w) € argmin RM; moreover, RM (¢, w) = Fy(u).

PRrOOF. — Let u = it + wes € argmin Fy, with i1 = u.e,. Set

1
_ 3 _ o
=5 [tudt and z = tp + wes,
so that
S
& 1

Ew)-E@) =Eu-2=Ea—tp), E@-tp = ﬁ@“’t —9)C, .

E@) =tE(@), E@) =—0,+9,)Cs;
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Note that

Fo@) - Fol2) = [ (5" (lE@) + 6(B@) ) dudt — [ (5" (1E@) + 6 (B() ) dadt.
D D

Then, by convexity,

Fo(w) > Foz) + f D&*(hE(2)) - E(u — z)dxdt + f D&(E?)) - Eu — z)dxdt
D D

1
. . 2
=Fy(2) +7-[ <D6*(hE(¢)) -E ( [tu dt — 3 @)) da

1
1 )
+ 7§Ca : 7[ ( j Uit dt—2(pa> D&(E@))dx = Fy(z)

-1

(here Dg* denotes differentiation of the mapping * with respect to its tensor
argument, and similarly for Dg; the last addendum vanishes because

1 1
[ tdt =20, = [ @un—stunat
-1

-1

and u € U). Taking into account (3.27) and the fact that u is a minimizer, we have:
RM(p,w) = Fo(z) > Fo(u);
this completes the proof.

3.3 — A more general family of functionals and its I'—limit.

For every v € V,, we define

(3.28) K@) = (% Cf o, (E@)) diedacs —% Cf £, vdxdx3>,

and we note that the scalings (3.4)-(3.5) yield:

K,@v) = f (5(hE(u) + e 2B, )P) + 6(E(u))) dudt

D

(3.29)
— [ g+ gsup dwdt =: J. ).
D
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THEOREM 3. — J. be the family of functionals over U defined in (3.29);
moreover, let

(3.30) Uy = {u el :u =wx)}
and let
[ (7" 0B @) + o) ) dedt - [ (tgou, + gsup dedt if w € Th,
Jow) = p D
+ 00 otherwise in H\(D).
Then,
(3.31) Ty limd () =Jou).

Proor. — The proof is essentially the same of Theorem 1, both for the lower
bound estimate and for the construction of the recovery sequence.

It is of some interest to compare the families of functionals F'; and J,, both
defined over the space U, and their respective I’ 1limits Fy and Jy, the former
being defined over the subspace Uy of the space Uy where the latter is defined.
Clearly,

Fyu) > J.(w);

equality holds over Uy. In the situations covered by Theorem 3, one cannot ex-
pect that the functionals RM and J attain the same minimum and that a simple
relation between minimum points holds. Nevertheless, the gap between the two
minima can be estimated, as shown in the theorem to follow.

THEOREM 4. — Let (¢, w) € argmin RM. Then,

(3.32) minJy < RM(,7) + min W(p;3,m) < RM@,0),
where
Wp;9,m) = V2mi (1) C, JpaD?r (% (@, + W, )Ca) dx + W(p),
1 1 1
_ 2 —x / 2 N .
W) = < fl ml(t)dt> 7[ 7 (Ep)) du + ( fl A dt) 7[ a< \/Qpaca>dx

1
—( ftml(t)dt>fgapa de, Vpe HYP;R?),

0 P
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and my is defined as in (2.30). Moreover, unless 9, + w,q = 0, the last inequality
m (3.32) s strict.

Proor. — Let u € U; then, in view of the Corollary, there are v € U, and
DE H})(P; R?) such that u = v + my()pqe,, with the function m, defined as in
(2.30). Then,

. . . . . 1
E(u) = E@) +mEp), E@u)=EQV)+ ﬁmllpaca ;

furthermore, on recalling that m is odd, we have that

1
[ 7 @@y vt = [ 7 Ew) dedt + ( [ m3 dt) [ E&wy e,
o1

C C P

and

f (B W) dadt — f (B W) dudt
C C

1
12 ~ 1 1 / AT
+({ |WL1| dt>!0(7§ paCa)d%‘i’ﬁCa !mlp(LDU(E(U))dwdt

Hence,

(3.33) mJnJo = rr;in Hbin {Fo(v) + LCG fmll ]OQD6(E(U)) dxdt + W(p)} .
C

V2
Now, given that v is a Reissner-Mindlin flexure displacement if it has the

1
= —=(p, +w,,)Cy, We get

V2

form v(x,t) = tp(x) + w(x)es, in which case E‘(v)

min Jy < min {nir)l {Fg(t(p +we3) + vV2my (1) C,
VX7
fpam( (g +,0)Ca )doc + W(p)}

< n})n {nln {’RM(% w) +V2m 1) C, - fpaDa( (P, + W,y )Ca) dx + W(p)}
»,0)

< RM(@, ) + min Wp; 9, ) < RM(p,0).
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It is readily seen that, for each fixed (@, w), the functional
p—W(p;p,m)

has a unique minimum, at p, say; and that p = 0if and only if g, + w,, = 0. If this
is the case, we have from (3.33) that

nbin Jo = RM(p, w);
otherwise,

(3.34) RM(, §) + min W(p; 9, ) < RM(®, ).

REMARK. — The variational theory of Kirchhoff-Love plates is based on a
functional whose quadratic principal part obtains by letting ¢ = —Vw in (3.26),
and hence has the following form:

1
(335) i) = 7[ B((dw)® = 201 = (w11 0.2 —aw12)P) )

just as we did with the Reissner-Mindlin plate functional, we generalize
Kirchhoff-Love’s into the following unshearable-plate functional:

kL) = [ ga*(hvw}) dz [ @gm 2 g3>wdac, w e HY(P;R).
P P

As expected,
(3.36) Fo( —tVw + weg) = RMNVw,w) = KLwW) = Jo( — tVw + wes) .

Theorem 4 tells us that U/ is the greatest subspace of &/ on which the mini-
mum of Jy coincides with the minimum of the generalized Reissner-Mindlin
functional . . . unless the latter coincides with the Kirchhoff-Love one! Moreover,
inequality (3.34) suggests that minimization of J, over the displacement class

U= {ucl:u=(p, +mib)pe, +wes; p.pc HyP;R?),

we Hy(P); t € (—1,+1)}

is strictly better than minimization over i.
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