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On the Geometrisation Conjecture (¥)

G. BESSON (*%)

1. — Introduction.

This is the text of a Lecture given at a joint meeting of the Italian and French
mathematical societies during the summer of 2006, held in Torino. It aims at de-
scribing some of the features of the proof of the geometrization conjecture fol-
lowing G. Perelman and R. Hamilton and a variation of it deseribed in [3].
Extended notes have been published by H.-D. Cao and X.-P. Zhu ([10]), B. Kleiner
and J. Lott ([17]) and J. Morgan and G. Tian ([20]). The reader may also look at the
following survey papers [1, 5, 23]. The following text has some overlap with [4].

2. — The conjectures.

Let us recall the famous conjectures that subtend the works presented here.
The following is the Poincaré conjecture.

CONJECTURE 2.1 (Poincaré [24], 1904). — If M? is closed and simply connected
then M is homeomorphic (diffeo) to the 3-sphere S°.

The question was published in an issue of the Rendiconti del Circolo
Matematica di Palermo ([24]). It is known that in dimension 3 the home-
omorphism classes and the diffeomorphism classes are the same. The second
conjecture played an important role in the understanding of the situation.

CONJECTURE 2.2 (Thurston [26], 1982). — M? can be cut open into geometric
pieces.

The precise meaning of this statement can be checked in [5]. It means that M
can be cut open along a finite family of incompressible tori so that each piece left
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(**) The author wishes to thank the Unione Matematica Italiana and the Société
Mathématiques de France for their kind invitation.
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carries one of the eight 3-dimensional geometries (see [25]). These geometries
are characterized by their group of isometries. Among them are the three con-
stant curvature geometries: spherical, flat and hyperbolic. One also finds five
others among which the one given by the Heisenberg group and the Sol group
(check the details in [25]). Among them four are Seifert geometries and the last
one is a graphed manifold. Let us recall that, roughly speaking, a graphed
manifold is a bunch of Seifert bundles glued along their boundaries (which are
tori) and a Seifert bundle is a circle bundle over a 2-orbifold (a bundle with some
exceptional fibers). For more precise definitions the reader is referred to [15].

Thurston’s conjecture has put the Poincaré conjecture in a geometric setting,
namely the purely topological statement of Poincaré is understood in geome-
trical terms: a simply connected 3-manifold should carry a spherical geometry.
Letting the geometry enter the picture opens the Pandora box; the analysis
comes with the geometry.

3. — The Ricci flow.

This is an evolution equation on the Riemannian metric g, introduced by
R. Hamilton. Its expected effect is to make the curvature constant, or at least
Einstein, which is the same in dimension 3. However not every 3-manifold carries
a constant curvature metric (think to S? x S1). Rather it should look like one in
the list of the geometries in 3 dimensions. This expectation is however far too
optimistic and not yet proved to be achieved by this technique. Nevertheless, this
“flow” turns out to be sufficiently efficient to prove both Poincaré and Thurston’s
conjectures. The inspiration for this beautiful idea is explained in [13] and [9]. let
(M, g9) be a Riemannian manifold, we are looking for a family of Riemannian
metrics depending on a parameter ¢ € R, such that g(0) = gy and,

dg

7
The coefficient 2 is completely irrelevant whereas the minus sign is crucial. This
could be considered as a differential equation on the space of Riemannian me-
trics (see [9]), it is however difficult to use this point of view for practical pur-
poses. It is more efficient to look at it in local coordinates in order to understand
the structure of this equation ([13]). This turns out to be a non-linear heat
equation, which is schematically like

=-2 RiCCig(t) .

0
§:49<t>+Q-

Here 4 is the Laplacian associated to the evolving Riemannian metric g(t).
The minus sign in the definition of the Ricci flow ensures that this heat
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equation is not backward and thus have solutions, at least for small time.
The expression encoded in @ is quadratic in the curvatures. Such equations
are called reaction-diffusion equations. The diffusion term is 4; indeed if @
is equal to zero then it is an honest (time dependent) heat equation whose
effect is to spread the initial temperature density. The reaction term is Q; if
4 were not in this equation then the prototype would be the ordinary dif-
ferential equation,

f/ :f2
for a real valued function f which blows up in finite time. From the compe-
tition between these two effects come the beauty of Hamilton and Perelman’s

works.
The following examples give an idea of the behaviour of the flow.

1. Flat tori, g(t) = go; (it is said to be an eternal solution).
2. Round sphere g(t) = (1 — 4t)go; (ancient solution).

t=1/4

3. Hyperbolic space g(t) = (1 + 4t)g,; (immortal solution).

4. Cylinder g(t) = (1 — 2t)gs: P gr-

( O C 0

Two features deserve to be emphasized. For the round sphere the flow stops
in finite positive time but has an infinite past. For the hyperbolic manifolds, on
the contrary, the flow has a finite past but an infinite future. We find these as-
pects in the core of the proofs of the two conjectures. Indeed, for the Poincaré
conjecture one is led to (although it is not strictly necessary) show that starting
from any Riemannian metric on a simply connected 3-manifold the flow stops in
finite time whereas for Thurston’s conjecture one ought to study the long term
behaviour of the evolution.

t=1/2
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3.1 — The first result.

The following result is the seminal theorem at the foundation of all sub-
sequent works.

THEOREM 3.1 ([13], R. Hamilton, 1982). — Let M be a closed, orientable simply
connected 3-dimensional manifold. If M carries a metric go which has positive
Ricet curvature then it is diffeomorphic to S2.

Clearly it is a step towards the proof of the Poincaré conjecture. The only
restriction is important since it is not known whether a simply-connected
manifold carries a metric of positive Ricci curvature. The proof is done by
showing that the manifold becomes more and more round while contracting to a
point.

3.2 — The surgery.

The question is now what happens if we start with a random metric go? It
turns out that there are examples showing that the manifold may become sin-
gular, 7.e. that the scalar curvature may become infinite on a subset of M. This is
the case for the neckpinch:

=0 (>

which is a metric on a cylinder which develops a singularity in finite time (see
[11]). But it could also be worse,

AN

Cantor

it could be that the singularities appear in a cylinder spread on a cantor subset of
transversal spheres. Notice however that there are, at the moment, no explicit
examples of such a behaviour. The idea introduced by R. Hamilton in [14] is to do
surgery in the necks and restart the flow with a new metric on a (possibly) new
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manifold. It is schematically summarized by the picture below,

The picture on the left represents a so-called horn. The precise definitions are
quite involved and the reader is referred to the original papers by G. Perelman
([21, 22]) or the monographies written on this work ([17, 20, 10]).

3.3 — Perelman’s breakthrough.

One of the technical achievements obtained by G. Perelman is the so-called
canonical neighbourhood theorem (see [21], 12.1). Roughly, it shows that there
exists a universal number 7, such that if we start with a suitably normalised
metric gy then the points of scalar curvature larger than ;% have a neighbour-
hood in which the geometry is close to a model. There is a finite list of such model
geometries and a very restricted list of topologies. The neighbourhood is either a
cylinder, called a neck, with a metric close to a standard round cylinder, a so-
called cap which is a metric on a ball or on the complement of a ball in the pro-
jective space which looks like a cylinder out of a small set, or the manifold M is a
quotient of the 3-sphere by a subgroup I” of O(3).

Neck

B3 ou P}(R)\ B3
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3.4 — The flow-with-surgery.

Let us now take an arbitrary 3-manifold (M, go). We start the flow and let it go
up to the first singular time, that is up to the first time when the scalar curvature
reaches + oo. Two cases may occur:

i) the curvature becomes big everywhere

Just before the singular time the curvature may be big everywhere and the
manifold may be entirely covered by canonical neighbourhoods. In that case we
say that the manifold becomes extinet. Pasting together these neighbourhoods
whose topology is known, leads to the following result

THEOREM 3.2 (Perelman, [22]). — If the manifold becomes extinct then it is,

) S3/r, (I c SO@)),
ii) ST x 8% or (S x §2)/Z% = P(R)#P*(R).

In that case we can stop the process since we have understood the topology of
M. This is why it is said that the manifold becomes extinct (the curvature is high
hence the manifold is small!).

ii) The manifold does not completely disappear

An open subset Q2 is left. This is the subset of M where the scalar curvature is
finite at the singular time. Just before the singular time, the manifold splits in a
thick part where the scalar curvature is smaller than the scale of the canonical
neighbourhoods and a thin part. So it looks like the drawing below.

\Q thick part

thick part

>
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At the singular time, applying surgery in the horns as shown below,

\Q thick part

thick part

>

leads to a new manifold M, possibly not connected.

\Q thick part

From this new Riemannian manifold one starts the Ricci flow up to the next
singular time. To each connected component we apply the same dichotomy. The
question is now to know whether this can be done for all time.

In [22] section 5 it is shown that this procedure leads to the Ricei flow-with-
surgery, which is a non continuous version of the smooth Ricci flow (the manifold is
not even fixed) defined for all time. Stating precisely the result would be too
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technical and beyond the scope of this note; the reader is referred to the above
mentioned texts. The key step is to show that the surgeries do not accumulate, that
is, on a given finite interval of time there are only finitely many of them. Globally,
there may be infinitely many surgeries to perform. The question whether on an
infinite interval of time we reach some special geometry will be discussed later.
The proof of this result is quite involved. The point is that if we start with a
normalised metric (see the references for a precise definition) then after the first
surgery it is not any more. Thus, the surgery parameter r, has changed. It
changes in fact after each surgery and it may go to zero in finite time which will
stop the procedure and corresponds to an accumulation of surgeries. Showing that
it is not the case is a tour de force which is a masterpiece of Riemannian geometry.

4. — The geometrisation conjecture.
In this case, as is shown in the example of the hyperbolic manifolds, we need

to study the flow-with-surgery for an infinite time interval. The main result is
summarised in the following rough claim.

CrAM 4.1 (Perelman [22], sections 6-8). — For large t, (M, g(t)) decomposes
wmito thick and thin pieces (possibly empty).

The picture below gives a hint of what may happen,

Incompressible tori
Thin piece
/ \ (graph manifold)

Hyperbolic pieces
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hyperbolic pieces emerge from the thick part and are bounded by incompressible
tori, that is tori whose fundamental group injects in the one of the manifold. The
thin pieces are collapsing, that is the volume of balls goes to zero while the
sectional curvature is bounded below. The reader should check the precise de-
finition of collapsing since it differs from the familiar one.

1
More precisely, it is the rescaled metric i ¢(t) which becomes thick or thin as

in the case of the hyperbolic metric which behaves like (1 + 4t)go(t). The asser-
tion is that the thin part is a graphed manifold.

From this the proof of the geometrisation conjecture is described in [22], [10]
and [17]. We briefly sketch below the proof given in [3].

4.1 — Ricci flow, simplicial volume and aspherical 3-manifolds.

In the forthcoming monograph [2] we shall present a (slight) variation of the
construction of the flow-with-surgery which is simpler when the manifold is
assumed to be irreducible. It is a step towards considering the flow-with-surgery
as a generalised solution of the Ricci flow equation in the sense of analysis. The
reader is referred to [18] for a more precise description and to [2] for all the
details.

A manifold M is said to be aspherical when n(M) =0 for all k> 2.
Throughout the rest of this text, M is a closed, orientable and irreducible 3-
manifold with infinite fundamental group. From the sphere theorem the above
hypothesis imply that M is aspherical. Let us recall that a 3-manifold is said to be
Haken if it is connected, compact, orientable, irreducible and contains an in-
compressible surface. Any connected, compact, orientable and irreducible 3-
manifold whose boundary is not empty is Haken. Thurston has proved that
Haken manifolds have geometric decompositions, 7.e. can be decomposed in
pieces carrying one the geometries described in [25]. A Haken manifold is a
graphed manifold if and only if all pieces in its geometric decomposition are
Seifert. See [15] for the classical topology of 3-manifolds and [8] for some post-
Thurston’s results.

Let g be a Riemannian metric on a manifold M and ¢ > 0 a real number.
Following Perelman [22], we call ¢-thin part of (M,g) the set M~ (¢) of those
points x € M for which there exists 0 < p <1 such that on the ball B(x, p), the
sectional curvature is not smaller than —p~2 and the volume of this ball is smaller
than ¢ p?. Its complementary set is called e-thick part and denoted by M (¢). For
a sequence of metrics g, on M, we denote M, (¢) the e-thin part of (M,g,) and
similarly M (e) its e-thick part.

The most difficult part of the following work is to describe the thin part. Let
us briefly sketch the main ideas.
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DEFINITION 4.2. — Let g,, be a sequence of Riemannian metrics on M. We
say that g, has a locally controlled curvature in the sense of Perelman if it
has the following property: for all ¢ > 0 there exists ¥(e) > 0, Ky(e), Ki(e) > 0,
such that for m big enough, if 0<r<7e) and x€M, satisfy
vol (B(x, 1"))/1”3 > ¢ and the sectional curvature on B(x,r) is > —v~2 then
|IRm(x)| < Kor~2 and |VRm(x)| < Kyr=.

This is a technical condition which allows to avoid the use of Alexandrov
spaces, and in particular Perelman’s stability theorem (see [16]).

For any metric g¢ the Ricci flow produces a sequence of Riemannian metrics
{9n},en satisfying the following properties:

e (Boundedness of volume) There exists C >0 such that, for all =,
vol (M,gn) < C,

e (Hyperbolic limits) For all ¢ > 0 and x,, € M,/ (¢), there exists a complete
finite volume hyperbolic pointed manifold (M, %) such that

Mi; Gns @) — (Moo, hyp, 2s0),
Nn—+00
e ¢, has a locally controlled curvature in the sense of Perelman.

1
The sequence of metrics can be taken to be g, = n g(n) if g(t) is the solution
1
of the Ricci flow-with-surgery. Indeed, on the thick part pr g(t) tends to an hy-

perbolic metric (see [22] chapters 6 and 7 and [2]). Let M,, = (M, g,), a simple
statement of the main theorem proved in [3] is

THEOREM 4.3 (see [3]). — With the above assumptions on M, let us assume that
there exists a sequence &, going to 0 when m goes to infinity such that
M, = M, (e,) (that is M, is &,-thin) then M, is a graphed manifold for n large
enough.

The statement may seem strange since being a graph manifold is a topological
property and the underlying manifold does not change. It really means that it is
only if % is large enough that one can see the graphed structure. One could also
take instead of a fixed differentiable manifold a sequence depending on #.

Some of the ideas appearing in the proof. It always starts in the same way,
one uses the fact that the manifold is thin to show that locally, around any point,
the geometric structure is close to a finite list of models. Then one may try to
glue these local models in order to construct the global graphed structure. This is
the approach developed in [22], [17] and [10]. Here we extract form the collection
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of balls close to the local models a finite covering of the manifold and we use two
simple covering arguments to conclude.
The local models are given by the following proposition.

PROPOSITION 4.4 (see [3]). — For all D > 1 there exists ng(D) such that if
n > ny(D), then for all x € M, (&,) we have the following alternative:

(a) Either M,, is %—close of a compact Euclidean manifold.

(b) Orthere exists a radius v, (x) and a complete non compact Riemannian
3-manifold X, ., with non negative sectional curvature and soul S, , such that

B(x, v, (x)) is %—close of a metric ball in X, ;.

REMARK 4.5. — The soul S, can be homeomorphic to a point, a circle, a 2-
sphere, a 2-torus or a Klein bottle. Consequently, the ball B(x, v,(x)) is home-
omorphic to B, ST x D2, 82 x I, T? x I or to the twisted I-bundle on the Klein
bottle. The case where S, is homeomorphic to the projective plane is excluded
for the only closed, orientable and irreducible 3-manifold containing a projective
plane is RP3, which is not aspherical.

More technical properties of these balls close to local models are described
in [3].

Now, one can show that from the collection of balls B(x, v,(x)) a (minimal)
finite covering can be extracted such that one of the sets appearing, which we
shall call V, satisfies that Im(n1 (V) — m1(M},)) is not trivial. If this is true then
one can show that M \ V is irreducible with boundary hence Haken. In order to
prove the existence of a nontrivial (in the above sense) set in the covering, one
argues by contradiction. If it is not true, that is if all local models of the covering
are trivial, then one shows that it can be deformed into a finite covering of di-
mension at most 2. Let us recall that the dimension of a covering is the smallest
integer ¢ such that any point in M belongs to at most ¢ + 1 sets of the covering.
The contradiction then comes from [19] where C. McMullen proves a theorem on
the dimension of the coverings of a n-torus with % > 1 whose proof implies the
following result:

THEOREM 4.6 ([19]). — Let N? be a closed, orientable and aspherical d-mamni-
fold with d > 1. Every locally finite covering of N® by homotopically trivial open
sets has dimension at least d.

Once we have a local model V such that M \ V is Haken, then we know by
Thurston’s geometrisation of Haken manifolds that M \ V has a geometric de-
composition in hyperbolic pieces and Seifert pieces. If we can show that only
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Seifert pieces appear and since the local models are fibred it is then easy to show
that M itself is a graphed manifold. In order to show that M \ V is graphed, we
use the same argument to construct a 2-dimensional covering with sets such that
the image of their fundamental group in M is virtually abelian. Indeed, the
fundamental group of each local model is virtually abelian. A classical result by
Gromov (see [12]) then shows that the simplicial volume of M \ V is zero. On the
other hand if there were hyperbolic pieces in the geometric decomposition of
M\ V it would be non-zero, a contradiction. The conclusion is that M\ V is
graphed and so is M. O

4.2 — Conclusion.

The proof sketched above extends to the case when the manifold has finite but
not trivial fundamental group (see [3]). Its strength is that it is simpler to use
these two covering arguments than gluing local models in order to construct the
graphed structure. The weakness is that we have to use Thurston’s geome-
trization of Haken manifolds and that we do not “see” the graphed structure. Let
us finally mention that the above technique is borrowed from [6] or [7].
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