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A Survey on Vector Variational Inequalities

F. GIANNESSI - G. MASTROENT - X. Q. YANG

Dedicated to the memory of Guido Stampacchia

Abstract. — The paper consists in a brief overview on Vector Variational Inequalities
(VVI). The connections between VVI and Vector Optimization Problems (VOP) are
considered. This leads to point out that necessary optimality conditions for a VOP
can be formulated by means of a VVI when the objective function is Gateaux differ-
entiable and the feasible set is convex. In particular, the existence of solutions and gap
Sfunctions associated with VVI are analysed. Gap functions provide an equivalent
Sformulation of a VVI, in terms of a constrained extremum problem. Finally, Vector
Complementarity Problems and their relationships with VVI are considered.

1. — Introduction.

Variational Inequalities (for short, VI) were introduced by Stampacchia in
early sixties in the field of Calculus of Variations. Since then, they have ex-
tensively been studied because they have shown to be a powerful tool in many
fields of optimization: from the classical optimality conditions for constrained
extremum problems to the equilibrium conditions for network flow, economic
and mechanical engineering equilibrium problems [15, 13, 12, 27].

The great advantage of VI models is that the equilibrium is not necessarily
the extremum of a functional, like energy, so that no such a functional must be
supposed to exist. In particular, the finite-dimensional formulation of a VI has
become of particular interest after it has been shown its equivalence with the
Wordrop equilibrium principle for traffic equilibrium and with the classic
Complementarity Problem, in the case where the feasible set of the VI is a closed
convex cone.

Recently, in some fields like Industrial Systems, Logistics and Management
Science, there has been a strong request of mathematical models for optimizing
situations with concurrent objectives, namely Vector Optimization Problems (for
short, VOP), which were initially introduced by W. Pareto. Following the de-
velopment of Vector Optimization, the theory of VI has been generalized to the
vector case, with the aim to exploit the advantage of both variational and ex-
tremization methods.
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In the present paper, we will briefly outline some of the main topics con-
cerning Vector Variational Inequalities (VVI). In Section 2, we will introduce
VVI and consider the main connections with VOP. Necessary optimality condi-
tions for a VOP can be formulated in terms of a VVI when the objective function
of the vector problem is Gateaux differentiable and the feasible set is convex.
Suitable generalized convexity assumptions, namely pseudoconvexity, ensure
that a weak VVI is a sufficient optimality condition for a weak vector minimum
point. In such a context the Minty VVI is of particular importance since it pro-
vides a necessary and sufficient optimality condition for a Pareto solution of a
differentiable convex problem.

Section 3 will be devoted to the analysis of the existence of the solutions.

In Section 4, we will present gap functions for VVI, which provide an
equivalent formulation of a VVI in terms of a constrained extremum problem.
Actually, a gap function p : K— R is a non-negative function that fulfils the
condition p(x) = 0 if and only if « is a solution of VVI on K. This definition, which
originally has been given for a VI, can be extended to the vector case, in terms of
a set-valued function.

In Section 5, we will introduce Vector Complementarity Problems (VCP) and
analyse their relationships with VVI and VOP. Unlike the scalar case, the
equivalence between VCP and VVI is, in general, no longer preserved: we will
show a particular instance of such an occurrence.

2. — Vector Variational Inequalities.

Let X and Y be Hausdorff topological vector spaces. By L(X,Y), we denote
the set of all linear continuous functions from X into Y. For ! € L(X,Y), the value
of linear function [ at x is denoted by (l,x). Let C C Y be a nonempty, pointed,
closed and convex cone with intC # (). For convenience, we will denote C \ {0}
and it C by C, and C respectively. Then (Y, C) is an ordered Hausdorff topo-
logical vector space with a partial ordering defined by

1 <cye=y2—1 €C, y1,y2€Y.

Moreover, we also define
Y1 £, Y=Yz — 11¢C;
N Ly Yoy — C.
These partial orderings can also be applied to sets where the ordering is un-

derstood as element-wise.
LetT: K — L(X,Y) and K C X be a nonempty, closed and convex subset. A
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VVI consists in finding «* € K, such that

(2.1) (T@"),x —a*) £¢, 0, Ve K.
A weak VVI consists in finding «* € K, such that
(2.2) (T(x*), ¢ —x*) gé 0, VexeKkK.

When Y = R and X = R”, both (2.2) and (2.1) reduce to a scalar variational
inequality; see [13].
Consider a Vector Optimization Problem (VOP):

(2.3) ming f(x),
reK

where f: X — Y is a vector-valued function. The point x* € K is said to be a
weak Pareto solution of f on K, if and only if f(K) gé f(x*) and a Pareto solution
of f on K, if and only if f(K) Z¢, f(x*).

f: X — Y is a C-function on K, if and only if, for any x;,x2 € K, 1 € [0, 1],

JfOar + A = Dwg) <¢ Af (1) + A — A)f (2).
f: X — Yisastrict C-function on K, if and only if, for any a; # x2 € K, 1 € (0,1),
fQar+ A = Dwz) < M @) + (1 = Af (x2)-

When Y = R and C = R, the previous definitions collapse to the classic con-
vexity and strict convexity, respectively.

The following proposition summarizes the relationships between (2.1), (2.2)
and (2.3).

ProrosiTION 2.1. — Assume that f is Gateaux differentiable with Gateaua
derivative Df. Let T = Df. We have

() If x is a weak Pareto solution of (2.3), then x solves (2.2).

(ii) If f is C-convex and x solves (2.2), then x is a weak Pareto solution of (2.3).

(iii) If f is a C-function and x solves (2.1), then x is a Pareto solution of (2.3).

@iv) If —f s a strict C-function and x* is a Pareto solution of (2.3), then x
solves (2.1).

When Y = RY, the ordering g& is defined by the algebraic interior of C and T

is chosen as a weak subgradient of f at x, (i) is first given in [3]. The general case
of (i) and (ii) are given in [5]. When Y = RZ, and C = Rﬂ, (iii) and (iv) are obtained
in [27]. But the general cases easily follow the same proof as in [27].

Without the assumption that —f is a strict C-function, this may not be true.
Let X =R, Y =R? and C = Ri Consider the problem ming f(x), subject to
x €[ —1,0] where f(x) = (x,2> + 1)'. It is clear that every x €[ —1,0] is a



228 F. GIANNESSI - G. MASTROENI - X. Q. YANG

Pareto solution of the problem. But x = 0 is not a solution of (2.1). The set of
solutions for (2.2) and (2.1) is [ — 1,0] and [ — 1, 0) respectively.

Two directional derivatives of & : R” — IR at x in the direction y are defined
respectively as

L' (x;y) = lim lim sup inf w7
el0 g0 Y t

h(x + ty) — h(x)

Rt (x;y) = lim sup
£10 t

Two relevant VVIs are defined respectively as of finding «* € K such that
(24) (R @e—a0), - fif e —a) £, 0, Vo € K,

(2.5) (fff@ e — %), fi (@ w — a")) %0, Vo e K.

THEOREM 2.1. — [23]
(1) Assume that the functions f;,1 =1,--- £, are lower semicontinuous and
that

4
> 2 =0,20 € NK, ),z € Ofi@"),i =1, £,=2; = 0,i =0,1,--- 1,
=0

where N(K,x*) and 0°f;(x*) are the normal cone to K at x* and singular ap-
proximate subdifferential of f at x* respectively. If x* is a weak Pareto solution
of (2.3), then x* is a solution of (2.4).

(ii)) Assume that f;,i=1,---,¢ are T-pseudoconvex at x*, that 1is,
va € K, fi(x) <f;(x*) impliesff(oc*; x —x*)<0. If x* is a solution of (2.4), then x*
s a weak Pareto solution of (2.3).

(iii) Assume that f;,i=1,---,¢ are + pseudoconvex at x*, that s,
Vo € K, f;(x) <f;(x*) implies ff(m*; x — x*) <0. The point x* is a solution of (2.5) if
and only if x* is a weak Pareto solution of (2.3).

ExampLE 2.1. — Let

x, ifx>0,
f1(17){

0, otherwise

xz, ifx>0orif x=-—1/i,1is a natural number,
folx) =

0, otherwise
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and S = R. Then
N(K,0) = {0}, 0™ £1(0) = {0}, 0 f2(0) = R,
flT(O; x) = max{0,z}, fQT(O; ) = 1.

So the assumptions of (i) Theorem 2.1 hold at z* =0 and f;,i=1,2 are T
pseudoconvex at 0. Thus 0 is a weak Pareto solution of (2.3).

The Minty VVI consists in finding «* € K, such that
(2.6) (T@),x —a") £¢, 0, Vo € K.

The following result shows that a Pareto solution of (2.3) can be completely
characterized by the Minty VVI when C = Ri

THEOREM 2.2. — [11] Let X = R", Y = R and C = R'.. Let T(x) = Vf(x). Let
f be a R} -function and v-hemicontinuous on K. Then, x* is a Pareto solution of
(2.3) if and only if it is a solution of the Minty VVI.

The conclusions of this theorem still hold if f is assumed to be R’ -pseudo-
convex, see [24]. Relations between Minty VVI and the proper efficiency of a
solution is investigated in [7].

This theorem is further generalized to a weak Minty vector variational-like
inequality problem with a variable ordering cone in [1].

Gap functions for Minty VVI and their differential properties are studied
in [21].

In general, a solution of (2.2) is not one for (2.1). This is shown not to be true
by an example in [28] even if T is strongly monotone. However under the further
assumption on K, a positive answer is as follows.

PROPOSITION 2.2. — [28] Let Y = R'. Suppose that
1.forany x #a € K and 1 € (0,1), (1 — Dx + ia’ ef(,
2. for each x € K, v — (T(x),v) is surjective.

Then a solution of (2.2) is one for (2.1).

3. — Existence of Solutions.

The following generalized linearization lemma and Knaster, Kuratowski and
Mazurkiewicz Theorem (KKM Theorem, in short) have played a key role in the
establishment of the existence of a solution for (2.2).
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LemMmA 3.1. (Generalized Linearization Lemma). — [5] Let the mapping
T:X — L(X,Y) be monotone and v-hemicontinuous. Then the following two
problems are equivalent:

l.xe K, (T(x),y —x) gé 0, VyeKk;
2.¢ce K, (T(y),y —x) gé 0, VyeK

When Y = R, this is the linearization lemma in [2, 22]. This linearization
lemma is generalized to the invex type VVI in [1].

LemMA 3.2. (KKM Theorem). — [17] Let K be a subset of a topological vector
space V. Foreach x € K, let a closed and convex set F(x) in V be given such that
F(x) is compact for at least one x € K. If the convex hull of every finite subset
{w1, 22, -, %} of K is contained in the corresponding union U F(x;), then
NeexF () # 0.

Assume that K is compact. We set

Fiy) ={z e K: (T@,y —x) £, 0}, y€eK,
Foy) ={x e K: (T(y),y — x) gé 0}, yekK.

It can be shown that the convex hull of every finite subset {x;, 22, - - -, 2} of K is
contained in the corresponding union U} Fi(x;). Since Fy(y) C Fa(y) for all
y € K, this is also true for Fs. By Lemma 3.1, we have

NyexF1(y) = NyexF2(y).

We observe that for each y € K, Fy(y) is a (weakly) compact subset in K.
By Lemma 3.2, we have

NyexF1(y) = NyexFa(y) # 0.
Hence, there exists an #* € K such that
(T(x*), 2 — a*) g& 0, VxeKkK.

Assume that K is unbounded and 7' : K — L(X,Y) is weakly coercive on K,
that is, there exist xyp € K and ¢ € int C* such that

(coT(x) — co T(xy),x — x0)/ || — 0| — +o00,

whenever x € K and ||| — +occ. In a similar way, we can show that
NyexF1(y) # 0.

As such we have the following result, where the weak topology of X and the
norm topology of Y are used.
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THEOREM 3.1. — [5] Assume that X is a reflexive Banach space mgd KcXis
convex. Assume that (Y,C) is an ordered Banach space with C# & and
mtC* # . Let the mapping T : K — L(X,Y) be monotone, v-hemicontinuous
and let, for any y € K, T(y) be completely continuous on X. If

1. K is compact, or
2. K 1s closed, T is weakly coercive on K,

then the weak vector variational inequality (2.2) is solvable.

THEOREM 3.2. — [26] Assume that X is a reflexive Banach space mgdK c Xis
convex. Assume that (Y,C) is an ordered Banach space with C# & and
mt C* # . Suppose that

1. there is a compact subset B C X and yo € BN K, such that
(To),yo — ) <. 0, Ve e K\B,

k k
2-f07”0mZ/ {xla T 7'%70} C K,ﬂ&' = Zai:}cia Zai = laai Z 07
i=1 i=1

k

k
> ai(F,x) < (F),x) <> ai(F@), ),
i=1

1=1

then the following weak vector variational inequality which consists in finding
x* € K such that

(T(x), ¢ — a™) gé 0, Vxek,

s solvable.

KKM Theorem cannot be applied to the establishment of the existence of
solutions of (2.1) as the sets F';(y) and Fy(y) where ﬁ is replaced by £, are not
closed anymore.

Only very recently, an existence result for (2.1) has been obtained by using
the Browder fixed point theorem.

THEOREM 3.3. — [9] Assume that X is a reflexive Banach space and K C X is
convex. Assume that (Y,C) is an ordered Banach space with C# & and
mtC* # . Let the mapping T : K — L(X,Y). If

1. K is compact, and for each y € K, the set {x € K : (T(x),y — x) <¢, 0} is
open i K, or
2. K 1s closed, T is continuous, and weakly coercive on K,

then the vector variational inequality (2.1) is solvable.
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Let K: R" =z R"and F;(j=1,---,0): R" - R". Let F = (F1,---,Fy) and

(F1(x),y — x)
< F@),y—x>=|:
<Fl(x)ay_x>

The quasi-vector variational inequality problem (QVVI) consists in finding
x € K(x), such that

(3.1 < F),y —x> ﬁé 0,vy € K(x).

THEOREM 3.4. — [3] Suppose that there is a nonempty compact and convex set
Ky such that

1. K(K;) C K;
2.Fi(j=1,---,0) is continuous on Ki;
3. K is a nonempty continuous convex-valued mapping on K.

Then there exists a solution to (3.1).

The study of a vector variational inequality has also been pursued by in-
troducing another model with a similar form and using the tool of conjugate
function of a vector-valued function. Here such a model is called a primitive
of a VVL

Let T: X—L(X,Y) be a function, and % : X — Y is a function. The (VVI,,)
problem consists in finding «* € X, such that

(T@x"), e —a*) £, h(x*) — h(x), Vo € X.
Assume that T is one-to-one (injective). Define 7" : L(X,Y) — X as follows:
T'(l) ;== =T —1), Ve Domain(T") = —Range (T).

If T is linear, then 7" = T1.
The primitive of (VVI,) problem is defined as: finding {* € Domain (7”), such
that

(IVVIy) (L=01,T'T") £, We@) = hi), VieLX,Y),
where 1% (l) := Maxc{(l,x) — h(x) : © € X} is the vector conjugate function of .
THEOREM 3.5. — [26] Let X be a Hausdorfftopological vector space and (Y, C)

be an ordered Hausdorff topological vector space. The function T is one-to-one
and h : X — Y is continuous. Assume that h*S )£, Vle LX,Y).

() If x* is a solution of (VVI}, ), then I* = —T(x*) is a solution of (IVVI}, ) and
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the following relation is satisfied:

(", @) € h") + W),

(i) If I* is a solution of (IVVI}, ), C is connected, i.e., CU(—C) =Y, and h is
weakly subdifferentiable at x*, where x* = —T'(I*), then x* is a solution of

(VVI},).

This result is generalized to a set-valued VVI in [18].

4. — Gap Functions.

The concept of a gap function is well-known both in the context of convex
optimization and variational inequalities. The minimization of gap functions is a
viable approach for solving variational inequalities.

A set-valued function ¢,, : K = Y is said to be a gap function of (2.2) if an-
d only if () 0 € ¢,,(x*) if and only if «* solves (2.2); and (ii) 0 ?—‘5 ¢,(@), Ve € K. A
set-valued function ¢ : K =% Y is said to be a gap function of (2.1) if and only if (i)
0 € ¢(x*) if and only if x* solves (2.1); and (ii) 0 Z¢\ (0 ¢(), x € K.

PROPOSITION 4.1. — Let C be a pointed and convex cone in Y. We have
() The set-valued function ¢, (x) = Maxé<T(ac),9c —K) is a gap function
for (2.2).

(i) The set-valued function ¢(x) = Max¢(T(x),x — K) is a gap function
for (2.1).

The above gap functions are of set-valued nature. Special single-valued gap
functions can be constructed in terms of nonlinear scalarization functions. Given
a fixed e €C and a € Y, the nonlinear scalarization function is defined by:

() =min{te R:yca+te—C}, yevY.

PROPOSITION 4.2. — Let e € C. Then «* € K solves (2.2) if and only if the non-
positive function g(z) = mingex E0(T(2), y — x)) has a zero at ™.

In the special case where Y = RZ, C= Rﬂ and T(x) = [T1(®), - - -, Ty(®)]", the
nonlinear scalarization function may be expressed in the following equivalent
form:

_ Yi—
Ceay) = max v
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Thus g(x) = min,cg max;<;< {(T;(x),y —x)},& € K. The value of each g(x)
amounts to solving a linear minimax optimization problem.

Next we construct a gap function for a set-valued WVVI.

Let Y=R’ C= Rﬂ and KCX a compact subset. Assume that
T: K = L(X,R") is a set-valued mapping with a compact set T'(x) for each x.

Consider the set-valued WVVI with the set-valued mapping 7' [16], which
consists in finding x* € K, and { € T(x*) such that

(4.1) {t, @ —x*) £,0, VeekK.
Let 2,y € K and t € T(x). Denote

<t7 ?/> = ((<t1 y>)1) Y (<t’ y))/’)7

ie., ((t,y)); is the i-th component of (t,y),?=1,---,¢. We define two mappings
¢, K x LX,R") = Rand ¢: K — R as follows

(4.2) &t = I;él[l{l gg((t, Y —x));
and
(4.3) ¢(x) = max{¢; (x, )|t € T(x)}.

Since K is compact, ¢,(x,?) is well-defined. If X is a Hausdorff topological
vector space, then gi(x, t) is a lower semi-continuous function in x. Since T'(x) is a
compact set, ¢(x) is well-defined.

THEOREM 4.1. — ¢(x) defined by (4.3) is a gap function of the set-valued WVVI.

By Theorem 4.1, solving the set-valued WVVI is equivalent to finding a
global solution x* to the following generalized semi-infinite programming
problem

max s
2,8
s, ¢w,t) <s, VteT(),
¢1(x7 tl) = Sa Eltl S T(x)a

x e K.

5. — Vector Complementarity Problems.

The concept of vector complementarity problems was introduced in [5, 25].
The weak vector complementarity problem (WVCP) consists in finding «* € K
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such that
(5.1) 0 £, (T@),27) £ 0,
(5.2) (TG, ) £, 0, Wy eD.

Let the weak C-dual cone D{i* of D be defined by
Dt ={ge LX,Y): (g,x) g& 0, Ve D}.

Then (WVCP) can be rewritten as a problem of finding «* € D, such that
(T(x*), ") Zé 0, Tx*)e Dg’*.

Thus a solution of (2.2) is one for (WVCP), but the fact that the inverse im-
plication is in general not true can be shown by some simple example.
Nevertheless, the inverse implication can be guaranteed by the usual positive-
ness property on 7. Indeed, let the strong C-dual cone Df" of D be defined by

D ={ge L(X,Y): (g,x) >¢ 0, VxeD}.

The positive vector complementarity problem (PVCP) consists in finding an
x* € D such that

(T@,a’) 2,0, T@) €Dy
Let F = {& € C|T@) € DX*}.

THEOREM 5.1. — [6] If HN (Y \ 6‘) £ 0, then (WVCP) has a solution, where
H=f&), f(x) = (T(x),x) and E 1is the set of all weak Pareto solutions for (2.3)
with K = F.

For a given | € L(X, Y), the nonlinear VOP consists in finding an x € F such
that x is a solution to ((2.3) with f(x) = (l,x) and K = F. The weak minimal
element problem (WMEP) consists in finding an & € F such that x 2. F. Let
f:X — Y. The vector unilateral minimization problem (VUMP) consists in
finding an x € C such that x is a solution of (2.3) with K = C.

The equivalences among these problem are presented as follows.

THEOREM b.2. — [5] Assume that

(i) T = Df is the Frechet derivative of f;
(i) [1s a weak positive linear operator, i.e., x 2& 0={l,x) Zé 0;
(iii) there exists x € F such that T(x) is one-to-one and completely con-
tinuous;
(iv) X s a topological dual space of a real normed space and the norm || - ||
wm X s strictly monotonically increasing on C,
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If the nonlinear VOP 1is solvable, then, WMEP, VCP and VUMP have a
solution, respectively.

These equivalences are generalized in [8, 14].
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