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Global Lipschitz Continuity of Solutions to Parameterized
Variational Inequalities

ANTONINO MAUGERI - LAURA SCRIMALI

Dedicated to the memory of Guido Stampacchia

Abstract. — The question of Lipschitz continuity of solutions to parameterized var-
1ational inequalities with perturbed constraint sets is considered. Under the sole
Lapschitz continuity assumption on data, a Lipschitz continuity result is proved
which, in particular, holds for variational inequalities modeling evolutionary
network equilibrium problems. Moreover, in view of real-life applications, a long-
term memory 1s introduced and the corresponding variational inequality model is
discussed.

1. — Introduction.

The aim of this paper is to study Lipschitz continuity of the solution to the
following abstract parameterized variational inequality problem:
(1) (Ft,x* @), x—x"@t) >0, VeeK@),tel0,T],

where the constraint set K(t), ¢ € [0,T], is closed, convex and nonempty,
F :[0,T] x R" — R" is a point-to-point mapping, and (-,-) denotes the scalar
product in R”. Specifically, we show the subsequent result:

THEOREM 1. — Let the following assumptions be satisfied:
(a) F 1is strongly monotone, i.e., there exists a > 0 such that fort € [0,T1],

(F(t, 1) — F(t,22), 21 — it2) > alje; — xa®,  Var, 2 € R

(b) F is Lipschitz continuous with respect to x, i.e., there exists § > 0 such
that, fort € [0, T,

|F(¢t,x1) — Ft, a2 < Bller —aal|, Var,xe € R

(c) F is Lipschitz continuous with respect to t, i.e., there exists M > 0 such
that, for ty,ts € [0, T1,

[F'(tz, ) — F by, 0)l| < MlJl|[tz — ta], Voo € R
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(d) there exists k > 0 such that, for t1,ts € [0, T1,
1Pkt (®) — Pray®)|| < klte — t1], Vz € R",

where Pk (z) = arg min ||z — x|, t € [0,T] denotes the projection onto the set
K@), weK(t)

Then, the unique solution x*(t), t € [0,T], to (1) is Lipschitz continuous on
[0, T] Moreover, for any couple t1,ta € [0,T], t1 # t, the following estimate
holds:

Pr,)(@) — P,y ()

i) — (2| ( ) 2)
2 - = @ <K ﬂ’,'* pn + su 9
(2) botf 7\ 12" feoqo,rm) tl_’ﬁzdlé’_ﬂ th— 1
117

where y = y(a,f, M, T, L).

Pr,)(?) — P (?)

For the sake of simplifying notations we set [Px] = sup —
2 — 1

t) 4€l0.7]
t1#t

As it is well-known, in virtue of Rademacher’s theorem (see [24]), the ex-
istence of bounded derivatives almost everywhere in [0, 7] follows from the
Lipschitz continuity and the subsequent estimate holds:

)

Pr,)(®) — Pg,)(?)
to — 11
Moreover, it is worth mentioning that the solution to (1) is continuous on
[0, T]. In fact, assumptions (b), (¢) and (d) of Theorem 1 ensure that all the hy-
potheses of the following recent result (see [2]) are fulfilled:

da* |2

dt

® |

2
< V(Hx* [¢oqoryrmy + SUp
Le(0,TT;R") 4/

THEOREM 2. — Let K@), t € [0,T], be a family of nonempty convex closed
subsets of R" such that K(t,) converges to K(t) in Mosco’s sense, for any sequence
{tn}pero with &, — £, as n — +oo.

Let F € C([0,T] x R",R") and satisfying the following assumptions:

i) there exist B € L*([0,T]) and A € L>([0, T) such that for t € [0, T]

|FE, x@)] < AD|x@| +B®), V@) € K@);
ii) there exists a > 0 such that fort € [0, T]
(F(t,21(t)) — F(t, 220), 21(E) — 22(1) > aljart) — 22@)|?,  Vai @), 22(t) € K@).
Then the evolutionary variational inequality problem
x*(@) € K@) : (F(t, 2" @), ¢ — ")) > 0,Vx € K),t €[0,T1],
admits a unique solution x*(t) € K(t) and x*(t) € C([0, T1, Ri)
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We also remark that assumption (d) in Theorem 1 is always verified for the
typical constraint set of dynamical network equilibrium problems (see [8, 9, 10,
11, 19, 20, 31, 32, 33, 40, 41, 42]), namely for a constraint set of the type

K@) —{oc eR" ;) > 41,7 =1,...,m;

(4)
D mit) =di®),.... Y at) = dl(t)},t €[0,71,

Jedu Jed;

l
where (JJ; ={1,...,n}, J,NJ, =0, for h #k, provided that the functions
=1
d;@®), 2;(¢) : [0, T] — R* are assumed to be Lipschitz continuous and d,#)—

> 24i®) >0, h=1,...,l. In Section 3 the variation rate of projections onto
Jedn

constraint set (4) will be discussed by means of a Lagrange theory approach for
suitable optimization problems.

Giving a thorough analysis about the origin, the outstanding development and
the well-recognized utility of variational inequalities is out of the scope of this
paper, however, for the sake of completeness, we refer to the works [11, 21, 22,
26, 30, 33] and the references therein.

This paper aims to present some outcomes on sensitivity analysis and, of
course, a comparison with previous and well-established results is necessary. It
is impossible to list here all relevant references devoted to sensitivity analysis,
we refer only to some of them that, in our view, are particularly influential or
good entry points to the literature ([14, 15, 16, 17], [27, 28, 29, 30], [34, 35, 36, 37,
39, 39], [43, 44, 46, 47, 52, 53]) and, in the following, we focus our attention only on
those papers which contain an updated survey.

In [29] Section 6, local differentiability results for variational inequalities
with perturbed constraint sets are presented, assuming, in addition to the
Lipschitz continuity on data, the existence of first and second derivatives with
respect to & and the parameter. Moreover, a strong regularity condition is
required. The technique is based on the fact that the variational inequality can
be rewritten as an equivalent generalized equation, provided that the
Lagrange multipliers exist.

The comprehensive paper [44] contains an updated review of the state of the
art on sensitivity analysis and Section 5 is devoted to continuity and differ-
entiability properties of solutions to parameterized generalized equations. Also
here, in addition to a constraint qualification condition, differentiability as-
sumptions on data are necessary in order to get local Holder continuity and
Lipschitz continuity. The results are obtained by means of a deep study of the
corresponding contingent derivative multifunctions.

Papers [52] and [53] deserve particular attention. In these papers, the author,
under the same assumptions as ours, but considered in a local sense, shows the
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local Holder continuity of degree % of the solution in [52], and the Lipschitz
continuity when the constraints set is of type K(1) = {x > 0: Ax > 1} in [53].
These results contributed to the outcomes of this paper, even if they are related
to particular cases.

Finally, paper [35] contains a result about the directional differentiability at
the point considered of the perturbed local solution set under second order
regularity assumptions.

The result obtained in the present paper can also be considered from another
point of view, namely as a regularization result related to the variational in-
equality:

T
(5)  Find «'(t) € K such that [ (F(t,@" (), — 2" (0)dt >0, VoK,
0

where

K {x € L0, T1; R™) : w;(t) > A4(t), a.e. in[0,T],j=1,...,m;

(6)
> ait) = di®),..., Y w®) = di(t), ae. in [0, T]}.
Jjel1 Jed
!
UJ;=11,....n}, Jindp = 0,for b # k,d;t), 4;(t) > 0a.e.in[0,T],7=1,...,mn,
j=1
di®) — > 4i(®) > 0,a.e.in [0,T], h=1,...,L
jele
The above variational inequality expresses in a unified manner time-depen-
dent network equilibrium problems, such as the traffic equilibrium problem, the
spatial price equilibrium problem, the financial equilibrium problem, the Walras
equilibrium problem (see [11] for details).
Variational inequality (5) can be equivalently written as

(7) x'@t) e K@) : (Ft,x*®)),x —ax*®)) >0, Vaec K({),a.ein[0,T],
or, assuming data to be continuous, as follows
(8) x*(@t) e K@) : (F(t, 2" @), x —ax*@®)) >0, Ve K(),Vtel0,T]

Therefore our main result, on the lines of Theorem 6 in [2], shows that the so-

lution x*(t) € L2([0, T1; R™) belongs to C°([0,7T],R") and dz(t)
L=(0, T1, R"). t
In this paper we also consider a notable extension of the time-dependent
variational inequalities, including the presence of a memory term (see next
section), which expresses how the current-time model is affected by the behavior

belongs to
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in the previous time interval. In this case the variational inequality problem has
the form

x'(¢) e K:

© I :
f ((C(t, T, — @) + < f It — s)e*(s)ds, x — x*(t)>> dt > 0,vx € K,
0

0
or, equivalently, since K is the constraint set of the equilibrium problem,

x'(t) e K@) :
¢
(10) (Ct, "), x — ") + <f[(t — s)x*(s)ds,x — oc*(t)> >0,
0

Va € K(t),a.e in [0, T1].

Here I is a nonnegative definite » x % matrix with entries I;, € L*([0,T], R).
The resulting problem explicitly takes account of the contribution of the
equilibrium solution from the initial time to the observation time and includes it
in the operator (which can represent, for instance, traversal path cost in trans-
portation problems; utility or risk aversion in financial equilibrium problems;
supply excess or demand excess in economic market equilibrium problems) as an
adjustment factor. In fact, problem (9) can be regarded as a variational inequality
whose operator is the generalized function F'(t,x(t)) : [0, T] x R" — R", with

t n
Fi(t, x@®) = C;(t,x@)) + f Y It —s)x(s)ds, j=1,...,m. As a consequence,
0

r=1
problem (9) describes a network model governed by the typical equilibrium
conditions satisfied by the generalized operator. Also for this generalized pro-
blem a Lipschitz continuity result holds. In fact we are able to show the following
theorem.

THEOREM 3. — Let us suppose that assumptions (a)-(d) of Theorem 1 hold
and, in addition, let us assume that
(e) I is Lapschitz continuous on [0, T, namely there exists L > 0 such that,
fO’}" t1,to € [07 T]
[1(t2) — I(t)]| < Ltz — ta.
Moreover, I is nonnegative definite for any t € [0, T]. Then the unique solution

x*(t) to (10) is Lipschitz continuous on [0, T] and the estimate (2) holds, with
constant y = yla, B, M, T, L, ||| coqo g1.mny)-

The paper is organized as follows. Section 2 focuses on the interpretation of
the memory term and its theoretical implications on model description. Section 3
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is devoted to estimate the variation rate of projections onto time-dependent
constraint sets describing the most common network equilibrium models.
Section 4 presents our main theorems on Lipschitz continuity of the solution, and
Section 5 provides a numerical example. Finally, Section 6 draws conclusions and
suggests some possible research issues.

2. — The memory term in network equilibria.

The theory of an elastic body was pioneered by Boltzman [3, 5] who gave a
first mathematical formulation to hereditary phenomena, where the deforma-
tions of a body are studied along with the history of the deformations under
which it was subjected in the past. Later Volterra [48, 49, 50] gave his con-
tribution to the theory of elasticity, introducing some hereditary coefficients in
form of integral term in the constitutive equations for an elastic body with
memory. Starting from the 1960s, see [7, 18], the principle of fading memory was
advanced, suggesting that a body is able to recollect only its recent past and thus
all the history before can be neglected. As a consequence, the memory term
represents only the history in the time interval (0,¢) and all the previous events
cannot affect the body behavior.

Since then, notable applications in different fields have been studied. In
economics we may refer to [4], where the dynamics of market adjustment pro-
cesses are described via a Volterra integral term. More recently, the integral
memory term has been used in order to represent some physical characteristics
of the quantities involved in mechanical and engineering problems. For instance,
it may describe the relaxation tensor in viscoelastic contact models as in [1], or
the conductivity of an electrolyte in electrochemical machining as in [23, 46].

Inspired by these applied problems, we suggest to introduce the memory
integral term in the framework of network equilibria, thus leading to a re-
finement of the model. In fact, we explicitly incorporate the contribution of
flows from the initial time to the observation time ¢, which causes the presence
of the memory term. Hence, we are able to analyze how the current equili-
brium solution is affected by past equilibria. We remind that the most common
equilibrium problems, expressed in terms of evolutionary variational in-
equalities, (see [45, 51]) have the form:

T
Find 2°(t) € K : f (Ot "),z — (D)L > 0, Ve K.
0

Therefore, it turns out that the first effect of the presence of the integral term

is the adjustment of the operator C(t,x(t)) which becomes C(,x(t))+
¢

f 1(t — s)x(s)ds. This means that network agents do not only incur in the cur-

0
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rent-time dependent operator, but are also subject to the impact of all previous
equilibrium solutions. As a consequence, the underlying equilibrium condi-
tions (e.g. Wardrop principle, Walras low, market equilibrium conditions) are

t
required on the full operator F;(t,x(t)) = C;(t, () + f zn: L;.(t — s)x,(s)ds,
j=1,...,n. 0 r=1

It is also worth emphasizing the role of the matrix I(t — s). In fact, the entries
I;.(t — s) can be regarded as continuous weights acting on solutions and allow us
to represent the history of the past equilibrium patterns and their influence on
the current one. The meaning of the integral term is then justified: it expresses,
by means of a relaxation over the time interval (0, t), the equilibrium distribution
in which network agents incur at time ¢, and, hence, the effect of the previous
network situation on the present one.

The memory term is also strictly connected with the concept of time shifts
and delay patterns. In fact, the integral term represent the displacement,
namely the delay, of the equilibrium solution trajectories, due to the previous
equilibrium state. Therefore, delay effects are not only regarded as pertur-
bation factors for the constraint set, see [40] in connection with traffic net-
work problems, but can also be interpreted as adjustment factors of opera-
tors.

3. — Estimate of the variation rate of projections onto the equilibrium
problem constraint set.

This section is devoted to estimating the variation rate of projections onto
time-dependent constraint sets [Px] describing the most common equilibrium
problems. The typical form of the set of feasible solutions in network-based
models is as follows (see [11]):

K() :{x(t) ER"ai(t) > 4. j=1,....m
(11)
D mit) =di®),.... Y at) = dl(t)},t €[0,71,

Jety Jed;

!
where JJ;j={1,....n}; JNJp=0, for h#k; d;(t), @t :[0,T]— R,

J=1
J=1....m d@®)— > 4 >0, h=1,....1, and |Js| =ns, s=1,...,], being
Jjed
|/5| the cardinality of the set J;.
Without loss of generality, we can assume that dy(t), t € [0, T1], is stricly
positive and Lipschitz continuous with Lipschitz constant Lg. It is
also noteworthy that K(¢{) can be reduced to the case where x;(f) >0,
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j=1,...,n, with the transformation aq;-(t) = x;(¢) — A;(t) and under condition that
Yt =di) - > 4 >0,s=1,...,L
Jjeds Jjeds

PROPOSITION 1. — Let z be an arbitrary point in R". Then it results
! I
| Prtn(2) = Pran@)|| <Y vialda(te) = do(t)] < V/naLilta — .
s=1 s=1

PROOF. — We start with determining the projections of a point z € R" on the
sets K(t1), K(to), t1,t2 € [0,T1], t; # to. To this end, we use the following well-
known characterization Pk (z) = arg m}{r&) Iz — ]|

xre

We first project on K(t1) and observe that
(12) K1) = Kg,(t1) x -+ x Kg,(t1),
where,
de(tl) = {x(tl) eR™ . .’)Cj(tl) >0,7=1,...,n ij(tl) = ds(tl)}, s=1,...,L
Jeds

Therefore, the minimization problem of our interest, min,cxg,) ||z — x|*, may
be written as

. . 2 . 2
13 min ||z —z||?= min 2 —xi(t1))"+ -+ min 2z —x;(t))".
08)  mip Iz =+~ _min 3~ (5 —a0) i, 2 e =)

Thus, we are entitled to solve independently / minimization problems. We start
with fixing s € {1,...,{} and setting J; = {1,...,n,}, then we solve the problem

N

. 2 . 2

14 min zi —xi(t1))” = min 2 —ai(ty))".
(14 weKi, () &5 (5 — 2i(t) weKyy ) (2 — xj(t)

Now we make the following change of variables

y1(t1) = 21(81)
ya2(t1) = x2(t1)

Yn, 1) = 21(1) + 22(ty) + - - - + 2, (G) = ds(ty),
thus we have

x1(t) = y1(t)
w2(t1) = ya(t1)

X, (81) = Yn, (1) — y1(E1) — y2(t1) — - -+ — Yu,—1(E1).
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For the sake of simplifying notations from now on we set x;(t;) = x}, xi(tz) = acf-,
yit) = yj, yit) = y3,j = 1,... ,ms and dy(ty) = dj.
ng—1
Since x}, > 0 and y,lZ = d}, it results that Z yjl < dl. Hence, the constraint
set becomes =1

ng—1
(15) K (t) = {yl ER™:yf >0,j=1,....n— Ly, =di; Y ¥} < d;}.
j=1

The minimization problem we have to solve is

ns—1 2 Mg —
(16) min (Z (y]l — z_,) + (di — 2p, — Z y]> )
yreKq () N j=1

The Lagrangean function associated with problem (16) is

ng—1 2 Ns
Loy, m) = (y} - zj> ( — 2, — Zy])

j=1

- Z Aty + ﬂ(h)( Z Y - >7

where A(h) € R, and u(ty) € Ry We set Zi(t1) = A} and u(t) = u!

Then, applying well-known results on Lagrangean multipliers (see e.g. [12,
13] and [25] Theorem 5.3 and pages 169-172), if 4! denotes the minimal point of
problem (16), there exist 2' € R""!, i € R, such that

aﬁ Ng
12(?/}—2]-)—2(0& Zyj>—)1+,u =0, j=1,...,n5—1,
8%’ J=1

and it follows that
ng—1 /'{1 ,Ul
1, 7 1.7 o
(17) yj—z]—kds—zns—z%—k?—i, j=1...,n—1

Jj=1

Now summing up for j =1...,n, — 1, we find

ny—1 ns—1
nl 2% 1\, 1 > G 1
D G Ll G e el U 3
and substituting in (17), the solution may be written as
dl Sl i ns_li} 1
(18) gl = 7+n—i—%— 72 ! 5—%-5@@, j=1,...n—1
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In order to further simplify notations, we assume that = *, which does not depend
on j,dl, d?, is equal to zero and we set

s 77s)

a5
1_ . s J= s
U-7_zf+n_:_ w j=1...,ms—1,
thus the solution becomes
ns—1 1
i 21 4 i
1_ gl 9 I= _ i — _
(19) y]-—U]+2 T j=1,...,ms—1.

It is worth noting that the following constraints also hold: )f >0,
ns—l

J=1 =Lyl >0,j=1,... m =1 Ayt =0,j=1,...,n,—1; ¥ y}-
.nsfl J=1
d: <0; 4t >0; ul( >y - ) = 0. Now, projecting the point z on the set
j=1

K(ts), we find the solution

)2 2’112 2
2 2ng 2ng
where
N
z.
&2 7121 !
U7 —Z7+—_ ) :17 _1
T Mg Uz

/12 = )2 (tz) and 12 = u(ty) are the Lagrange multipliers associated with the con-
stramts of the set

@1) Ky (t) = {y2eR”°‘ Y= 05=1,...m— Ly =dZ; Zy] <d2}

We observe that without any loss of generality we can suppose d} <£lf, so that
U; 1< U;. 2. First, we consider the case in which there exists some index 7 such that

U 2 < 0 and show that y = y = 0. In fact, if we suppose by contradiction that
y y >0, then}1 = )2 =0. Thus by (19), (20) and being U1 < U2 we would have

ng—1
2
1 ]Z: ;b w! 5 5 ]; i 12
—ygl_= < 2= " ~
y U 20 20 0, Y; U7 2ns  2ng ’

which is an absurd assertion.
Now we introduce the sets
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Thus, if j € I, then y = y =0. For j € I, the projections on K(t;) and K(t2)
assume the subsequent reduced forms:

1 1., %4 2—1: g u
?/]:Uj‘kéj_#zm —2’7 ifjel,,
(22) ng—1
9 0 N Zl: i 2 ep -
%ZU;"‘%_—JE% —2‘7—% ifjel,.
Therefore, we can study our problem assuming U2 >0,j=1,. —1 and

obtain, as a particular case, the study of (22). Hence, We can conﬁne our study to
following cases:

1
P Z)“i 1
TR 5 S e R S S S |
N Mg
23) L2 2 2’ v
( ns—1
da_Z;z}'
U=z + =1, ,m—1;
J J N J 5
ns—1
2
12 = J 2
2 e H
[y _ = =1,... -1
Y; f + 5 o 2, J > , Mg
(24) 2
: ns—1
da_;z}
U? =2+ T UF>0, j=1,..,m—1

Taking into account that it is impossible to have

ns—1 Ng—

2:U1<d1 and ZU2>0Z§,
we only have to study the following cases:
ns—1 ns—1
L Y Ui<di< Y Ui <dj
= =
ns—1 ns—1
2. Y Ul< Y U? <dy<di;
= = |
ns—1 ns—1
8.dy< Y U< Y U <d
SRS

ns—1 ns—1
4. dl < 21 U} and 2; U? > d;.
J= J=
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CASE 1. — We introduce the sets
={j:1<j<n,—17 >0}
Jy=1{j:1<j<n—1,2 =0} ={1,2,... .ns— 1} \ Jo,

and denote by ¢ the number of elements of Jy. If j € Jy, we get y]l =0 and
summing up (23) for j € Jy we obtain

— 14
S0y =0= 30+ S i

J€do Jj€do s Jjedo
and hence, being
1 1 l
2 _ Ao L sp_o_ ¢ .
(25) 2n97€zJo R T éjesz Uj 2ns(ns — ()’u ’
we get
s 1 1
2 l_o=pt4+2L S
(26) Yi lhﬁ+m4§% 20, — )"
and, also for j € J, we have
1
1 1
(27) =Ul + 762;U mngw)

Taking into account that yjz = sz, as (U3, ..., Uirl) € IN{dE, we obtain for j € J,

il
@) =g =V U -2 S U
5 J ’
Now, let us remark that
1 2 1
(29) Sur=> Ui~ Mﬁ¢>ﬂwﬂ@

jedo jedo s s s

Thus, if 4! =0 and j € Jy, we get from (28) and (29)
d2 dl Ld? 0d}!

1
s s 2 g1
vy < ne Mg e Netg —0)  ng(ng —0) g — E(ds d)

and
vy =y >0

Analogously, if j € J, and x! = 0 we have

1 1
2_l=_p2_ypyl— le_ = (@B-dt
-4 =0 = U} - 30 < -
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and, from (23), we derive

Ng—

)
2 1 _ UZ Ul Z Ul dz dl
Y~y =Y U gns e T T
ns—1
If u' > 0 and hence )_ y;j = dy, from (27) we get
j=1
Ng— 1 ZJ U71 1 é
1 J&ho - 1
;y] ZU i 2"
and
1-/ 2 Ul
1 Ns—1—4 4 1 Jedo
I
LR R e
from which we obtain Y- U} <0.
J€do !
Being Z yj = dy and Z U} <d;, we get
= P
1
(30) S S HEZ""Uj fiUl
25 —0)  ng— L1\ "y )
and from (25), (26) and (30) we obtain
ng—1
21U > Ul
IO R R S & B S
T T T =1 -1 g —t—17 7
ns—1
o Yo
1 _ 1 jEJ(] . j:l s .
L vy s Ry ey gy SR AS
Therefore, if j € Jo, since %7 = U? and (29) holds, we have
2 _ 1 omg—1
Yi =Y < e — 1= 1)(ol dy),
and y7 —yj =y > 0. Analogously, if j € J, we get
ns — 1 9 1
Ry oy L
and in virtue of (23) we find:
ns—1 1
7.:2:1 1-7' ,ul dZ _ dl
yi—y =0 - U+ — gy 22—

2n, 2ny Mg

57
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CASE 2. — Tt is analogous to the previous one and therefore the proof will be
omitted.

CASE 3. — Now let us suppose that
ns—1 ns—1
1 1 2 2
ds<2Uj<ZlUj <d;.
Jj= Jj=

From (23) we get

ng—1 Ng— ng—1
S S 1 'S n
1 ]
Z y] Z Uj + 2ns Z i =
J=1 J=1
and hence ! > 0, Z y] d}. Introducing as done before the sets Jy and J ,, we
j=1
derive (29), (30), (31) and (32). Therefore if j € Jy we obtain
2ng —
2,1 2 _

and y? -y} =y > 0. Analogously, if j € J,, we get
2ns — 1

B S ==
and taking into account (23) we may write
ns—1
Z ;1 1 d2 dl
R = T R

ns—1 ns—1

CaSE 4. - Now let us suppose that dy < ) U} and Y U7 > dZ. Summing up (23)
=1 =1

and (24) forj=1,...,n; — 1 we find

ng—1 ns—1

N L 1_ns_11
;: ZU 23;’1]' zns'u’

Ng— Ng—

S-S ureg S st

and hence, by dl< Z U} and Z U? > dZ, we get u' >0, 4#>0 and

ns—1
-21 yj = Z y; =
J=
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Thus we obtain

y>0j=1..0-1 ¥ y =d

59

2
2 ,Zl’lj ﬂz
2 _ 2 o)== 2
Yi=Ui g T T,
2 S 2
y; >0,j=1,...m5 -1, g%:dé
ng—1
JE>0,75y =0, = ,...ns—l,,u2>0,<;yf—d§>u2:0,
]:
namely vectors y' = (y,....y} ), ¥* = @5, ...,4% ;) are solutions of two
Iy veetors o' = (b, k ) 7 = @h...12_y) are solutions of ¢

problems of the same type of (13), for which we can repeat the above procedure
obtaining again a problem of type (19) of dimension ng — 2. After ny — 3 steps, we

are led to a two dimensional problem that we can completely solve.
In fact, for ny, — 1 = 2 we find

Al )t A a4l )
1 g1, M M 2 1_gqil 2 _ "1 2 _
yl—U1+2 % & Ys U2+2 5 G

Now, two cases may occur.
a) If y1, 9} > 0, then we have
1 1 ﬂl 1 1 ﬂl 1 1 1 1 1 !
?/1:U1—€, Ys = Us — Yty =d;=U;+U, ——
hence

Ul +U; —dj
w=3Ul+ Uy —dp,y =Vl ————2— = U 5

Now from the positivity of ] and 3, we find the following conditions
Ul - U +d >0,U) - Ul +d! >0,

which imply that
Ui —Us+d2>0,U; — Ui +d: >0,

[ UL+ UL -dl
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which in turn amounts to say that also %%, %5 > 0. In fact,
0<Ul -Ul+dl =2 —2+di<zy —2+d2 = U — Us +d2,
0<Ul—Ul+dl =2 -2 +dl<zme—21 +d=U2 - U +d?

and it is easy to see that it cannot be 42 = 0, y% = d2. We suppose by contra-
diction that 4% = 0 and % = d?, then we have

gl s
2 _ 772, M K 2 _ 42 _gpr2_"1_ 7~
yI*O*UlJFS 6’ Ys ds U2 6 6’

2 2

Yty =dt = lﬂ+U?+%—%a

Therefore,

72 2 2 _ 42 )2
R R - S R R L S S

6 2 4
From the last inequality and the nonnegativity of ﬂf, we get

2 2 12 2
A g U+ U;—di
- Ui
which contradiets with U? — U% + d2 > 0. Thus, the solution is
G+ U;—-d2 5, , UR+U5—d?
o REUi T

> 0,

yi=Ui -

Hence,

Ui-u =" Uiy 20,

A1 ot
n=0=Uity-T w=d=-U-g-%
A 1
YL+ = m+@+€—%.

Therefore,
/11
ﬂh_05+%+——w>

lﬁ+L@—@+j}

21 UL+ U3 -di A
2 1

1771
Yy =0=U; 5 1
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If we also assume that 42,5 > 0, then we have

2_U%+U§_d§ 2

U? + Us — d2
yi = Ui D) T ;"

Consequently,

& — d!
Y-y <=5 ¥ =y 20,

If we assume that 3 > 0,43 = 0, reasoning as before, we get
22
_S(Ul2 + U2 +%— d§>,

U3+ Uz —-d2 %%

A U3 +U; —d2 /]
2 4’

= =03 - gmo=uvp- A=t A

Now, we observe that with easy calculations we find

1 1 g1 2 172 _ g2
,1%:4(_[]%_4_%) >4<_U%+W>:,ﬁ,

Therefore,

In conclusion, since
90}:21717 j:]-a"'ans_l, x?:yjza jzlv"'ans_la
it is proved that
ngjz-—x}<d§—d;, j=1,...,ms— 1.

For j = ng, we have

ns—1

> —yp

=1

2

1 2 1 2 1
‘xns - xns| < |ynS - yn5| + <n3|ds - ds|

Therefore, by (13) and Lipschitz property of d, we find

| Pk)(?) — Prt)@)| _H arg mln ||z — x| — arg Hll{l(n) llz — x”?H
2

! I
<Y Vg |dE = dy < g Lty — ).
s=1
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REMARK 1. — Following Theorem 4.51 in [6], one can try to obtain the same
result considering the problem

.1
min - |z —x|* st. Ax + b € C,
xeR"

where C is the polyhedral convex cone of the form {0} x R"}, A and b are, re-
spectively, a matrix and a vector which express the constraints in K in the form
Ax + b € C. However, the procedure does not work in our case, since an essential
assumption for its effectiveness, namely the linear independence of the rows of A4,
fails. In fact, we are dealing with a degenerate case and, for this reason, we need a
direct proof.

4. — Main results.

In this section we state and prove our main outcomes. We first prove
Theorem 1, which gives a Lipschitz continuity result for the solution to problem
(8) and, subsequently, Theorem 3, which furnishes a similar relationship for the
solution to the variational inequality problem with long-term memory (10).

ProoF oF THEOREM 1. — Characterizing the solution to problem (8) in terms of
the projection operator on the time-dependent set of constraints K(2),
t =1t1,t €[0,T], it results

x*(t1) = Pray@*(t) — AF (1, (1)),
x*(te) = Pg,)(@*(t) — AF (t2, x*(t2))),

with 2 > 0. In order to simplify notations, we set Ax* = x*(t2) — x*(t;) and
h =ty — t;. Hence we may write

2

Ax*
h

_ H Py @ (t2) — AF (b, 2" (2))) — Pray @ (t2) — AF (2, 2" (82))
B h

2

L Proy(@*(t) — AF(te, 2" (t2))) — Pra,y(x*(t1) — AF(t1, x*(£1)))
h

< <H Pry@(t2) — AF (b2, 2" (t2))) — Pra,(@* (t2) — AF(t2, 2% (t2))) H

).

Py (t2) — AF(t2, 2% (t2)) — Py (@ (1) — AF (1, 2% (£1)))
h

4
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Using inequality (@ + b)* < 2a2 + 2b2, hypothesis (d) and the non expansivity
of projections, we continue the inequality chain as follows

|

(33) +2H

2 2

Ax*

<9 P,y (te) — AF(t2, 2" (t2))) — Pry(@*(t2) — AF(t2, " (t2)))
h

| i

Pray@*(te) — AF(te, 2" (t2))) — Pra,y(x*(t1) — AF(t1, x*(£1)))
h

2

Ax ; F(ta, x*(t2)) — F(t1, 2" (1))
h ’ h

2

< 2Pkl + 2‘

We now estimate the squared norm appearing in (33).

i

de Flty, 0 () — F(ty, 2" () |

h h

2

Ax* Fty, x*(t2)) — F(ty, 2" (t) ||?
h h

_22< Ax* F(tp, " (t2)) — F(ty, 2" (t)) >
h’ h

2
+/12<

+H F(ty, 2" (t2) — F(t1, 2" (1)) ’

/12

Ax*
h

’ F(ta,x*(tz)) — F(t1,x*(t2)) H
h

h h I

Y < dx* F(ty,x*(t) — F(t, (1)) >
(! h, 5 ]’L .

Using inequality (a + b)* < 2a2 + 2b2, assumptions (a)-(c) and using inequality

)2 ) < At Fty, o () — F(t1, 0" (t2) >

1
ab < ea® + 4_sb2’ with ¢ > 0 sufficiently small, we get

de Py, (t) — F(ty, 2" (t) ||
I I
x 12 % (12
< |20 42 (2na2 ) 2 + 27| 25
I I
da || || Ftz, @ (t2)) — Fty, (1) A |?
m\ : H . H m‘ :
A |[? A
< ’ Z (1 + 2026 — 2Ja +2/1£> + 1|2 oo .00 M <2/12 +%>.
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In conclusion, we obtain

. A
119 | Gogo ey M (2’12 + 2_8):| '

2 2

(1+22%% — 200 + 22¢)

*

Ax* Ax

h

< 2Pk +2 H

It is easy to verify that for opportune values of 1 and sufficiently small values of ¢

it results that 2(1 4+ 24242 — 224 + 24¢) <1, hence we have

i

where ¢ = (1 —2(1 + 2228 — 2/a + 218))71.

Ax*

2
* ;L
< 2c[PxT? + 2¢|x Hzcv([o,T];][a”)Mz (2/12 + %> )

1
Then, setting ¢ = max {c(l +7n), c(l + %>M2 (2&2 + %) }, we get

2
_ 2 — 2
< APkI” + el |[eoqo 7m.r7)-

|5

We are now able to extend the above result to problem (10).

ProOOF OF THEOREM 3. — The proof proceed similarly to the previous one.
Reasoning as before, after some steps, we obtain the following relationship:

‘ G(tz) — G(ty)

h
where ¢ = max < 2¢,2cM?( 2% + - ,2¢ L +222) %, with &, >0 suffi-
281 262

2 2

Ax*

b

<[Pk + ¢’ H%‘O([O,T];R”) + CH

ciently small.
By assumption (e), it results

H G(tz) — G(t1)
h

tz tl
‘ = ﬁ H f Ity — s)x*(s)ds — f Ity — s)x*(s)ds
0 0

t1 t "
— |1h|‘ fI(tz — s)x*(s)ds + f I(ts — s)a*(s)ds — f Ity — )" (s)ds
0 4 5
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f Mtz — ) — Ity — )] o (5)]ds| +

f 12 = 92" ()] ds

< Lf 2" ds + (11| cogo 7.rmm 12 oo, 7. 1m)
0

< (TL + |1l ooy 1" | oo 1.y

and finally we get

5. — An example.

A ||?

- 2 - 272 2 2
<el[PklI" + (C + (2T°L* + 2”IHCO([O,T];]R”’X"))) 1" ¢ogo.71.07)-

In this section we discuss a numerical example. Let us consider the time
interval [1/5,4/5] and introduce the operator C(x(t) = (Ci(x(t)), Co((®)))T,
where

Ci(x@®)) = 3x1(®) + b2 @) +4,  Co(x(®) = b1 (t) + 3a2(t) + 1.

The integral terms are given by
t t
Gia®) = [ (1 +t—sh(s)ds, Galw®) = [ @+ - 9a(s)ds,
0 0
with

0 24+t—s|

14+t—s 0 ]

It is immediate to prove that C satisfies assumptions (a)-(c) and [ fulfills (e) of
Theorem 3. We also suppose that d(t) = 10t, so that the constraint set is

K= {x € LA([0, T1; R?) : y() + wo(t) = d(t), ae. t € [1/5, 4/5]}.

Thus, we have to solve the following problem

T

f {(C(t o), @ — (D) + <f1(t—s)x (s)ds, x — x (t)>]dt>0
0
Ve € K.

The numerical treatment and the computer aided simulations are beyond the
scope of this paper, however, we address the reader to [1] for a discussion on a
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fully discrete approximation. By applying the direct method, we find the solution

. ; 3 20t + 3t . . 3 206+ 3t
xl_xl(t)_5t+1_44_tv 902—962(75)—515—14—4—_[4/
Now, we measure the rate of change of amount of flows x. Proceeding as in
Section 3, we find

. x; —ay + 10t 108 — a7 + @
PK(tl)(x ) — < 1 2 1 1 1 2 )’

2 ’ 2

N x; — a5 + 10ty 10t — a7 + @5
PK(tz)(«')C ) _ ( 1 2 2 2 1 2 )7

2 ’ 2

Pr)(@*) — Prg,y(@®)
to — 11

’:5\/2,

and hence also hypothesis (d) is verified. Therefore, we may apply Theorem 3
and deduce the existence of path flow derivatives.

6. — Conclusions.

In this paper we focused on Lipschitz continuity of solutions for a class of
parameterized variational inequalities with perturbed constraint sets.
Continuity and regularity properties are fundamental in applications as they
ensure a better understanding of solution behavior and allow us to predict
changes in the time horizon. This is of paramount importance especially in the
study of network equilibrium problems, which, as it is well-known, can be ex-
pressed in terms of variational inequalities.

Using projection arguments we were able not only to prove that the solution
da*(t)
dt
for the first time, the memory term approach appears in the formulation of
network-based equilibrium problems. As a result, the contribution of the equi-
librium solution from the initial time to the observation time is integrated in the
model and interpreted as an adjustment factor of the problem operator. In ad-
dition, we estimated the variation rate of projection operators, which allowed us
to monitor and control the behavior of the constraint set, as well as to prove

solution derivatives’ existence.

Future extensions of the work include the following issues. First, the
memory term model can be applied to a specific network equilibrium frame-
work, such as the financial equilibrium problem, so as to detect new solution
properties and model interpretations. Second, the variational inequality pro-

belongs to C°([0, T], R"), but also that belongs to L>°([0, T']). In our paper,



GLOBAL LIPSCHITZ CONTINUITY OF SOLUTIONS TO PARAMETERIZED, ETC. 67

blem with integral memory term can be reformulated under a different
structure of the convex set K.
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