BOLLETTINO
UNIONE MATEMATICA ITALIANA

ULISSE STEFANELLI, AUGUSTO VISINTIN

Some Nonlinear Evolution Problems in Mixed
Form

Bollettino dell’Unione Matematica Italiana, Serie 9, Vol. 2 (2009), n.2,
p. 303-320.

Unione Matematica Italiana

<http://www.bdim.eu/item?id=BUMI_2009_9_2_2_303_0>

L’utilizzo e la stampa di questo documento digitale é consentito liberamente per mo-
tivi di ricerca e studio. Non ¢é consentito I’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)
SIMAI & UMI
http://www.bdim. eu/


http://www.bdim.eu/item?id=BUMI_2009_9_2_2_303_0
http://www.bdim.eu/

Bollettino dell’Unione Matematica Italiana, Unione Matematica Italiana, 2009.



Bollettino U. M. 1.
(9) II (2009), 303-320

Some Nonlinear Evolution Problems in Mixed Form

ULISSE STEFANELLI - AUGUSTO VISINTIN

Dedicated to the memory of Guido Stampacchia

Abstract. — This work deals with some abstract equations, either linear or nonlinear,
arising from the so-called mixed formulation of PDEs of elliptic and parabolic type.
This class of variational formulations turns out to be particularly relevant in con-
nection with the development of finite elements approximations. We prove the well-
posedness of both the stationary and the evolution problems.

1. — Introduction.

This paper is concerned with either linear or nonlinear abstract equations
which directly arise from the so-called mixed formulation of some elliptic and
parabolic PDEs. Let us assume that we are given two real Hilbert spaces, V and
@, and two operators: A :V — V' possibly nonlinear and multivalued, and
B : V — @ linear and continuous. Our basic stationary problem reads as follows:
for any (f,9) € V' x Q, we search for (u,p) € V x @ such that

(1.1) (—AB %) (Z) ° @

In particular this system includes appropriate reformulations of the classical
Stokes and Poisson problems:

—Mu+Vp=Ff inQ, diviu=0 inQ, u=0 on9dQ,
(1.2)
—4dp=g inQ, p=0 onIQ

Mixed variational formulations are relevant for the numerics, and are at the
basis of a class of effective finite elements discretization procedures. In parti-
cular, problem (1.1) is the archetype of the so-called mixed finite element
methods, which have been considered since the 70s [Bab73, Bre74, BF91] in both
the continuous and space-discrete frameworks. We shall make no attempt to
review the huge literature on mixed formulations and mixed finite elements
methods. Let us however mention that the case of a linear operator A has been
intensively investigated whereas the nonlinear theory for (1.1) is much less
settled (we just refer to [Sch77, BN90, Le82, Gat02, GM75, MF01]).
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It seems natural to associate to the stationary problem (1.1) a first-order
time-relaxation dynamics of the form:

ws G+ (% 9)()-0)

This equation may model e.g. a slightly compressible fluid-flow in a poro-elastic
porous medium [KSWKO06, SS04]. We shall be mainly concerned with the well-
posedness of the initial-value problem associated to (1.3). The idea of combining
mixed variational formulations with time-evolution is not new, and has been pur-
sued in the frame of mixed finite element methods since the 80s’. Again, the lit-
erature on this subject is extensive, see e.g. the pioneering papers by QUAR-
TERONI [Qua80] and JOHNSON & THOMEE [JT81], the monograph by THOMEE
[Tho06], and the papers [BG04, CW06, CFA06, HR82, Pan98]. These works mainly
focus on convergence and error estimates for space-time discrete methods. To our
knowledge, even in the linear case the discussion on the abstract continuous flow
problem in the full generality of (1.3) is still missing.

PLAN OF WORK. — In the next section, first we define our abstract functional
framework, and review some equivalent formulations of the property of closure
of the range in terms of inf-sup conditions, via the Banach Closed Range
Theorem. We then illustrate some simple examples leading to the abstract
scheme (1.1), briefly review some well-posedness results for the linear equation,
and extend them to the case of a nonlinear operator A.

Afterwards we prove that the evolution problem is well-posed. As the line-
arity of A actually plays little role here, from the beginning we focus upon the
case of a maximal monotone operator A : V — V', and then show how some
statements may be improved in the linear case.

2. — The stationary case.

We shall start our discussion with the analysis of (1.1). In this section first we
recall the general functional frame and review the classical results of the linear
theory, namely for A : V — V'’ linear and continuous. We then extend these
results to some relevant nonlinear situations. The analysis of the stationary case
will clearly be the starting point for the development of the evolution theory.

2.1 — The general functional frame.

The following assumptions and notation will be implicitly assumed throughout. V'
and H will be real Hilbert spaces with V' C H densely and continuously, so that by
identifying H with its topological dual, H', we get a standard Hilbert triplet
V ¢ H=H' c V'. By Q we denote another Hilbert space, that we identify with its
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dual @'. We let the corresponding scalar products be (-, )y and (-, -)g, the duality
pairing between V' and V be (-, -)y,,y,, and the norm of the any normed space £ be
| - ||z- For any set W C V, we shall denote its annihilator by W° c V'

Wo={veV : wwy,,;=0 Ywe W}
For any convex, proper, and lower semicontinuous function yw:V —
(— 00,4 o0l, we let its effective domain be D(y) = {v € V : y(v)< + oo}, and

its (possibly multivalued) subdifferential (in the sense of Convex Analysis)
Oy : V — V' be defined as

yeoyplw) iff veDy) and (y,w— )y, <wpw) —yl) YweV.

We shall assume that we are given two operators: A : V — V' (possibly
nonlinear and multivalued), and B : V — Q' linear and continuous with adjoint
B’ : @ — V. In the following the operator B will often be required to fulfill the
closed range condition

(2.1) Rg(B) is closed.

This assumption turns out to be crucial for the theory of variational problems in
mixed form [BF91]. Moreover by Banach’s Closed Range Theorem [Yo0s80, Sec.
VIL5, p. 205], one has the chain of equivalences

Rg(B) is closed <« Rg(B’) is closed
(2.2)
& RgB) = KerB)* < Rg®B')=KerB).

(The reader will note that here (Ker B)0 occurs rather than (Ker B)*, for we have
not identified the dual space V' with V.)

The condition (2.1) (i.e., any of the conditions in (2.2)) is usually equivalently
expressed by means of the so-called inf-sup condition

ko > 0 : inf sup (Bv,9)q

>y,
9€Q veV |v||V||QHQ/KerB’

and by (2.2) this is in turn equivalent to

B/ !
Jho >0 : inf supM > hy,
VeV 4eQ ”v”V/KerBHQHQ

(throughout we imply that suprema and infima are taken out of the null element,
whenever needed). The above inf-sup conditions may also be represented in the
equivalent forms

1
(2.3) Jko >0 : Hq”Q/KerB’ < k_OHB/QHV’ Vg € Q,

1
(24) Elh() > 0 : ||1)||V/Kel,B § % HBQ}”Q/ Yo S V
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These conditions are often referred to by saying that B’ (B, respectively) is
bounding [Rud91, Thm. 4.15].

Finally, note that the dual space (KerB) is canonically isomorphic to
((Ker B)Y)? (C V). We shall then identify these two spaces, and denote them by
(KerBY. We let n: V' — (KerB)' be the orthogonal projection and 7’ : V —
Ker B be the corresponding adjoint (i.e., the orthogonal projection on Ker B).

2.2 — The stationary problem setup,

Abstract problems like (1.1) represent several PDEs. Here we point out two
examples in the special case of a linear and continuous operator A : V — V.
First we consider the Stokes flow with homogeneous Dirichlet conditions

(2.5) —Au+Vp=Ff inQ, divu=0 inQ, u=0 on9dQ,

whose variational formulation corresponds to (1.1) with

V=WEQ), H=ULXQ), Q= {p eIX@ [p= 0},
(2.6) Q

A=-4 B=div, B=-V, g=0.

Thus Rg(B) = Q (see, e.g., [Tem77]), whence Ker (B') = {0} by (2.2). Moreover,
KerB = {u € (H)(Q)® : divu =0} whence 7'u = V¢, where u = V¢ + curla
is the classical Helmholtz decomposition. For any f €V’ we then have
(o w)yyy =, Ve v

Our second example is the Poisson problem with homogeneous Dirichlet
conditions

2.7 —4dp=¢g inQ, p=0 on 0Q,

which may be decoupled as u = Vp and —divu =g, and may be written in
variational form as (1.1) for

H=*Q)y, V={ucliQ) : divu € LX(Q)}, Q=L*Q),

(2.8)
A=1I, B=div, B =-V, f=0,

where [ is the restriction to V of the injection H C V’. Here also Rg(B) = @ and
hence Ker(B’) =0. Moreover, KerB={ucV : divu =0} and 7n'u = V¢,
where u = V¢ + curla again is the Helmholtz decomposition.

Further standard applications of variational problems in mixed form occur in
linearized elastostatics, in time-harmonic Maxwell’s equations, and others
[BF91].
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If A = Oy (which is symmetric whenever A is linear) where y is convex and
lower semicontinuous, then the pair (u, p) solves (1.1) iff it is a saddle-point of the
convex-concave functional

(29> ¢(uap) = W(u) + (B%p)Q - (fa u>V’><V + (g>p)Qa

or equivalently iff « minimizes the convex functional u—w(u) — (f, u)y. ., under
the linear constraint —Bu = ¢:

(2.10) min (pe) = {f wyy)-

There are some advantages in finding a saddle-point for ¢ via (1.1), rather
than solving the constrained minimum problem (2.10). First, the mixed form of
(1.1) often is better suited than (2.10) for numerical investigations. The occur-
rence of a Lagrangian multiplier simplifies the numerical treatment of the
problem, for it is generally hard to build finite element approximations fulfilling
an (albeit linear) constraint. Moreover, mixed formulations may need a less
regular functional setting, and thus allow for more freedom and flexibility.

Mixed formulations are also well-suited in case one is interested in computing
accurately gradients. For the Poisson problem, for instance, the gradient Vu can
in principle be retrieved from u by numerical differentiation, this procedure
necessarily entailing some accuracy loss. On the other hand, the mixed for-
mulation of the problem allows instead the direct computation of p = Vu.

In several cases the operator A is non-symmetrie; for instance this may occur
in presence of convection. In the non-symmetric case, problem (1.1) does not then
correspond to a constrained minimization.

2.3 — The linear case.

In the functional framework of Subsection 2.1, let us now assume that
(211) A:V — V' s linear and continuous (and possibly non-symmetric).

The next classical theorem is the main result in the linear case.

THEOREM 2.1. (BREZZI, [Bre74]). — Let (2.11) hold and (f,g) € V' x Rg(B).
Moreover, assume that (2.1) is fulfilled and that

(2.12) nA is an isomorphism between Ker B and (Ker B)'.

Then there exists a unique solution (u,p) € V x Q/Ker B’ of (1.1). Moreover,
this solution is unique for any (f,g) € V' x Rg(B) only if 2.1) and (2.12) are
Sfulfilled.
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As clearly uniqueness of p may only hold up to elements of Ker B’, we may
restrict our analysis to the quotient space @/Ker B’ from the beginning. The
isomorphism condition (2.12) may equivalently be rewritten as

. A, vo) v
1nf Sup M>a0’

uo€Ker By cKer B ”uO“V”vOHV N
(2.13) 309> 0

. Aug, v
inf  sup (Auo, o)y .y > ag,
weKerBy,eker s [|%olly [[volly

which, in case A is symmetric, is reduced to a single condition, namely

. A, Vo)
(2.14) Jap >0 : inf Ao Wlywy o o
weKerB yoeker [|%ollylvolly

A sufficient condition for (2.13) (equivalently, for (2.12)) to hold is that
(2.15) Jag >0 = (Au,u)y .y > aoluly  Vu € KerB.

In passing note that the latter is equivalent to (2.14) whenever A is symmetric
and has a countable spectrum, see e.g. [Rud91, Thm. 12.29.d, p. 328]. We shall
also consider the stronger property

(2.16) Jag > 0 = (Au,u)y .y > aollulls YueV.

Both (2.15) and the latter turn out to be relevant for applications; for instance,
(2.15) applies to the Poisson problem (2.7)-(2.8), whereas the Stokes flow (2.5)-
(2.6) fulfills the stronger condition (2.16). Finally, in view of the evolution theory,
we mention a weaker (but global) coercivity condition for A:

(2.17) Jag, fy > 0 = (Au, u)yr .y + Bolluls = aollul> Vu e V.

We also point out a result for the following variant of the problem (1.1) (see
[Arn81]):

(2.18) (—AB 5;) (Z) B (J;>

where / > 0 and I is the identity in Q.

THEOREM 2.2. (Thm. 1.2, p. 47 [BF91]). — Let (2.11) hold, A be positive, 1. > 0,
and 2.1) and (2.15) be fulfilled. Then there exists a unique solution
(u,p) € V x Q of 2.18) for any (f,g9) € V' x Q.

We refer e.g. to [CHZ03] for a comprehensive discussion of (linear) gen-
eralizations of (1.1) and (2.18).
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2.4 — The nonlinear case.

Next we deal with the existence of a solution of (1.1) in the case of a nonlinear
operator A. More precisely, we assume that

(2.19) A:V — V' is maximal monotone (possibly multivalued).

See e.g. [Bre73, Bar76] for classical results on maximal monotone operators.
LEMMA 2.3. (Maximal monotonicity). — If (2.19) is fufilled, then

!/
M= (:4B lé > VxQ—=V' xQ ismaximal monotone.

ProoF. — Let us denote by J : V — V' the Riesz isomorphim and set
(J 0\ ,
F_<0 IQ>.V><Q—>V><Q.

As the operator M 1is clearly monotone, it suffices to show that
Rg(AF + M) =V’ x Q for some (hence all) A > 0. For any (f,9) € V' x Q, de-
fining p = (¢ + Bu)/ A, one must thus find » € V such that

G + A)w) + %B’Bu Sf— %B’g.

Now, the operator B’ o B : V — V' is (symmetric) positive, linear, and continuous,
hence maximal monotone. Moreover, AJ + A is maximal monotone and coercive.
By applying [Bar76, Cor. 1.3, p. 48] we than infer that

1
(U+A)+;B/0B V=V
is onto. The assertion then follows. O
We are now able to state our first existence result for the nonlinear case.

THEOREM 2.4. (A nonlinear). — Let A : V — V' be a possibly nonlinear and
multivalued operator; assume that (2.1) is fulfilled and that

(2.20) Vv € Ker B, w—nAw+v): KerB — (KerB) is maximal monotone,

@20)vr>0, lim  (SMver Lo
IBullg<r. ceA() ||7/[,HV

[[2allyy—+ 00

Forany (f,9) € V' x Rg(B) then there exists a solution (u,p) € V x Q/Ker B’
of (1.1).
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The reader may compare this statement with the nonlinear well-posedness
theory of SCHEURER [Sch77], who deals with approximation issues, including also
the case where the second equation in (1.1) is replaced by the inequality Bu < g,
assuming that the space @ is ordered. Note that the first part of Theorem 2.1
follows from Theorem 2.4 for A linear. Some further results on nonlinear ver-
sions of (1.1) may be found in [BN90, Le82, Gat02, GM75, MF01] and in other
works.

Proor oF THEOREM 2.4. — This argument follows the lines of the original proof
of [Bre74, Thm. 1.1], here adapted to the nonlinear case. There exists a unique
uy € Ker B+ such that Bu, = g. By (2.20)-(2.21) the operator w—nA(u + u,) :
Ker B — (Ker B)' is maximal monotone and coercive. This operator is then onto,
so that for any f € V' there exists ug € Ker B such that zA(uy + uy) > nf. Thus
there exists & € A(ug + u,) such that zn(f — &) = 0, namely

f—¢ée(KerB))" = (KerB).

We saw that the closed range assumption (2.1) is equivalent to
(Ker B = Rg(B'), cf. (2.2). Hence, there exists p € Q/Ker B’ (unique, for any )
such that f — & = B'p. The thesis then follows by letting u = ug + u,. O

REMARK 2.5. — In the latter argument the assumptions (2.20)-(2.21) grant that
(2.22) v — 1 A(v + uy) restricted to Ker B is onto (Ker B,

where u, is the only element in Ker B+ such that Bu, = g. The latter condition is
weaker than (2.20)-(2.21), and would suffice to reproduce the existence argument
(note that for A linear (2.12) and (2.22) are equivalent). On the other hand, the
stronger conditions (2.20) and (2.21) are independent of the selection of g.

For instance, (2.21) holds whenever A : V' — V' is coercive on the whole space
V, namely,

(2.28) m  (SWVY
i o ludly

Note that the latter is implied by (2.16). More generally, we shall also consider
the weaker condition

(2.24) >0 hm v hll? o
. 0= ' . ﬁm(u) ||u||V
|y —+oc

Next we state a nonlinear version of Theorem 2.2, in view of the analysis of
evolution. For any 4 > 0 let us consider the problem

(2.25) (AB 5;;) (Z) 7 (J;)



SOME NONLINEAR EVOLUTION PROBLEMS IN MIXED FORM 311

THEOREM 2.6. (A nonlinear, A > 0). — Let 1 > 0, (f,g9) € V' x @, (2.19) be ful-
filled, and assume that

e (2.23) be fulfilled, or
e (2.1), (2.21), f € Rg(B)).

Then, there exists a solution (u,p) € V x Q of (2.25).

ProoF. — Let us first assume that (2.23) is fulfilled. By letting p = (¢ + Bu)/4,
we are left with the problem

1 1

As A+ B oB/J:V — V’is maximal monotone and coercive, this equation has a
solution u € V.

Let us now turn to the case of (2.1) and (2.21) for f € Rg(B’). We shall first
decompose ¢ and p as follows

226) g=¢"+g" €KerB @ (KerB)" % Ker B @ Rg(B),
p=7p"+p' € KerB' & Rg(B),
and rewrite (2.18) as
A B 0 u f
(—B 2 1R 0 ) pra]d
0 0 I er "

Hence p° = ¢°//, and one is left with a problem in (u, p!) € V x Rg(B) only. We
may thus assume that g € Rg(B) with no loss of generality.
Let us now fix any ¢ > 0 and consider the regularized problem

(2.27) M, C;) = (8J_EA 5@)) (Z) 2 (J;)

which has a solution, for M, : V x @ — V' x @ is maximal monotone (by Lemma
2.3) and coercive. Thus there exists a triple (u., p;, £;) such that

(2.28) eJu, + & + B/]O;, =f, —Bu,+/Mp,=g9, & €Au,).

Next we shall provide estimates on (u,, p;, ;) independent of ¢, and then pass to
the limit. After decomposing u, as

u; = u) +u! € Ker B@® Ker B+,
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by (2.4) and (2.27) we get that

ul€Ker B+

91
1 1 1
Nl 1l % llv/kers < 7o B, [l

(2.29)
L B 2 L pe gl
- h(} ellQ — h() De g9 Q-

Moreover, again by (2.28) and as f € Rg(B’) = (Ker B)°,

2 q 2 1
3||u8||v + <fsau8>V’xV + AHPE”Q <A{f, u5>V’><V + (gape)Q

@4) 1
< Hfllwh—0 12p: = 9llq + 9llglIp:llq-

Hence, p, and u! are uniformly bounded in @/Ker B’ and V, respectively. By
using (2.21) and (2.26) we also infer that u, is bounded in V, independently of e.
Finally, by comparing the terms of (2.27) we see that ¢, is also uniformly bounded
in V’. We then obtain that, possibly extracting (not relabeled) subsequences,

(g, Pe, &) — (u,p, &) weakly in V x Q/Ker B’ x V',
so that the equations
E+Bp=f, -Bu+ip=g
are established. In order to show that & € A(u), let us test (2.26) on (u,, p,) and

pass to the superior limit; by lower semicontinuity we get

lim Sup (&, o)y = Himsup o)y + (0 2)g — ell | = Alpilly)

&e—0 e—0
2
< {fs vy + (@, p)g — ;“HPHQ = (& Wyruy-

A standard result on maximal monotone operators [Bar76, Lemma 1.3, p. 42]
then yields the inclusion ¢ € A(u). O

ProposITION 2.7 (Uniqueness and continuous dependence on data). — If A is
strictly monotone and single-valued, then Problem (1.1) has at most one
solution in V x Q/Ker B. Moreover, if (2.1) holds and A is strongly monotone
and Lipschitz continuous, then the solution depends continuously on
(f,9) € V x Rg(B).

ProoF. — Fori = 1,2, let (u;,p;) € V x Q/Ker B’ solve problem (1.1). Hence
(Auy) — Aug), w1 — uz)yr .y = —(B'(p1 — p2), 1 — U2)yr,
= —(p1 — p2, Buy — u2))q

= —(p1 —p2,9 —9)q =0.
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As A is strictly monotone, we then infer that u; = ug. Hence B'(p; — pg) =0,
whence p; = ps. for p1,p2 € Q/Ker B'.

For ¢=1,2, let mnow (fi,g;) €V xRg(B) be given, and
(ui,p;) € V x Q/Ker B’ be corresponding solutions of (1.1). Thus there exists
&; € A(u;) such that

&+ Bpi=fi
—Bu; = g;.

Taking the difference between the above system for ¢ = 1,2, and testing the
result by the pair (u; — ug, p; — p2), we get

(&1 — &oyur —u2)yr oy < (i — fos U1 — U2)yr oy + (91 — 92,91 — P2)g-
As

23 1 1
Iy = p2llq < £B'@r—polly: = Wi —fo — AGu) + Aoy,

by the strong monotonicity (with constant ay) and the Lipschitz-continuity (with
constant A) of A, we infer that

2
aollur —uzlly < Ifi = fally llun — u2lly + llg1 — gz2llqllP1 — p2llg
23) 1
< i =Ll llur —uelly + llg1 — gzlle—O Ifi —fo — Alur) + Auz)|ly

1
< |l = Lllyllur — uzlly+ ||91—92||Q/lc—0 (I — elly+Allur — uzlly).

The continuous dependence of (u,p) on the data then easily follows. O

3. — The evolution problem.

We shall start by a well-posedness result, which rests upon a direct extension
of the analysis of the stationary case to evolution. As the linearity of A actually
plays a little role here, from the very beginning we focus our attention on the
case of a maximal monotone operator A : V — V', and postpone the discussion of
the linear case to Subsection 3.1.

We shall consider two cases. First we deal with an operator A that is
coercive on Ker B and assume that the range of B is closed (Theorem 3.1). In
particular we extend Theorem 2.1 to the (nonlinear and) evolution case. We
then represent the classical nonlinear parabolic theory in the mixed frame-
work by assuming that A is weakly coercive, and without requiring the range
of B to be closed (Theorem 3.2).
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THEOREM 3.1. (A coercive on Ker B). — Let (2.1), (2.19), and (2.21) hold. Then,
for all (f,g) € W0, T;H x Q), and (uo,po) € D(A) x Q with f(0) — &—
B'py € H for some & € A(uy), there exists a pair

(u,p) € (WH(0,T; H) N L>(0,T; V)) x W(0,T; Q)

such that
(3.1) (Z) + ( _AB %) (;) S (J; ) a.e. in (0,7),
(3:2) (u(0), p(0)) = (o, po)-

ProOF. — We proceed by approximation and passage to the limit. For any
& > 0 let us consider the regularized problem

(33) (Z) ¥ (AfBEJ i)) (Z) 9 @

where J : V — V’ is the Riesz isomorphism. The operator

A+e B ,
(_Bg 8IQ);V><Q—>V><Q

is maximal, strongly monotone (see Lemma 2.3), and coercive. By classical well-
posedness results of [Bre71, Bar76], (3.3) then has a unique solution

Uz, pe) € (W0, T; HYNL™(0, T; V) x Wh(0,T; Q).
By testing this system on (u,, p.), we get

d1

(el + 1D:13) + (Eor ey + ellels + elpellfy = 1) + (9, P

where
fs :f - uz - SJua - B,ps S A(u:)

Next we proceed formally, by a technique that might easily be justified via an
appropriate approximation. Let us take the time-derivative of (3.3), and test it on

(%, p;). This yields
d1,,. . . . . . -
@i el + 12:1Q) + (& vy + el + ellpallg = (F i + @ Do

By the hypotheses on the initial data and by the system (3.3), we see that
(,(0), p.(0)) is uniformly bounded in H x Q. By the latter equality, via the
classical Gronwall lemma we then infer that

(3.5) (ug,p:) 1is bounded in Whoo O.TH < @ independently of ¢.
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As A is not assumed to be coercive on V, a uniform estimate is needed for u, in
V. To this aim, let us decompose u,:

(3.6) u, = u. +u} € Ker B @ Ker B*;
note that, a.e. in (0, T),

1, wicKerB* . 1
leclly =" leclly/kers < 7-[1B2cllg

(3.7)
ueKerB 1 .
g 1B - —Ollpﬁepe—gllQ-

By (3.5) we easily see that
(&, Ue)yryy  1s bounded in L> (0, T) independently of .
Now, as by (3.7) all the u!’s belong to a fixed ball in V for a.e. ¢, and
[1Bue|| 1 0.7.q) < IPe + &Pe — 9ll 0.1

by (2.21) and (3.5), we then infer that u, is bounded in L>°(0, T'; V), independently
of &. Moreover, by comparing the terms of the first equation of (3.3), we see that
&, is uniformly bounded in L>(0, T'; V') as well. Hence there exist (u,p, ¢) such
that, by possibly passing to ( not relabelled) subsequences,

u, — u weakly star in W0, T; H) N L>(0,T;V),
p. — p weakly star in W1>(0, T; Q),
& — & weakly star in L0, T; V).
The initial conditions (3.2) are then fulfilled, and
w+E+Bp=f, p—Bu=g aein 0,7).

In view of identifying the limit ¢&, let us integrate (3.4) in time and then pass to the
superior limit. By exploiting the limit equations and by lower semicontinuity, we get

T T
limsup | (&, %)y < limsup (f ((f’ Ue)yrey + (P — £||u€||%, - ellpsllé)
0

e—0 0 e—0

1 1 1 1
—EMMTMZ—QmuTwé+yma2+§mm@>

IN

T
1
J .01+ @000 — DI S I + 3 ol + 3 ol
0
T

V’><V

OS

so that & € A(u) a.e. in (0, T), by a classical result [Bar76, Lemma 1.3, p. 42]. O
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Next we provide a well-posedness result for the case of A being weakly
coercive (2.24). Here, as it may be expected, neither the closure of Rg(B) (2.1) nor
the absolute continuity of the data f and ¢ is required.

THEOREM 3.2. (A weakly coercive on V). — Let (2.19) and (2.24) hold. Then:
1. If A :V — V' is linearly bounded, namely there exists ¢ > 0 such that

1€y < e+ flully) Ve Aw),
then for any (f,g) € L*(0,T; V' x Q) and (uy, po) € H x Q, there exists a pair
(uw,p) € (H'O,T; V)N L*0,T;V)) x H'(0,T; Q)

that solves (3.1) and (3.2).
2. If (f,9) e WH(0,T;H x Q), ug € DA), and f(0) — & — B'py € H for
some &y € A(ug), then the solution (u,p) belongs to WH>°(0, T; H x Q).

ProoF. — 1. As the operator

/
M= (AB %) VxQ—-V xQ
is maximal monotone (see Lemma 2.3), linearly bounded, and weakly coercive on
V x @, one may easily prove the stated result by amending the existence theory of
[Bre71, Bar76].

2. This second result stems from the application of [Sho97, Thm. IV.6.1]. Here
just the range condition

RgUpvg+M)=H xQ
must be checked. This clearly holds if f, < 1 as fyIn+q + M is maximal mono-
tone (cf. Lemma 2.3) and coercive by (2.24). Let us now consider the case of

fo > 1. As we already know that Rg(By/n.q + M) = H x Q, for all (v,q) € H x Q
we may define (u, p) = S, p) to be the unique solution of

(A +ﬂ()IH B’ )(u) 5 (f“r(ﬁo — 1)?))
-B  Bolg ) \p g+By—1Dg)’

By letting (u;, p;) = S(;, q;), © = 1,2, we readily check that
BollCur, p1) — iz, p2)l[rq
< (By — D1 — v2,u1 — uz)y + By — V(g1 — g2, p1 — P2)g

By — 1)? By — 1
0 vy — ey +0sz g1 — q21%-

Bo 2
< 5 [ (w1, p1) = (uz, p2)llFrxq + T
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Hence
Cur, 1) — iz, o)l
(By — 1)°
= ﬁoﬁz (w1, q1) — (?)2,(]2)||?{XQ <||(1,q1) — (v27q2)|‘121]><Q'
0
Thus S is a contraction in H x Q. Its fixed point (u,p) solves (Ix.q + M)
(u,p) = (f, 9. -

Next we state a result of continuous dependence on the data for the solution
of (3.1).

LemMA 3.3. (Continuous dependence on data). — For ¢ = 1,2 let (u;, p;) solve
3.1) for data (f;,g;): (0,T) — V' x Q, and set &; = f; — ut; — B'p;. Then

¢
|Cuer, p1) — (uz,pz)H?{XQ(t) +f<f1 —&o, U1 — Uiy
0

< C(H(ulypl) - (%2»102)|\§1XQ(0) + A _f2||il(0,t;H) +lg1 — 92“%1(0,15;}1)),

for any t € [0, T], for some constant ¢ > 0 that may depend on T.

3.1 — The linear subcase.

If A is linear and positive, the above results of existence and continuous de-
pendence on the data may be sharpened by weakening the coercivity assump-
tions. In particular we have the following statement.

COROLLARY 3.4 (A linear and coercive on Ker B). — Let (2.1), (2.11), (2.15)
hold. Then, for all (f,g) € WHN0, T; H x Q), and (uy,po) € V x Q that fulfill the
compatibility condition f(0) — Auy — B'py € H, there exists a unique pair

(u,p) € (W0, T; H) N L0, T; V) x W2(0, T; Q)

that solves (3.1) and (3.2). Moreover, (u,p) depends Lipschitz-continuously on
the data.

COROLLARY 3.5 (A linear and weakly coercive on V). — Let (2.11) and (2.17)
hold and A be positive. Then,
1. forall (f,g) € L?(0,T; V' x Q) and (ug, po) € H x Q, there exists a un-
que pair

(u,p) € (H'0,T; V)N L*0,T;V)) x H'(0,T; Q)
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that solves (3.1) and (3.2). Moreover, (u, p) depends Lipschitz-continuously on the
data.

2. If (f,g9) € WO, T; H x Q), ug € V, and f(0) — Aug — B'py € H, then
the solution (u,p) belongs to (WH->(0,T; H)NL>(0,T;V)) x Wh>(0, T; Q), and
depends Lipschitz-continuously on the data with respect to the topologies of these
spaces.

Note that, if the time-derivative of (f,g) is not integrable, some weak coer-
civity is needed for A4, since (3.1) includes abstract parabolic equations as sub-
problems along with the choice @ = {0}. On the other hand, no closednesss of
Rg(B) is needed whenever A is weakly coercive: the parabolic setting is better
behaved than the corresponding stationary one.

SOME FURTHER ISSUES. — (i) In a forthcoming paper we shall deal with the two
degenerate relaxation dynamics

6+ (% 0)6)=0)
G- (5 5)G)=0)

that respectively include the evolutive Stokes problem and the heat equation.

(ii)) The behavior of the solution of (1.3) and of the two latter systems as
t — + oo is clearly relevant for the study of the phenomena that are represented
by these models, and will be addressed apart. This issue is of paramount im-
portance whenever (either continuous or discrete) time-relaxation is used as a
mean for approximating the stationary problem. This is at the basis of the
classical algorithms of Uzawa, [Uzab8], and Arrow-Hurwicz, [AH58], that apply
to saddle problems (whereas the present framework is nonvariational).

(iii) The analysis may also be extended in other directions. For instance a
positive symmetric linear and continuous operator might be inserted in the left
side of (1.3). More generally, one might deal with a relaxation term of the form

owat.p0)  or O [ow(t.p0)],

w being a lower semicontinuous convex potential. This may be compared with the
doubly-nonlinear equations studied e.g. in [AL83], [CV90], [DS81].
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