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Convergence of Vanishing Viscosity Approximations
of 2 x 2 Triangular Systems
of Multi-Dimensional Conservation Laws (¥)

G. M. CocLITE - K. H. KARLSEN - S. MISHRA - N. H. RISEBRO

Abstract. — We consider a multidimensional triangular system of conservation laws.
These equations arise in models of three phase flows in porous media and include
multi dimensional conservation laws with discontinuous coefficients as special cases.
We study approximate solutions of these equations constructed by the vanishing
viscosity method and show that the approximate solutions converge to a weak solu-
tion of the multi-dimensional triangular system.

1. — Introduction.

In this paper, we consider the 2 x 2 trangular system of conservation laws of
the form,
A+ div(f(w)) = 0, reRY t>0,

(1.1) o + div(g(u,v)) = 0, reRY t>0,
u(,0) = up(@), v(@,0) = vo(x), = e RY,

where  and v are the unknowns, and the flux functions are f = (f, f, ..., fv) and
g=1(91,---,9n)-

Equations of the type (1.1) arise while studying flows in porous media. In a
multi-dimensional porous medium, the equations for the phase saturations are
2 x 2 systems of conservation laws with coefficients that are determined from an
elliptic pressure equation. See [4] for details on the model. A simplified version of
the fluxes in the saturation equations leads to a model where the gas saturation is
independent of the other phases and results in equations of the form (1.1).

From (1.1) we observe that the evolution of % is independent of v, but the
evolution of v depends on u. Writing (1.1) in quasilinear form we have

N
Ui+ > AU, =0
i=1

(*) Plenary lecture at the Joint Meeting UMI-SIMAI-SMAI-SMF (July 5, 2006).
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where U = {u, v} and the directional Jacobians are given by

of;, 0
A = we .
! <6ugi 81)971)

The matrices A; are lower triangular, and therefore such systems are called
triangular systems. Furthermore, the eigenvalues of the matrixes A; are real,
and the system is hyperbolic. Since the eigenvalues can coincide, the system is
not strictly hyperbolic. Non-strictly hyperbolic systems present many difficulties
even in one space dimension. In general, it is very hard to prove rigorous results
for systems of conservation laws in several space dimensions. See e.g. [2] for
more detailed information.

A special case of the above system occurs when we take f = 0. In this case, the
system reduces to a multi-dimensional scalar conservation law but with a spa-
tially varying coefficient % which can be discontinuous. Scalar conservation laws
with discontinuous coefficients arise in a wide variety of contexts including two-
phase flows in heterogeneous porous media, modeling of clarifier-thickener units
and in traffic flow. In one spatial dimension such equations have been studied in
several papers. An incomplete list of papers includes [1, 3, 6, 7, 11, 12, 15, 16] and
other references therein.

Scalar conservation laws with discontinuous coefficients in several space
dimensions have not been that widely studied and the theory is not as well-
developed as in the one-dimensional case. In [10], the authors considered a
scalar conservation law in two space dimensions with discontinuous coeffi-
cients and obtained existence of weak solutions by showing that vanishing
viscosity approximations converge. In [14], the author was able to treat a
multi-dimensional scalar conservation law with discontinuous coefficients in
both space and time. Existence of weak solutions was shown by proving
compactness of approximations generated by smoothing the coefficients and
adding vanishing viscosity. The compactness technique in [14] uses the tool of
H-measures extensively, and we adapt this compactness framework to the
situation herein.

In one space dimension, the triangular system (1.1) was considered in [9].
Existence of weak solutions was shown by constructing finite volume schemes
and showing that the approximate solutions generated by these schemes are
compact and converge to a weak solution.

In this paper, we consider a different approximation of (1.1) by studying the
following parabolic system,

O, + div(f(u,)) = e, reRY, t>0,
(1.2) O, + div(g(ug, v,)) = edv,, xeRYN, t>0,

(2, 0) = U (), V.0, 2) = vg,(x), xeRY.
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This system represents a viscous regularization of the conservation laws. We are
interested in the behaviour of the approximate solutions when ¢ — 0 i.e., the
vanishing viscosity limit. Under suitable assumptions on the fluxes and the initial
data, we show that the approximate solutions generated by the viscous ap-
proximation (1.2) converge to a weak solution of (1.1). This result provides an
alternative proof of existence of weak solutions of (1.1). Our main tools are the
use of entropy estimates and the compactness framework developed in [14].

Furthermore, this paper is a prequel to a forthcoming paper where we will
consider finite volume approximations to (1.1). Working with viscosity approx-
imations is technically simpler than working with difference approximations, but
the core techniques are similar. In this way, the present paper serves as a mo-
tivation for our work with finite volume approximations.

The rest of the paper is organized as follows, in Section 2, we outline the
mathematical framework for the rest of this paper. The main convergence the-
orem is stated and proved in Section 3.

2. — Mathematical Framework.

We assume that the initial data in (1.1) satisfy the following assumptions.

(A1) feC\(-M MLERY), g e C3( - M,MP; RY);

(A2) Oug(,£M) = 0,9(£M,-) = 0;

(A.3) 812m 9(-,v) is Lipschitz continuous for each —M < v < M,

(A4) g(u,-) is genuinely nonlinear for each —M < u < M, namely the map
ve[—M, Ml (gu,v),&) is not affine on any nontrivial interval for
every—MgugMandéeRN, €] =1,

(A5) up € BVIRY) N LY RY), vg € LARY) N L2RY), [[o]] vy 120l ey
<M,

for some positive constants M and N > 1.

Furthermore, the initial data for the parabolic problem (1.2) satisfy the as-
sumptions,

u’o,éh 'UO,s S HN+1(RN)7 ||u’0,8||Loc(RN)a ||v0’£||L”(RN)S M7 &> 07

(1) SUp || Vato, | vy S| V0o.e| 1 vy < 0,
e>0 >0

g, — U, Vo, — Vo I LYRY ase — 0.

In particular we have that

(22) Sup”uovﬁHLz(.‘RN)’ SuPH”WHLZ(RN>< 0.
>0 >0
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We will consider weak solutions of (1.1) defined below,

DEFINITION 2.1. — Letu,v: RY x (0, 00) — R be two functions. We say that the
pair (u,v) is @ weak solution of the Cauchy problem (1.1) if

(D.1) u, v € L¥(RY x (0, 00));

D.2) u, v satisfy (1.1) in the sense of distributions on RY x [0, c0);

(D.3) for each constant c € R the inequality

Ayl — | + div(sign (@ — e)(f(m) — f(€))) <0

holds in the sense of distributions on RY x [0, c0).

We will show existence of weak solutions defined above in the next section
by proving that the viscous approximations of (1.1) converge in the vanishing
viscosity limit. To this end, we need the following result of Panov ([14],
Theorem 5).

LEMMA 2.1 [see [14, Theorem 5]]. — Let u be the unique entropy solution of
the single conservation law

1 — »N
23) {@u+dwqm»_m zeRY t>0,

w(@, 0) = uo(a), xeRY,

and let {v,},., be a family of functions defined on RY x (0, 00). If {vy} e lies in
a bounded set of Ll (RN x (0, 00)) and for every constant ¢ € R the family

loc
{0|vy — ¢| + div(sign (v, — c)(g(u, v,) — gu, )},
lies in a compact set of Hlj)g(RN x (0,00)), then there exist a sequence
{vn}pen € (0,00), vy, — 0, and a map v € LoRY x (0, 00)) such that

v, —v ae. andin L (RY x (0,00)), 1 < p < 0.

loc

We also need the following technical lemma from [13],

LEMMA 2.2. — Let Q2 be a bounded open subset of RN, N >2 Suppose the
sequence {Ly},on of distributions is bounded in W=1°(Q). Suppose also
that

En = L:l,n + £2,na
where {L1,}, o lies in a compact subset of H, \(Q) and {Lz,}, o lies in a

bounded subset of M(Q). Then {L,},cn lies in a compact subset of
H Q).
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3. — Convergence Results.

The aim of this section is to prove that solutions (u.,v,) of the parabolic
system (1.2) converge (up to a subsequence) to a weak solution (u, v) of (1.1) as
& — 0. The first step is to collect some standard estimates (see for instance [8])
regarding the viscous approximations of the first equation in (1.2).

LeMMA 3.1. — For ¢ > 0, the family u, satisfies the following estimates:
(1.) (L estimate): Let ¢ > 0. We have that
—M <wu,x,t) <M foreach x € ]RN, t>0.

(i.) (L' & BV estimates): Let e > 0 and i € {1, ...,N}. The functions
t= [loaC, Dl ey,
£ [|0n 2, t)HLl(RN)’
t— (|0, Dl 1 ey

are non-increasing. In particular, the fomily {u.},., s bounded in

L>((0, 00); L'(RY) N BV(RY x (0, 00)).
(ii.) (L? estimate): The following estimate holds

t
2
Hus(', t)HiZ(]RN) + zngvue('a S)HiZ(][{N)ds = HuongLZ(RNV
0

for each t > 0.
Furthermore, there exists a sequence {e,},cn C (0,00), &, — 0, such that

uy, —u  a.e. and in L (RN x (0,00)), 1 < p < oo,

loc

where u € LOO(RN x (0, 0)) ﬂBV(RN x (0,00)) is the unique entropy solution
of (2.3).

The next step is to prove some estimates on the approximate solutions v,. We
start with the following estimate,
LEMMA 3.2 (L™ estimate). — Let ¢ > 0. We have that
M <wx,t) <M for each x € RN t> 0.
PRroOF. — Due to (A.2) the maps with constant values M and —M solve the

second equation of (1.2). Hence the claim is consequence of (2.1) and of the
comparison principle for parabolic equations. O
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We remark that assumption (A.2) is just a sufficient condition to obtain L>
bounds and can be relaxed. Next, we prove bounds on v, in L? below,
LEMMA 3.3. — [L? estimate and Entropy Dissipation] Let (1, Q) be such that

neC¥(—-M,M), QeC3[—M MPRY),
3@, v) = dugu, V) ),  7(0) = Q(u,0) = 0.

The following estimate holds

(3.1)

t
[t onde + & [ o' @iV, Pasde < [y )de + Co, Q1.

RY 0 RN RY

foreach ¢ > 0,t > 0, where
Cn,Q) = (||77l||L°C([—M,M])||8ug||L%([—M,M]2)+HauQ”LOC([fM‘M]z)) SquHV“O»SHLl(RN)'
&>

In the special case
u?
n(u) = 9

we have that
t
2 2 2
0., D1 o, + 26 f IV, ) Zageny@s < ([0 ][22ev, + Cat,
0

for each ¢ > 0, t > 0, where

C1 = M<2MHaingLx([—M,M]Z)_'_”6Mg||L°°([—M,M]2)> SSE(I))Hv“OvSHU(RN)'

ProoF. — Fix positive ¢ and ¢. By (1.2) and (3.1)

Om(,) + div(Q(ue, v,))
7 )0, + (0uQs, V), Vi) + (9,Qu, v,), V)
= o] W) A, — (1 () Dug (U, v;) — DuQ(uz, v,), Vauy)

= 81’(77(1)5)) - 377,,(ve)|vve|2_<77/('Us)8u9(us; Ve) — auQ(um /UE)? Vus>

Integrating over RY and using Lemmas 3.1 and 3.2 we get

d 1"
% fﬂ(’ux)dx + & '7 (1);;)|va|2dx
RY RY

< (”7],||L>0([—M,M])Haug”LM([—M,MF)"’Ha%Q”Lx([—M,M]Z)) [ Vae(, Ol z1rvy-
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Finally one more integration over (0, t), Lemma 3.1, and equation (2.1) proves the
claim.
We are in a position to state and prove the main convergence theorem.

THEOREM 3.1. — There exist a sequence {&,},.~ C (0,00), & — 0, and a weak
solution (u,v) of (1.1) such that

Uy, — U, Vs, — v a.e. and in LP (RY x (0,00)),1< p< 0.

loc

Proor. — We want to apply Lemma 2.1. Let ¢ € R be fixed, we claim that the
family
{O|v: — ¢| + div(sign(v; — ) g, v) — g(u, )},

is compact in H;,}(RY x (0,00)). For the sake of notational simplicity we in-

troduce the following notations
no) = v —c| —|c],
Qo(u, v) = sign (v — ¢)(g(u, v) — g(u, ¢)) — sign( — ¢)(g(u, 0) — g(u, c)),
and we observe that
1(0) = Qo(u,0) = 0,
(8.2) v, — c| + div(sign (v, — e)(gu,v,) — g(u, c)))
= Op(ve) + div(Qo(u, v.)) + sign( — ¢) div((g(u, 0) — g(u, ¢))).
Let {(n,, Q.)},-, be a family of maps such that

n, € C*(— M, M), Q. C*([—M,MFR"Y),
0yQ:(u,v) = dyg(u, V). (v), 5! >0,

7. — ol L _pry < & H’7; - %HLl([fM,M]) <¢
“77::|’L!X([7M,M])§ 1; 775(0) = Qa(u7 0) = 07

for each ¢ > 0. Since
Qo) = [ 0,9, @z and Quu,v) = [ A9, OO,
0 0

we also have

(3.4) 0uQel ey iy < M| aﬁngLm([fM,M]z)’

||Qs - QOHLx([fM,M]Z)S |\ayg\|Lx([,M7M]z) é.
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By (1.2)
Ony(,) + div(Qo(u, v;))
= O, () + div(Q: (e, v.)) + D (11 (v2) — 11, (v.))
+ div(Qo(u, v,) — Q.(u,v,)) + div(Q.(u, v,) — Q:(uz, v:))
= en,(v,)Av;
— (1) 0ug s, v,) — 0@, v), Vi) + 0y (110(ve) — 1,(,))
+ div(Qo(u, v;) — Q.(u,v,)) + div(Q.(u,v,) — Q:(u,,v,))
= 8 d(n,(v) — & @) | Vo,
— (M.)Oug (s, v;) — uQuth, V), V) + Iy (my(ve) — 1,(v,))

+ div(Qo(u, v;) — Q.(u,v,)) + div(Q.(u, v,) — Q:(u,v,)).
Therefore, thanks to (3.2)

(3.5) v — ¢| + div(sign(v, — c)(g(u,v,) — g(u, ¢)))

=he+Dh,+13,+ 1.+ 15+ 16, + I7
where

11 = ed(n,(vy),

Ly, = =] )| Vo,

I3 = — (1,0)0ug e, v:) — 04 Qe v,), Vit ),
Iye = O(no(ve) — m,(v2)),

I5, = div(Qo(u, v:) — Q:(u,vy)),

I, = div(Q:(u, v:) — Qc(uz, v,)),

I7 = sign( — ¢)div((g(u, 0) — g(u, c))).
Due to Lemmas 3.1, 3.2, 3.3 and (2.1), (3.3), (3.4) we have
{I; }, - ¢ is converging in H RN x 0, 7)) for each T > 0,

{Is; }, - o and {I3, }, - , are bounded in L*(RY x (0, 7)) for each T > 0,
{Ii,},. o and {I5, }, . , are converging in H;;} (RY x (0,0 )),
{Is: }, - o is compact in Hy} (RN x (0, 00)),

I € Mipe(RY x (0, 00)).

Therefore the claim follows from Lemma 2.2. O
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Hence, we have shown that the vanishing viscosity approximations converge
to a weak solution of (1.1). The calculations in the proof of convergence can serve
as a motivation for showing convergence of other approximation schemes. In a
forthcoming paper [5], we propose an Engquist-Osher type numerical scheme for
the triangular system (1.1) and show that the approximate solutions converge to
a weak solution of the triangular system.
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