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An Artificial Viscosity Approach to Quasistatic Crack Growth

RobpicA TOADER - CHIARA ZANINI

Abstract. — We introduce a new model of irreversible quasistatic crack growth in which
the evolution of cracks is the limit of a suitably modified e-gradient flow of the energy
Sfunctional, as the “viscosity” parameter ¢ tends to zero.

1. — Introduction.

In this paper we consider the quasistatic crack growth in brittle materials in
the particular case of a preassigned crack path I', and propose a new notion of
irreversible quasistatic evolution which is based on a local stability criterion for
the energy functional, rather than on a global one. To better focus on this aspect
we present our approach in the simplest model case of a homogeneous isotropic
material subject to antiplane shears.

We assume that the reference configuration 2 is a bounded Lipschitz domain
in R?, and that the crack path I" is a regular arc with one endpoint on the
boundary of Q. Moreover, we assume that there exists an initial connected crack
starting from the boundary point and that the crack remains connected during
the evolution. Hence, such a crack will be completely determined by its length o.
The evolution is supposed to be irreversible, so that the length of the crack will
be increasing in time, and quasistatic, i.e. at each time the configuration de-
scribing the body is in equilibrium. By configuration we mean a pair (u, o) where
u represents the displacement orthogonal to the plane of Q, and ¢ is the length of
the crack.

The choice of the total energy of a configuration (u, o) is inspired by Griffith’s
idea [10] that the evolution of cracks in brittle materials is the result of the
competition between the elastic energy of the body and the energy needed to
extend the crack. In our case the bulk part of the energy is given by the square of
the L?-norm of the gradient of u, while the surface energy will be simply given by
the length o of the crack (i.e. the toughness of the material will be assumed to be
equal to one).

The evolution is driven by time-dependent imposed boundary displacements
w(t) on a part dpQ of the boundary, and applied boundary forces g(t) on the re-
maining part dy 2. Given a crack length ¢ and a boundary displacement y(t), let
AD(y(t), ) denote the set of admissible displacements, i.e. displacements with
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finite bulk energy, compatible with ¢ and with y(t):
AD(y(t),0) := {u € H(Q\ I'(0)) : u = w(t) on IpQ},

where I'(c) denotes the crack of length ¢ and the equality on dpQ? is intended in
the sense of traces. The total energy at time ¢ of a configuration (u,s) with
u € AD(y(t),0), denoted by E(t)(u,0), is the sum of the bulk energy and the
surface energy minus the work of the applied forces g():

£, 0) = f \Dulfdx + o — f gudH*

.Q\F((T) ONQ

where H! is the one-dimensional Hausdorff measure.

Note that, for fixed ¢ and o, there exists a unique minimizer u; , of the energy
E)(u, o) in AD(y(t),0). Then let us consider the minimal energy E(t, o) corre-
sponding to the boundary data w(¢) and to the crack length o, i.e., E(t,0) :=
E) (Ut 4, 0). The derivative 9,E(t, ) can be computed (see Proposition 4) and it is
related to the stress intensity factor of the displacement u;, at the tip of the
crack. It plays a crucial role in the Griffith’s criterion for the propagation of
cracks. On the other hand, let us recall that the functional £(¢)(u, o), which de-
pends on ¢ both through the surface energy term and through the constraint on
the set of admissible displacements, is not differentiable, nor convex.

Let us define now the notion of evolution we are interested in. The irrever-
stble quasistatic evolution problem consists in finding a left-continuous function
of time t+— (u(t),o(t)) such that the displacement u(f) at time ¢ belongs to
AD(y(t),a(t)), and the following three conditions are satisfied:

(a) local unilateral stability: at every time ¢ > 0
EBDw®), o)) < EB(w, o)) Vv e AD(y(?),a(t)
O:E(t,0)) >0,

(b) 1rreversibility: the map t+— o(t) is increasing;
(c) energy inequality: for every 0 < s < t we have

EBu®), a®) < E(s)uls), a(s)) + Work(u; s, 1),

where Work(u; s,t) denotes the work of external forces. A solution to this pro-
blem will be called an irreversible quasistatic evolution.

We show that conditions (a)-(c) are enough to ensure that at almost every
time ¢ a weak version of Griffith’s criterion is satisfied (see Proposition 7). The
external forces considered in condition (c¢) include both the applied surface loads
and the surface forces generated by the imposed boundary displacement.
Besides the dissipation given by the length, the inequality in condition (c) allows
for instantaneous dissipation when the evolution passes from a potential well of
the energy to another.
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Let us recall that variational models based on an absolute minimality condi-
tion were studied, starting from the pioneering paper of Francfort and Marigo
[8], e.g.,in [4], [2], [7], and, in a very general setting, in [3]. The evolution problem
studied therein will be called here globally stable irreversible quasistatic evo-
lution problem. It consists in finding an irreversible quasistatic evolution which
satisfies the global stability condition: at every time ¢ > 0

EDu®),o) < E@,0) Vo =at) YVveADy(),0).

In this case condition (c) can be replaced by the energy balance: the increment in
stored energy plus the energy spent in crack increase equals the work of external
forces. Thus the globally stable evolution fits into the general scheme of the
continuous-time energetic formulation of rate-independent processes developed
by Mielke and his collaborators (see, e.g., [16] and the references therein).

The global minimality condition imposes the comparison, in terms of energy,
of a configuration with all admissible configurations with a longer crack, even if
they are separated from the initial configuration by a large potential barrier, and
hence it might generate jumps in the length of the crack that are not justified by
the mechanical interpretation of the problem. That is why we are interested in
studying a class of evolutions possibly different from the globally stable ones. We
give in Section 4 an example of regular evolution ¢+ (u(t), o(t)) which satisfies
Griffith’s criterion at every time ¢ and is different from the one provided by the
global stability condition. A first attempt to construct an evolution based on a
local minimization was made in [5]. There, as in [4], the evolution is obtained as
limit of a time discretization procedure when the time step tends to zero, but, in
order to localize the minimum points, in the discrete-time problems a penaliza-
tion term was added to the energy functional. However, at that level of generality
it was not possible to prove that the evolution constructed therein coincides with
the regular one.

Therefore, the aim of our approach is twofold: to recover the possible regular
evolution and to provide a global existence theorem.

We propose in this paper the notion of approximable irreversible quasistatic
evolution defined as an irreversible quasistatic evolution ¢ +— (u(?), o(t)) that is
the limit of solutions ¢~ (u.(f),0.(t)) of suitable regular evolution problems.
Moreover, we want to choose among possible approximation procedures with a
regularizing effect, one such that t+— (u(t),o(t)) satisfies the following key
property:

(P) if on a certain time interval [t;, 2] there exists a regular function g((¢) with
oo(t;) = o(t;) and such that

E(t,a0®) =0 and OEt,00t) >0 Vi€t tal,

then a(t) = g¢(t) for every t € [t1, t2].
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In other words, property (P) ensures that whenever the Implicit Function
Theorem can be applied to 9,E(t, o) = 0 on a time interval [y, t2], thus providing
the existence of a regular evolution % (ug(t),00(t)), and the evolution
t— (u(?), o(t)) coincides with the regular one at time ¢;, they coincide on the whole
interval where the regular one exists. We prove in Theorem 3 that if £ — o.(?) is
strictly increasing on the time interval [£;, ¢3] then the approximable irreversible
quasistatic evolution we construct in Section 3 satisfies property (P).

Let us recall that we assume the existence of an initial crack. This hypothesis
is used in the construction of the regular evolution and therefore this model is not
suited for the study of the crack initiation problem. We also remark that we
choose the approximating evolutions on the basis of their mathematical simpli-
city and the choice we make (see Section 3) does not seem to have any mechanical
interpretation. Nevertheless, we think that the notion of approximable irrever-
sible quasistatic evolution proposed here could be the starting point for the study
of different approximations with a mechanical justification. For a different ap-
proach to the irreversible quasistatic crack growth see also [9].

The plan of the paper is the following. The setting of the problem is the subject
of Section 2. In particular, after having introduced all ingredients necessary to
define the energy functional &, in Subsection 2.1 we change variables in order to
pass to a new functional 7 whose domain is fixed (i.e. independent of o and of t). In
Subsection 2.2 we study some properties of the critical points of the energy
functional. Using F we define in Section 3 the approximating regular evolution
problem and prove in Theorem 2 the existence of a solution to the approximable
quasistatic evolution problem (see Definition 4). As already mentioned, in Section
4 we provide an example of regular evolution different from the globally stable one,
while in Section 5 we prove that under the additional hypothesis that &, > 0, our
construction leads to an evolution satisfying property (P) above, that is which
coincides with the evolution obtained by the Implicit Function Theorem. In
Section 6 we detail our results in the case of monotonically increasing in time
imposed boundary displacements, and in Section 7 we provide an explicit example
of geometry of the domain and boundary data such that every evolution ne-
cessarily has a discontinuity point. Even though it was believed that there exist
cases when the energy, as function of the crack length, has at least a concavity
interval, this is, at least to our knowledge, the first example in which the existence
of a concavity interval is proved.

2. — Setting of the problem.
We consider here the case of antiplane shears. Let Q be a bounded connected

open set of R? with Lipschitz boundary 9. The set Q represents the reference
configuration of an isotropic homogeneous elastic body. Let 9p€Q be a closed
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subset of AQ with H'(9pQ) >0, where H' denotes the one-dimensional
Hausdorff measure, and let dyQ := 0Q\ dpQ. On the Dirichlet part of the
boundary, dpQ, we will impose the boundary displacements, while on the
Neumann part of the boundary, oy, we will prescribe the boundary forces.
Let I" be a simple C3-arc and let y: [0,5] — I’ be its arc-length parametrization.
We assume that y(0) € 9y and y(o) € 2 for 0 < ¢ < &. For technical reasons it is
convenient to extend I until it reaches another point in dy 2, so that it cuts the
reference configuration 2 into two subsets. The extension will still be called I, and
its arc-length parametrization will now be y:[0, gy0.] — . We assume that its
intersection with the boundary 9Q is not tangential. Let v be a continuous unit
normal vector field on I". Then we denote by Q" the part of Q\ I” which is posi-
tively oriented with respect to v, and by Q~ the remaining part, so that
Q\I'=0Q"UQ . Both Q" and Q are bounded connected sets with Lipschitz
boundary. We assume that HYOpQRNORY) > 0 and HY(OpQNIQ™) > 0. We
make the following simplifying assumption: all admissible cracks are of the form

I'e):={ys):0<s<a} with 6 < 7.

Let I'(gy) with 0 < gy < @ be the initial crack.

According to Griffith’s theory we assume that the energy spent to produce
the crack I'(o) is proportional to the length of the crack, and, for simplicity, we
take it to be equal to o.

Given a crack [I'(s), an admissible displacement is any function
u € HY(Q\ I'(0)), and the bulk energy associated to the displacement u is

W(Du) = f \Du(e) Pdee
Q\I'(0)

where Du is the distributional gradient of % and | - | denotes the norm in R,
In the following it will be convenient to work on a fixed time interval [0, T']
with T > 0. We impose a time-dependent Dirichlet boundary condition on dpQ:

u=w() on JdpQ,

where the equality on the boundary is considered in the sense of traces. We
assume that y(t) is the trace on 9pQ of a bounded Sobolev function, still denoted
by t— w(t), with y(t) € H{(Q) N L>(Q).

We assume also that y € Wh>(0, T; H(Q)) and that

sup [[y@|l @ < +oo.
te[0,T1]

Thus, the time derivative ¢+ i(t) belongs to the space L>(0,T; H'(Q)) and its
spatial gradient ¢ — Di/(t) belongs to the space L>(0, T'; L*(; R?)).

We are interested in the case of time-dependent dead loads, in which the
density, ¢:[0, 7] x OvQ2 — R, of the applied surface force per unit area in the
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reference configuration does not depend on the displacement . We assume that
the function t+— g(t, -) belongs to W1°(0, T; L?(Ox Q, H1)), with time derivative
denoted by ¢t — g(Z, -). The associated potential, for a displacement u, is given by

G = f gt Du@)dH |

W@

Moreover, assume that for every ¢ € [0, T] the support of g(t, -) does not intersect
the set I
For every t € [0, T'], the set AD(y(?), o) of admissible displacements in 2 with
finite energy, corresponding to the crack I"(¢) and to the boundary data w(t) is
given by
AD(y(t),0) := {u € H(Q\ I'(0)) : u = w(t) on IpQ},

where the last equality refers to the traces of w and y(f) on dpQ2. The total energy
of a configuration (u, o) with u € AD(w(t), o) is given by

EB)(u, ) := W(Du) + g — G(t)(w) .

Note that it does not depend on the particular extension y(t) chosen, but only on
its value on the Dirichlet part of the boundary.

2.1 — Moving to a fixed domain.

Let H(%DQ(Q \ I'(¢)) denote the space of functions u € H'(Q\ I'(¢)) whose
trace on JpQ is zero. We may consider the energy as a functional defined on
H})DQ(Q \ I'(6)) by simply writing « =u+w({) with % <€ AD(w(t),0) and
U< H(‘13DQ(‘Q \ I'(g)). Still the domain of the functional would depend on a. To
transform it into a functional defined on a fixed domain we consider the following
change of variables.

For g € [0y,7], let &(-,0) = @,(-) : Q — Q be a diffeomorphism which coin-
cides with the identity near the boundary of 2, maps Q" into Q" and Q™ into Q™
and transforms [I'(o) into the initial crack I'(gg). Let (., 0) =%¥,(-):=
& 1(-,0): 2 — Q. Then

f \Du + Dy(t)dac = f IDUE (1)) + Dy )W o)) det DY, (y)dy .
\I (o) O\I'(a0)
Foru € H})DQ(Q \ I'(0)) define v(y, o) := w(¥;(y)) and let y(t)(y, o) := wE)(¥»(y)).
With these notations

[ 1pus Dyl = [ 1P N)Duy, 0) + DO, NP det DY, @iy,
A\ (o) Q\I'(60)
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and the last integral can be written also in the form

> ayly, 0)D;(y, o) + By, o)Diw(y, o) + )y, o)dy ,
Q\I'(ap) bIE{1,2}

with the coefficients a;; given by the change of variables.

Define A(o) := (a;(0)); and note that a;(o) € C(Q), and a;(0) = a;,(a), for
every o € [0¢,d], and every 1,].

We may assume that 0 < ¢ < [|[det D®,||, < C independently of o € [09,7],
where || - ||, denotes the L>-norm on . Since I is of class C3, we may also
choose @(-, o) (and hence ¥ (-, 0)) to depend regularly on ¢ in such a way that, as
functions of o, the coefficients a;; are of class C? on [0y, ], uniformly in Q. In
particular, we shall use the fact that there exist positive constants
A, A, A, L L' >0 independent of o, such that

e A@)E0) > A VEER?, Veel,
where (- | -) denotes the scalar product in Rz,

(2) 1AMl < Al¢]nl Ve e RE,
(3) @pA@EMlo < A|El 10l ¥Eme R,
(4) l|aij(6") — ai(e”)|| < Llo" —o”| and
(5) 10505(0") = Bp5(0")| . < L'l0” — 0"

for every o', 6" € [0¢,7] and 1,j = 1, 2.
Note that, since ¥, coincides with the identity near the boundary of Q, this
change of variables does not have any effect on G:

G@o)u +y (@) = G + y (@) .

Moreover, we can neglect the dependence of i on ¢ since, for every ¢ € [0y, 7],
¥, coincides with the identity near the boundary of Q, and we may assume that
the support of y is included in the set where, for every o € [6¢, 7], ¥, is the
identity. So, from now on we suppose that i = y and therefore the change of
variables influences only the bilinear term in v.

For brevity of notation, let

V= H} 5@\ I'(00)).

On V we consider the norm || - ||, defined by |v||y; := ||Dv||y, and the scalar
product (v, w)y := (Dv, Dw), where || - ||, and (-, -) denote the norm and, respec-
tively, the scalar product in L(Q) or L2(Q \ I'(5¢); Rz), depending on the context.
Let V7 denote its dual space and let (-, -) denote the duality pairing between V’
and V.
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For everyt € [0,T],v € V, and ¢ € [0y, 7] define

Ft,v,0):=
= [ 3 a@Diw+y®OD+y®)iw+o - [ g+ pe)dr.
Q\I'(ag) (1.2} onQ

Then the functional F can be also written as

Ft,v,0) = f (A(@)Dv|Dv) de + 2 f (Dy(t)|Dv) de

O\I'(09) Q\I'(09)
- f gdH + o + f \Dy(t)2dz — f 9wty dH,
N2 Q INQ
or
Fit,v,0):=

= (A(0)Dv, Dv) + 2(Dy (1), Dv) — (g(®), V)oyo + o + [ Dy @[5 — (9O, yD)aye

where (-, )5, o denotes the scalar produet in L*(Oy 2, H'). Hence the elastic en-
ergy becomes F(t,v, ) := F(t,v,0) — 7, and there exist four positive constants
27, Ar, ptr, and Mz, independent of ¢ and ¢, such that for every ¢ € [0, 7] and
every g € [0y, 7]

Felt,v,0) > Ar o} —

FUt,v,0) < Ar|v|l}, + My,

for every v € V. Indeed, this follows from the uniform ellipticity of the bilinear
part and standard estimates (on Q% and Q7).

REMARK 1. — The advantage of this change of variables is that now the set of
admissible functions v does not depend on ¢, nor on ¢. The same change of vari-
ables is considered, in a suitable small neighbourhood of the crack tip, in order to
compute the energy release rate, or, equivalently, the stress intensity factor (see,
e.g. [12], [1], and [14]).

2.2 — Critical points of the energy.

For every t € [0, T] the function F(¢,-,-):V X [0¢,5] — R is twice Fréchet
partially differentiable with respect to (v, o). The partial differential 9,F (¢, v, o)
belongs to V', while the partial gradient grad, F(,v,0) is, by definition, the
element of V given by

(grad, F(t,v, 0), w)y = 2(A(e)Dv, Dw) + 2(y(t), w)y — (9@), w)sya,
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for every w € V. The partial differential 9, F(t, v, o) is given by
0, F(t,v,0) = (0;A(e)Dv,Dv) + 1.
For fixed v € V and ¢ € [0y, 7], we have that F(-,v,5) € W0, T), with
OF (@, v,0) = 2Dy (@), Dv + Dy(t)) — (9@, v + w)aye — (9@), ¥(@)aye -
Note that by the regularity assumptions on y and g it follows also that the map
(t,v,0)— (grad, F(t,v,0), 0 F(t,v,0))

is continuous from 10, T[ x V x Joy, o[ into V x R.
The second order partial differentials with respect to (v, o) are given by

((3(2@,(,)}" (¢, v,0)(wy, 1), (W2, 72))) = 2(A(0)Dwy, Dws) + 2(0,A(0)Dv, Dw;)te
+ 2(0,A(0)Dv, Dws)t + (02,A(0)Dv, Do)ty 12,

for every (w;, ;) € V x R, 1 =1,2, where (-, -)) denotes the duality product be-
tween V' x Rand V x R.

Since, for fixed ¢ and o, the function v— F(¢,v, o) is strictly convex, it has a
unique critical point v;,, and v;, is a minimum point. Also the function
u— E(t)(u, g) is strictly convex and its critical point is the unique minimum point
e € AD(w (), 0) of u— E@)(u, o). The function wu;, satisfies

2 [ DuoDwdz = [ gt owdrt  vwe HY o(@\ I'0).
A\I(0) NQ

PROPOSITION 1. — For fixed t € [0, T] critical points of F(t,-,-) correspond to
critical points of E(X) in the following sense: minimum points vi, €V of
v— F(t,v,0) correspond by the change of variables to minimum points
e € AD(W(),0) of ur— EQ)u,a). Moreover, 0,F (X, v:4,0) = 0,E(t,0), where
Et,0) := E@) (Ut s, 0).

Before giving the proof we discuss some properties of the minimizers .
The following result provides a useful characterization of the “singular” part of
the displacement u; , near the tip (o) of the crack. For the proof we refer to [11],
[12].

PROPOSITION 2. — Let o € [09,5] and u € H(Q \ I'(0)) be such that
(6) M€ L2Q\T'(0)) and du=0 on I'(0).

Then there exists k € R satisfying

(7) u— K\/g 72 sin g e HXU \ I'(0)),
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Sfor every U CC Q open. In (1), r(x) := |x — y(0)| and O(x) is the continuous
Sfunction on U\ I'(c) which coincides with the counterclockwise oriented angle
between (o) and x — (o), and vanishes on the points of the form x = y(o) + hj(o)
for h > 0 sufficiently small.

The coefficient x1/2/7 represents the stress intensity factor associated
to the displacement u at the tip y(c). We shall use its following char-
acterization.

PROPOSITION 3. — Let o € [09,7), u € HY(Q \ I'(0)) satisfying (6), and let i be
defined by (7). Then for every ¢ = (¢;,¢,) € C(&; Rz) we have

1G((0))il0) = f [((Dlu)2 — (Dau)*)(D1¢, — Dagpy)

Q
+2Dyu Dyu(Dgy, + Daghy)| dav +2 f AuDyug, + Dougy) de.
Q

ProOF. — For a complete proof we refer to [1, Propositign 2.2], see also [17,
Proposition 3.2.3]. The idea is to consider # > 0 such that B(y(s),n) C Q, to in-
tegrate by parts:

[((Dlmz — (Daw))(D1d; — Day) + 2D1u Dou(Dydy + Do, >} da
Q\B(y(0),n)

and to pass to the limit as # — 0 using (6). O

PROPOSITION 4. — The function o — E(,0) is differentiable on [oy,T] and

0,Et,0)=1—12

to

2. . . .
where Ktﬁg\/; ts the stress intensity factor associated to w;, at y(o).

ProOF. — The same arguments of [1, Theorem 3.3] (see also [17, Proposition
3.2.4]) can be used. To compute the partial derivative 9,E(t,c) we consider a
diffeomorphism similar to @, and then apply Proposition 3. O

Proor oF ProposiTiON 1. It follows from the change of variables,
Proposition 3, and Proposition 4. O

Let us fix ¢ty € 10, 7[ and consider the map o — vy, ;. Since in this case we are
not interested in the dependence on ¢, let us simplify the notation and set
Vg 1= V4 o The following results will be used in Section 5.
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PRrROPOSITION 5. — With the above notation, the map o+— v, has the same
reqularity as o+— A(o), hence, under the reqularity assumptions we made on
A(o), it is of class C%(Jay, ).

Proor. — Standard arguments for elliptic PDE’s allow us to obtain that for
every ox € lgy,al there exists v/, € V as strong limit in V of the difference

Vg — Vg

. and the map o — v, is continuous in the strong topology of V.

quotient

The same arguments can be repeated to obtain that there exists v/, € V as strong
/ /

limit in V of the difference quotient % and that the map o+ v/ is continuos

with respect to the strong topology in V. Note that v/, and v/ solve the following
equations

8) (A(@)DV,, Dw) + (9,A(@)Dv,, Dw) =0 YweV,
9)  (A(@)Dv, Dw) + 2(0,A(0)Dv., Dw) + (82A(@)Dv,, Dw) =0 Yw eV,

respectively. O

ProprosITION 6. — With the same notation as in Proposition 5, v := vy 4, the
second order differential, 8(2M) F(to,vs,0), of F with respect to (v,0) is strictly
positive definite if and only if the second order derivative of the function
o+ F(ty,v,,0) 1s strictly positive, when both exist. Moreover, by Proposition 1,
this is equivalent to the fact that the second order derivative of o+— E(ty,a) is
strictly positive.

PRrROOF. — Indeed, as 9,F(ty, v,,0) = 0, and ¢ — v, is, by Proposition 5, a C?-
function, we have

& B, 07,0) = 0, F(10,00,0) + (00F(t 170,11 = 0, P, vy.0).

and, using (8),
d
<% O F (o, vy, 0), w> = (0,0, F o, Vg, 7), W) + (va]-'(to, Vg, WL, w) =0 YweV.

Assume that
d /
0 < %80f(t07vo'7 O') = 83(77“07”0’ O-) + <87)80'F(t07v0'7 o-)v,ug> .

Since in our case (9,0,F,w) = (09,0,F,w), the previous relations imply that

agof(t(h ,Uo'y O') > <637;f(t07 ’Ua, 0-)1)/57 ,U:T> .
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Therefore
(0, F (to, v, )0, D, (0, )
= 2 F(ty, vy, 0)7° + 2(0,0,F (ty, vy, @), w)T + (02 F(to, v, o), W)
> (02, F (to, g, 00, 0, )7 — 2(05, F (to, 05, )0, w)T + (05, F (to, v, 00, )
= (0%, F(to, v, o), — w), (zv), —w)) >0,
which shows that 8(2“)).7-' (o, vs, 0) is strictly positive definite.

It is also easy to see that if O, ) F (to, v, 0) is strictly positive definite then the
second order derivative of the function o — F(ty, v,, o) is strictly positive. O

3. — Irreversible quasistatic evolution.

Given an initial crack length oy > 0, and an initial value, %, of the displace-
ment, such that the initial configuration is in equilibrium, we want to study a
quasistatic evolution of configurations (u, ) which starts from (uy, g9). We are
interested in the evolution until the crack length reaches a certain value o7 < @.
We cannot avoid the solution to have jumps (even at ¢ = 0) to configurations with
crack lengths larger than oy; if this is the case, then the boundary data are not
compatible with a progressive crack growth on the interval [oy, o1].

DEFINITION 1. — The irreversible quasistatic evolution problem consists in
finding a left-continuous map t— (u(t), a(t)), where a(t) represents the length of
the crack up to time t, and the displacement u(t) belongs to AD(w(t), a(t)), which
satisfies the following three conditions:

(@) local unilateral stability: for every ¢
EB®), a(®) < ER(u,a(®)  Yu € AD(y(?),a(?))
0,E(t,a(®)) > 0,
where E(t, o) is defined in Proposition 1;

(b) irreversibility: the map t— a(t) is increasing;
(c) energy inequality: for every 0 < s <t we have

EDu®), o)) < E(s)(uls), a(s))

t
+ f (2 f (Du)| Di(0))dic — f g dH — f g(‘[)u(f)d’/‘[l>df.

O\I'(o(1) 17549 INQ

In terms of the functional F, the irreversible quasistatic evolution problem
consists in finding a left-continuous function ¢— (v(t), o(t)) which satisfies the
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following three conditions:

(ar) local unilateral stability: for every ¢

grad, F(t, v(t), a(t)) = 0,
O F(t,v(D), a(t)) > 0;

(br) irreversibility: the map ¢— o(?) is increasing;
(cr) energy inequality: for every 0 < s < t we have

t
F(@t,v(),0) < F(s,v(s),0(s)) + f O F (r,v(7), a(0))dr .

A solution, £ — (v(t), a(?)), to this problem is called an rreversible quasistatic
evolution for F.

Let us remark that, by the very construction of the functional F, an evolution
for F is well-defined only for cracks whose length is less than or equal to @.

In terms of an irreversible quasistatic evolution t— (v(t), o(t)) associated to
the functional F, the Griffith’s criterion can be expressed as:

at) >0
(10) 9, F (¢, v(t),a(t)) = 0
9o F (@, v(t),a(t))a(t) =0

for a.e. t. Since the first two conditions are included in the definition of an irre-
versible quasistatie evolution, it remains to prove the last one.

PROPOSITION 7. — Let t— (v(t), a(t)) be an irreversible quasistatic evolution
for F. Then for a.e. t we have

OsF (¢, v®),0()o®) =0.

PrOOF. — Since ¢t — a(?) is increasing, the derivative (¢) exists at a.e. t. Fix ¢y
such that 6(¢) exists. Let us recall that, given o(t), the function v(f) is determined
as the unique solution of grad, (¢, v, a(t)) = 0. Then the hypotheses we made on
A(o) and on the data w and g imply that o(ty) exists, as strong limit in V of the
v() — v(to)

t—1
From the energy inequality (cx) we deduce that ¢t — F(t,v(t), o(t)) is a func-

tion with bounded variation and that for a.e. ¢

%f(t, o), 0(0) < HF L o(d), ().

difference quotient

As grad, F(t,v(t),o(t)) = 0, it follows that
(11) OsF (¢, v(®), a(®)a(®) < 0.
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Since 6(t) > 0 and 0, F (&, v(t), a(t)) > 0, (11) implies the equality to be proved. [

Going back to the energy functional &, the Griffith’s criterion now reads

o) > 0
(12) 1 -1t >0
1 - 2E)e®) =0

2. . . . .
for a.e. t, where K(t)\/; is the stress intensity factor associated to the displace-

ment %(t) at the tip o(t) (see Proposition 2). Since by the change of variables we
made, 9, F(t,v(t), a(t)) = 1 — 12(t), the previous proposition shows that during an
irreversible quasistatic evolution the Griffith’s criterion is satisfied. Note that this
can be proved directly for &, following, for instance, the lines of [5, Theorem 6.1].

As mentioned in the introduction, in the context of variational models for
quasistatic crack propagation, the evolution of minimum energy configurations
was studied (see, e.g. [4], [2], [7], [3]) and existence results were proved in a very
general setting (see [3]). This kind of evolution is a solution to the following
problem.

DEFINITION 2. — The globally stable irreversible quasistatic evolution pro-
blem consists i finding a solution to the irreversible quasistatic evolution
problem which satisfies the global stability condition: for every t

ED®),o)) < EQW,0) Vo =at) VveADy{),0).

During a globally stable irreversible quasistatic evolution the total energy is
an apsolutely continuous function of time and the energy inequality (¢) becomes
an equality.

However, a solution to this problem is not completely satisfactory since, in
order to get the global stability, we have to compare, at each time, the energy of a
configuration with the energy of all admissible configurations with larger crack
lengths. This is why we use another criterion of selection: among all irreversible
quasistatic evolutions we choose the approximable ones, i.e. those that can be
obtained as limits of solutions to a regularized evolution problem.

The regularized problem considered in this paper will be given using the
energy functional F. More precisely, we define a modified ¢-gradient flow for F
in the following way. Since we are interested in an irreversible crack growth for o
varying in the interval [, o1], we look for an increasing function o(t). Hence, we
consider the positive part of the derivative of F with respect to o. Then, we
modify the evolution law for the crack length in such a way that it never reaches
@. To this end we introduce a penalization factor A(g) that can be any Lipschitz
continuous function of ¢ which is equal to one for ¢ < g1, is strictly positive for
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o1 < 0 < @, and is equal to zero for ¢ = G. For instance, let

@— (Vo)
o — 01 '

(13) o) =

In such a way the evolution is the one given by the e-gradient flow, with the
constraint that o is increasing, on the interval [y, o1] that we are interested in,
and it is modified by this artificial penalization term for ¢ > 1, so that we do not
consider it meaningful for ¢ > 0.

DEFINITION 3. — A function t— (v,(t), g.(t)) is called a solution to the initial
value problem for the modified e-gradient flow for the functional F on [0, T]
ev, = —grad, F(¢, v,, 0,)
(14) &0, = (_ aaf(t7 Vg, O's))Jrl(O's) y
Q}g(O) = Uo
0:(0) = a9,

where (o) is giwven by (13), if v, € CX([0,T1; V), o, is a C! increasing function
from [0, T] into [0y, T] and the first equation in (14) is satisfied in the following
sense

(ev,, w)y = —(grad, F(t,v,, 0,), w)y YweV Viel0,T].

Note that (14) is a Cauchy problem for an ordinary differential equation in
V x R.

THEOREM 1. — There exists a solution (v,, a.) to the initial value problem (14)
with M) given by (13), and the following energy estimate holds: for every s,
te[0,Tlwiths <t

ay(0)?

t t
. 2
(15) & f o0l dr + & f oy et F 0 0.0.0)

i
< F5,049), 0. + [ 0F (@00, 0,0 d.

Proor. — Taking into account the expressions of grad,F and 9,F, the equa-
tions in (14) can be written as

(16) &g, W)y = —2(A(g,)Dv,, Dw) — 2y @), w)y + (g(&), w)ay0 Yw eV
&6, = (— (0,A(a,)Dv,, Dv,) — 1) A(o,) .

Since the vector field defining the equation (16) depends on ¢ only through the
boundary data w and g, it is Lipschitz continuous in ¢. Moreover, for fixed t,
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standard estimates show that it is Lipschitz continuous and bounded on the
bounded subsets of V' x R. Hence classical results on ODE’s (see, e.g. [6]) give the
local existence and the uniqueness of the solution. Since there exist a € C([0, T'T)
and f > 0 such that

(— grad, 7 (t,v,0),v)y + o(— 0, F(t,v,0)" i(0) < a®)(||][} + 6*) + p

for every (v,0) € V x R, the solution is defined on the whole interval [0, T'].
The function t+— F(t,v.(t), g.(t)) is then Lipschitz continuous on [0, 7] with
derivative given for a.e. t € [0, T'] by

%}_(t, ve(1), 0:()) = O F (X, v:(8), 0.(8) + (grad,F (¢, v:(), 5.(1)), 0:(t))y
+ 0s F (X, v:(0), 0:(8)5. () .

Taking into account the equations satisfied by v, and a,, for every s, t € [0, T']
with s < ¢ we have

-7:(t7 ”e(t)> a.(t) — ]:(37 ?JS(S), 7.(8))

t
i o (62
_:! <3t]:(f7 (1), 0,(1)) — e[ 0Dl — E;L(ae(f))> dr,

which implies (15). |

REMARK 2. — Let t — (v.(?), 6.(1)) be a solution to (14). Assume ||v.®)|, <M
for some positive constant M independent of ¢ and ¢. By (3),

£6:(t) < (A'M? + Dlo,(t) < C@ — a,(0)"

for some constant C > 0. By classical results on differential inequalities (see,
e.g. [13, Theorem 1.6.1]) it follows that for every ¢ € [0, T']

o,(t) <7 — e @ - 0),
hence o, never reaches @.

Note that, since the evolution is constrained to cracks with lengths less than
or equal to @, Griffith’s criterion is meaningful in this setting only until the length
@ is reached. As the penalization factor A(o) is strictly positive for ¢ < @, we may
replace (10) by

at) >0
0, F (t, v(®), 0(t)A(a(?) > 0

O F(t,v(t),ot))a) =0.
for a.e. t € [0, T']. Therefore, also the second line in the local stability condition

(ar) may be replaced by 8, F(t, v(t), a(t))A(a(t)) > 0.
We introduce now the following notion of evolution.
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DEFINITION 4. — The approximable irreversible quasistatic evolution problem
on the interval [0,T] with nitial data (ug, o) consists in finding a left-con-
tinuous map t— (v(t), o(t)) from [0, T] into V x R which satisfies the following
conditions:

(@) for every t € [0, T]

grad, F (¢, v(t), o) =0
O F (t,v(), a(®)A(a(®)) > 0;

(bg) the map t— a(t) is increasing;
(cp)forevery 0 <s<t<T

t
F@,v@), o) < F(s,v(s),0(s) + f O F (r,v(1), 0(1))dt;

(dx) the pair (v(t), @) is the limit of solutions (v,(t), o.(t)) of the modified -
gradient flow for F with initial conditions v,(0) = ug and .,(0) = g, along a
suitable sequence ¢, — 0, in the sense that, as g, — 0

g, () — a(t) and
v, @) — v(@) strongly in V' for a.e. t€[0,T].

A solution t— (), a(t)) to this problem is called an approximable quasistatic
evolution for F.

We are now in a position to state the main result of this paper.

THEOREM 2. — There exists a solution to the approximable irreversible qua-
sistatic evolution problem on [0, T with initial condition (uy, oy).

REMARK 3. — The fact that an approximable quasistatic evolution starts from
(19, 00) means only that for every ¢ > 0, v,(0) = uy and 7,(0) = go. We may always
set (v(0), 5(0)) := (ug, g¢), but in general v and ¢ are not continuous in ¢t = 0. The
only case in which (uy, 0¢) is the initial value for the evolution in a “classical” sense,
is when (uy, g¢) is the absolute minimum point of 7 (0, -, -). Indeed, in this case, by
semicontinuity and by the energy inequality (cz), it is easy to see that
t— F(t,v(t),o(t)) is continuous in ¢t = 0.

Proor oF THEOREM 2. For ¢ > 0 let (v, g,) be the solution of the modified &-

gradient flow with initial data (ug, 6¢). Let ¢t € [0, T]. The estimates we have on F
together with (15) between s = 0 and ¢ imply

t
IOl < iy + FO,u0,00 + [ @@ + b(e)de
0
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for some functions a, b € L>(0, T') which depend only on the data w and g. Then,
by Gronwall’s Lemma, there exists a positive constant C' > 0 independent of ¢
and &, whose value may change from line to line, such that

(17 lv.®ll,y < C vt e [0,T].
By (15) we now get
(18) elloel 70,03 < C

(19) 5||¢e\|iZ(0,T) <C.

Let ¢, — 0. By Helly’s Theorem, there exists a subsequence, still denoted by
&, and an increasing function o: [0, 7] — [0¢, @] such that

g, () — a(®) for every t € [0,T1].

The estimate (17) implies that there exists a function v € L?(0, T; V) such that,
for some subsequence that we still denote by &,

(20) v,—v  weakly in L*0,T;V),
while, by (18),

(21) ey, — 0 strongly in L*0,T;V).
Hence

&, (s, @), w)y = (— grad, F(¢, v, (1), 0., ), w)y — (— grad, F(¢,v(®), o), w)y =0,

for every w € V and for a.e. ¢ € [0,T]. In particular, choosing w = v,,(t) and
taking into account the explicit form of grad,F, the first equality in the last
formula gives

T
2 [ G, ®)Dv, @), Dy, ®)dt
0

T
= f (= &n(s, (0, v, Oy — 2D, v, O + (9(8), v, D) ay0) dt.
0

By (20) and (21) we can pass to the limit in the right-hand side of the above
equality and deduce that

T T
2 [ A, @)D, ®, Do, @)t — [ (= 2@, 00 + (9O, vOhaye) dt.
0 0
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From grad,F(t,v(t),o(t)) = 0 we thus get
T T
22) [ A, @D, ®,Dv, @)t — [ AG®)Dott), Do),
0 0

which gives the strong convergence in V of v,, () to v(¢) for a.e. t € [0, T']. More in
detail, as

(Alas, O)(Dw,, (Do), (D, ()—Dv(1)))
= (A(os, () Dy, (), Dvg, () — 2(A(ay, () D, (), Dv(t)) + (A(ae, $)Do(t), Du()),

from (22), (20), and the convergence of o,,, we deduce that for a.e. t € [0,T1]

Jlim (A, O)Du, () — Do), D, (t) — Do) =

which, by the coerciveness hypothesis (1), implies the desired convergence.

By (19), passing possibly to a further (not relabelled) subsequence, we have
that ¢,6.,(t) — 0 for a.e. t € [0, T']. Taking into account the equation satisfied by
a,,, we obtain that (— 9, F (&, v(t),a®))) " Aa(t)) = 0 for a.e. t € [0, T'.

When passing to the limit in (15), we neglect the terms containing the norms
of the time derivatives of v,, and o,,, and thus get that for a.e. s, ¢ € [0, T'] with
s<t

t
(23) F@,v(),0) < F(s,v(s),0(s)) + f O F (t,0(0),0(0))dt .

(By semicontinuity the estimate holds true for every ¢t € [0, T'].)

Therefore the function ¢ — (v(f), o(t)) satisfies all conditions in the definition of
an approximable quasistatic evolution, except possibly for the left-continuity.
Hence we modify it in the following way. Since ¢ is increasing, for every ¢ € [0, T]
there exists the limit ¢°() := hm o(s). Let v®(t) be the unique solution to
grad, F(t,v,c°() = 0. Then v(s) — v9(t) strongly in V as s — t—, a(t) = a°(t)
and v(t) = v°(t) fora.e. t € [0, T]. By construction, the map t — (v°(¢), 6°(¢)) is left-
continuous from [0, T'] into V x [oq, . Moreover, 0, F(,v°(t), a° ) Ac° () > 0
for every t € [0, T]. Let s, t € [0, T] with s < t, and let s,, — s—, t, — t— be such
that (23) holds for s,, and t,,. Passing to the limit in (23) as 7 — +oo we obtain

t
Ft,0°1),0° (1) < F(s,0°(s),0°(s)) + f O F(z,v°(1),6°(0))dr,

so that we conclude that ¢ — (v°(t), ¢°(t)) is an approximable quasistatic evolution
for F on [0, T] which starts from (u, o). O
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REMARK 4. — Let t+— (v(f), o(f)) be an approximable irreversible quasistatic
evolution on [0, T']. If ¢ € [0, T'] is a discontinuity point of ¢ — F (¢, v(t), 6(t)) then

lim F(¢,v(),6(t)) < FE,v@),a()).
t—t+
Indeed, note that at every time ¢ the function ¢+ o(t) has a right limit. Let

a®(t) := lim o(t), and let v®() be the solution to grad,F(t,v,s"(t)) = 0. By the
t—t+ _
regularity assumptions made on the data, we have that v(t) converges to v®(t)

strongly in V, and hence, using (cz), we obtain

lim F(t,v(t),a(t) = F¢v°®),0"®) < FE,v@),0).
t—t+

4. — Example: a regular evolution which is not globally stable.

The example we provide in this section illustrates the highly expected fact
that the notion of evolution given in Definition 1 and the globally stable one may
lead to different results. We choose the boundary data in such a way that we can
construct a regular evolution during which the crack length grows continuously,
while the global minimality condition imposes a jump in the crack length.

Let us start with the following simple setting in which Q is the unit ball in R?
and I is the segment [ — 1,1] x {0}. Let I'; :=[ —1,0] x {0},

2.0 3 . 30
wea(p, 0) = ;pz sin éJr ap?sin — |

where (p, 0) are polar coordinates centred in the origin, with 0 € [ — x, 7], and let
v, be the harmonie function in QF := {(1,42) € Q : x2 > 0} which satisfies the
homogeneous Neumann condition on I” and coincides with w, on the upper
semicircle.

Let us study the behaviour of

1
I, = az{ f \Duwg|? — 2f |Dva|2}
o\ I
as a tends to +o0o. We note that

= [

Q\I'

2

"ofjo(2

Moreover, as @ — +oo, the functions % converge strongly in H(Q\ I'1) to the

. Lo . L& 3 . 30 .
function w which in polar coordinates is given by w(p, 0) := p5 sin 5 The function
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w is the solution of the minimum problem on the domain with the crack I';
30

corresponding to the Dirichlet condition w(1,6) = sin 5 Analogously, the

functions %‘L converge strongly in H'(2") to the function v which solves the

Neumann-Dirichlet problem on Q" with v(1, §) = sin 350 Therefore

Ia—>f \Dw|? — 2] IDvf > 0.
O\I'y ol8

This shows that

f |Dwa|2—2f|Dva|2—>+oo as @ — +o0,
Q\F1 ot

and, hence, for a large enough, the total energy corresponding to w,:

Il |Dwa|2 + 1 is larger than the total energy corresponding to the complete
Q\Fl
cut I" and to the same boundary displacement: 2 [ |Dv,|* + 2.

Q

Of course in our setting a complete crack is not allowed: all admissible cracks
are of the type [ — 1,s] x {0}, with s <5 < 1, but this is not a problem since the
results in [4] provide the continuity of the energy with respect to the crack
length, so that solutions corresponding to “almost” complete cracks have energy
arbitrarily close to 2 [ |Dv,|* + 2. Therefore the above considerations can still be

applied to our problem, provided s is “close” enough to 1.

More precisely, in [4] the following situation is considered. Let w,, w € HX(Q),
let v; be the solution to the minimum problem

min{ f IDv]? v e HY(Q\[—1,5] x {0}),v =y, on aQ},
Q\[-1,5]1x{0}

and let v, and v_ be the solutions to the minimum problems
min{ f|Dv|2 cve H(QM), v =y on 92N 89*} :
Q+
and

min{ f|Dv|2 cve H(Q ), v =y on 89039‘} )
Fe

respectively, where Q7 := {(x1,22) € Q : ¥2 < 0}. Assume y, — w strongly in
HY(Q). Then, by Theorem 4.1 in [4], given ¢ > 0 there exists s, < 1 such that for
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every s € [s;, 1[,

f|Dv+|2 +f|Dv,|2— f IDv 2| < e
ot Q O\[-1,s]x{0}

Here y, = w = w,, and due to the symmetry of the problem, [ [Dv, [ = [ |Dv_|%.
+ Q-
Starting from these simple remarks let us now construci;2 a regular evolution
in which the crack length evolves continuously, while, with the same imposed
boundary data, the globally stable evolution exhibits a jump in the crack length.
For every t € [0,1[ let I'(t) :=[ — 1,¢] x {0} and let w,(t) be the function
given in polar coordinates centred in (¢,0) by

walt, p, 0) = \/ép% sin 0 ¢ ap? sin 30
s 2 2

Since w,(t) is the unique solution to the minimum problem

min{ f IDvf v € HY(Q\ (1), v = wa(t) on ag} :

Q)
the above arguments show that
t— (we(0),1+1)

is the unique regular quasistatic evolution.

On the other hand, for a large enough, the globally stable evolution with the
same imposed boundary displacement is given by the solution corresponding to
the maximum crack length s allowed.

5. — Quasistatic evolution and the Implicit Function Theorem.

In this section we show that, under suitable regularity assumptions, the so-
lution to the modified e-gradient flow converges to the continuous solution of the
quasistatic evolution problem given by the Implicit Function Theorem.

THEOREM 3. — Assume that in (t°,6°) € [0, T[ x [ag, o1[ the following condi-
tions are satisfied
Et,¢") =0
FPE, %) > 0.

Then there exists a time interval [t°,t'] and a unique Lipschitz continuous
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function ¢° : [t°,t1] — [6°, 01] such that
LEt, ") =0 vtell .

Moreover, if (v, a,) is the solution to the modified e-gradient flow and the fol-
lowing two conditions are satisfied:

) >0  Vtelt ]

a.(t") — o°,
then a,(t) — d'(t) and Et,0,(t)) — Et,d°t)) for every t € [t°,t'].

Proor. — The first part of the theorem follows from the Implicit Function
Theorem applied to 9,E at (t°, ¢°).

As for the second part, let us remark that even if there are not at the moment
general theorems guaranteeing the strict monotonicity of o, during the ap-
proximation process, in many cases this will follow, for a suitable choice of the
boundary data, from a symmetry argument.

We now prove the theorem in an equivalent form for the functional 7. Indeed,
since 0,E(t,0) = 0,F (X, 1, 0) (see Proposition 1), if the second order derivative
PE°, 6% > 0, then also % s F(@°, v »0,0") > 0, and this last condition is
equivalent to the fact that the second order partial differential 92, , F(t°, vy 50, 0°)

(v,0
is strictly positive definite (see Proposition 6).
THEOREM 4. — Assume that in (£°,1°,6°) € [0, T[ x V x [a¢, a1[ the following
conditions are satisfied
{ grad, F(t°,2°,6% =0,
e F(t°,0°,6%) =0,

and the second order differential, 02, , F(t°,0°,6°), of F with respect to (v,0) is
strictly positive definite, i.e. there exists a > 0 such that

(88, o F@,0°, 6w, ), w, 1)) > a(wly +[7})  YweV VYreR.

Then there exist a time interval [t°,t'] and a unique Lipschitz continuous
function (0°,6°) : [t°, 1] — V x [6°, 1] such that

{ grad, F(t,0°(t), a°(t)) = 0
aaf(tv vo(t)a O-O(t)) =0

for every t € [t°,t1].
Let (v;,0,) be the solution of the modified e-gradient flow for F given by
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Theorem 1 and assume that

(%) — 0 strongly in V and

0

ot — o ase—0.

Assume that 6,t) > 0 and o,(t) < a1 for every t € [t°, t1]. Then v,(t) — 2°(@)
strongly in V and o,(t) — o°(t) for every t € [t°, 1],

PRrOOF. — By our assumptions on the data, 82)10)}" (t,v, o) (see Subsection 2.2) is
continuous with respect to (¢,v,0) € [0, T] x V x [0¢, @]. Moreover, the function
t— Oigrad, F(t,v,0) belongs to L>*(0,7;V), while 0:0,F(,v,0)=0. By the
Implicit Function Theorem (see, e.g., [15]) applied in (t°,2°, ¢°) to

grad, F(t,v,0) =0
0, F(t,v,0) =0,

it follows that there exist a time interval [t°, {!] and a unique Lipschitz continuous
function (v°,¢%): [t°, '] — V' x[6°, ¢1) such that

grad, F(t,2°(t), a°(t)) = 0
(24)
aof(ta vo(t); O-O(t)) =0

for every t € [t°,!]. By a compactness argument, changing possibly the value of
a, we may assume that there exist a > 0 and » > 0 such that for every ¢ € [, t!],
for every v € B,(1°(t)) C V, and for every o € (¢°(t) — »,d°(t) +r)

(25) (&

v,

F(t,v, 0w, ), @, 1)) > allwl} + ) YweV VreR.

Restricting the time interval, if necessary, we have ¢°(t) +r < g1 for every
te [0t

Let 0 < 7' < r be a number that we shall choose later. For every ¢ > 0 small
enough we have ||v,(t°) —°||;, < and |6.(t°) — ¢°| < . By continuity, there
exists a time interval, depending on ¢, on which these inequalities hold. Let 7, be
the largest time such that for ¢ < t,, ||v.(t) — °@®)|,, <+ and |o.(t) — a°(®)] < 7.
In particular, for ¢t < 7, we have o.(f) < o1, and hence, A(g,(f)) = 1.

We want to prove that 7, = t!. Assume by contradiction that t, < t!. Taking
v,(t) —°(t) as test function in the equation satisfied by v,, multiplying by
o:(t) — a°(t) the equation satisfied by ¢,, and taking also into account (24), we
obtain

ed

ed ed
2dt

2 dt
= — (grad, F(t,v.(t), 0,(t)) — grad, F(t,2°(t), °®), v:(t) — @)y
+( = 0, F(t, 0,1, 0.(0) + 0, F (¢, 0°(1), 6° (1)) (6.(8) — a°(1))

—e(°(), v.(t) — V" @)y — 6" ()(a.(t) — ")) .

[0:t) = D% + = = |o.(t) — °@t)2
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Setting o2 2
Cs(t) = H’Ut(t) - (t)HV + |65(t) — 0 (t)‘ 9
from (25) it follows that

% L) < —al, () — @), vy(t) — @)y — e6°(B)(o,(t) — o (t))
g—%ﬁﬂéWWMﬁ+%Mﬁ%ﬂWM@+;ﬁ®F+;@®—0%ﬁ
< (~a+ g) LD +5B Vel T,

where £ is an upper bound for ||1')0(t)||%, +16°@®)[ on [t°, 1],
Hence

26 o< (L0~ %)é—%“—t”) + % Vielt,T).

Therefore, choosing now # small enough, from (26) we get that also
|v.(z) — 22|y < 7 and |o.(z.) — 6°(z,)| < 7. By continuity, these inequalities
hold also for some ¢ > 7., in contradiction with the maximality of z,. Thus we
deduce that 7, = ¢!, so that (26) holds for every ¢ € [t°,!]. Passing to the limit in
(26) as ¢ — 0 we get the conclusion. O

By the change of variables that defines the functional F, and by the un-
iqueness of the regular evolution given by the Implicit Function Theorem, it
follows that the regular evolution in Theorem 4 corresponds to the one in
Theorem 3.

PRrOOF OF THEOREM 3 CONTINUED. Let (v, g,) be the solution to the modified
e-gradient flow for F. By Theorem 4, ¢,(t) — ¢°(t) and v,(t) — v°(t) strongly in V
for every t € [t°, t']. Since the function v — grad,F(¢,v, o) is continuous from V to
V with respect to the strong topology, it follows that

grad, F(t,v,(t), o,(t) — grad, F(t,v"1),a’(t) = 0.

Let v.(t) be the element of V associated to u ;) by the change of variables. As
grad, F (¢, v.(t), 0.(t)) = 0 we deduce that v.(t) —v.(t) — 0 strongly in V. This
implies that

f(t75}(t)7 Je(t)) - f(t; ?)g(t), Js(t)) - 0 )

On the other hand,
F(t,v.0), 0.(1) — Ft,0°(1),0a"(V) = Et, 0" (1)
F@,0.0),0:(0) = E, 0.()),
so that we conclude that E(t, ,(t)) — E(t, ")) for every t € [t°, t1]. O
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6. — Monotonically increasing loadings.

In this section we detail our study in the case of monotonically increasing
loadings. Accordingly, assume w(t) := ty,, with y, € H(Q), and ¢(¢) = 0, and
define

E(0) := min{||Dulf5 : w € AD(y,,0)}.

Since HY(Q \ I'(¢")) c HY(Q\ I'(¢")) for ¢’ < ¢”, we have that E(¢’) > E(¢"), so
that the function o — E(o) is decreasing.

Let (u(-),a(-)) be an irreversible quasistatic evolution. Recalling that w(f) is
the minimum point of ||Dul|, on AD(y,, o(t)), we have that ||Du(t)||§ = 2E(6(1)).
We may now express conditions (a), (b) and (c) of Definition 1 of an irreversible
quasistatic evolution, in terms of ¢(f), and, in the case of this particular choice of
the data, we obtain:

(@) 14 2E'(a(t)) > 0 for every t > 0;
(b') the map t+— o(¢) is increasing;
(@) BE(G({)) + o(t) < s*E(a(s)) + a(s) + 2 f tE(a(7)) dr, for every 0 < s < t,

where E'(c(t)) denotes the derivative of £ with respect to o computed at o(?).

REMARK 5. — Let t+— a(f) be a left-continuous map on [0, 7] which satisfies
condition (¢') and define

e s a(t) — a(s)
o) = hrsrlst}lp —5 s
Then
(27 (1 + tZE’(G(t))) @) <0

for every t € [0, T']. Indeed, let ¢, " ¢ be such that

| a(t) — alt)
m ————-
k—o0 t— tk

=" (1).

Then condition (¢’) between ¢, and ¢t can be written as

& — £)E@®) + . (E(a(t)) — E(a(tr))) + o(t) — a(ty) < 2 f tE(o(7)) dr,

2

and (27) follows dividing by ¢ — ¢, and letting k¥ — + oc.

REMARK 6. — Let t+— a(f) be a left-continuous map on [0, 7] which satisfies
conditions (a'), (b'), and (¢’), and let £ > 0 be such that 6°(¢) > 0. Then, by Remark
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5 and conditions (a’) and ('), it follows that

d 1
E' @) = 2~ E@)|,p0 = 35

which implies that o(t) does not belong to the concavity intervals of E(o), since
t— o(t) is increasing, and ¢t — E’'(o(t)) would be decreasing, while the right-hand
side is increasing. More precisely, if there exists an interval Ja, b[ C [0¢, 7] such
that o — E'(0) is strictly decreasing on Ja, b[ and there exists ¢y > 0 such that
a(ty) > 0 (or 6°(ty) > 0) and o(ty) € Ja, b[ then we reach a contradiction. Indeed,
let t >ty be such that o(t) € Ja, b[. By (0'), o(t) > o(ty), and by (a’) and our as-
sumption on E'(c), we get
—tlz < E'(at)) < E'(a(to) = —% < —tlz,

a contradiction.

In order to better specify the monotonicity needed in the above remarks we
introduce the following notion. We say that t, is a local left-constancy point for o
if there exists ¢ > 0 such that ¢ is constant on the interval [ty — &, to].

PRroPOSITION 8. — Let 0:[0,T] — [0g,0l be a left-continuous map which
satisfies conditions (a'), (b'), and (¢'), and let ty > 0. If

1) to is mot a local left-constancy point for o and
(2) there exists la, bl C [og,al such that E'(c) is strictly decreasing on Ja, bl
then a(ty) ¢ la, bl.

Proor. — If tj is not a local left-constancy point for o, then, given ¢ > 0, there
aretl t2 € [ty — ¢, to] such that a(t}) # o(t?). Therefore, there exists ¢, € [ty — &, tol
such that °(¢,) > 0. Then (27) together with (a’) imply that 1 + t2E'(a(t,)) = 0. By
Remark 6, a(t,) ¢ ]a, b[ and we conclude by passing to the limit as ¢ — 0 (since o is

left-continuous). O

PropPoSITION 9. — Let ¢ :[0,T] — [og,0] be a left-continuous map which
satisfies conditions (a'), ('), and (c¢'). Assume that E(o) is convex on
la,b[ C 69,7 Then o(t) is continuous at every t with o(t) € la, b[.

PRrOOF. — Assume by contradiction that o(t) < o(t*). Then condition (¢’) and
condition (a) imply

E(@(t") —E@®) _ 1

e < g S EE).

a contradiction. O
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7. — Example: existence of a concavity subinterval for the energy functional.

In the same context of Section 6, we consider the energy functional
o — E(0) := min{||Du|} : u € AD(y,0)},

and construct an explicit example of 2 and y for which E(o) is concave on some
subinterval. Let B_s denote the ball of radius 1 centred in (— 2,0), let By denote
the ball of radius 1 centred in (2,0), and let I" := [ — 3,3] x {0}.

B,Q B2
r\e T g
r . | . N
-2 0 2

Fig. 1 — The set Q,.
For &> 0let
T.:=1—2+cose,2—cose[ x]—sing, sing[, Q.. =B sUT,UBs.
Further, for every o € [ — 3,3] let
I'(o) :=[-3,0] x {0}.
Let (p,0) and (p, 0) be polar coordinates around (— 2,0) and (2, 0), respectively,

where the functions 6 and 6 are chosen, as in Proposition 2, such that
O0(xy,x0) — —m if 23 — 0— and x; < —2, 0(xy,22) — 7 if 22 — 0+ and x; < —2,
and, analogously, 9(901,902) — —mifes — 0— and x; < 2, Z)(ml,acg) — nifas — 04
and x; < 2.

On 09, we define the boundary data w, as follows:

sin @ on (0B_3 N 02;) \ I'(0),
0
sin % on (832 N 698) \ I'(0),
sing on ] —2+cose 0 x {sine¢},
(@) == .
—sin 5 on ] —2+cose,0f x {—sine},
. & 201 g . & .

sin §+m(cos§— sin E) on [0,2 — cose[ x {sine},

. & X1 . & & .
—sin §+2_7cosg<smf—cosf) on [0,2 — cose[ x {—sine}.

2 2
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in & 5 £ _qgin &
sin % sin 2 + 2—cose (COS 2 sin 2) -0
_._22 ——._ sing
- - ~\. - - S~
s N s N
a AR a N

/ N / N

: \ in & : \
/ | S11 3 / \
I \
_—T¢ | |
T I !
v I'(o) 9 r e 2 i
\ / —sing 0 \ /

\ / \ /

N 7 N\ 7
AN - N 7
~ - ~. -
T - —qin & Ty dn € — cog £) T -
sin § 4 5=-t—(sin § — cos §)

Fig. 2. — The boundary datum w,.

For every o € 1 —3,3[, let ué(c) € H(Q, \ I'(¢)) be the solution of the pro-
blem:

E,(0) := min { \Du|? da : w € AD(y,, 0)}.

Q:\I'(0)

Our aim is to prove that for ¢ sufficiently small there exists a subinterval [a, b] of
[ — 2,2] such that E.(o) is concave on [a, b].

As 0 — E,(c) is a C?-function, in order to prove that E,(o) cannot be convex on
the whole interval [ — 2, 2], it is enough to show that the following three condi-
tions are satisfied:

(a) lim sup E.(2) is finite;

e—0F
(b) limgnng( —2) = o0;
e—0t
(¢) lim sup £’ (— 2) is finite;
e—0t
where we denote by ’ the first derivative with respect to o.

In order to prove condition (a) we construct an admissible function u, for £.(2)
whose energy, ||D5L,,||§, is bounded uniformly with respect to &. We define the
open sets BY, and B~, by

B, = {(x1,%2) € B3 : 22 > 0}
B~y = {(xx1,22) € B_3 : w2 < 0}.
Let v be the solution to the following problem:
Au =0 on BY,;

u(x) = sin @ on 9B, N OB _y;

ou=20 on]—3,—-1[ x {0}.
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Then the function v~ (a1, x2) := —v" (%1, —2) solves the analogue problem on
B~,. Let u, be the function which coincides with the harmonic functions
that satisfy the boundary conditions on B',, on B,, and on By, respec-

tively, that is, @, := v on B',, u, := v~ on B-,, and i, := ,b% sin g on Bs. On
T.\ (BoUB_3) we define %, in the following way: on the horizontal line
2o = sin @, with 6 € [ — ¢, ¢], we set % (x1,%2) := sin g for x1 € ] — 2+ cos 6, 0]
and then interpolate linearly with the boundary data on 0ByNT.:

- .0 0 . 0 .
(21, 22) := sin —4—L (cos——sm §> for x; € [0,2 —cosO[,if 0 < 0 <,

2 2-—cosf 2
. .0 X1 .0 0 .
and (1, 2) := — sin é*W (sm 5~ cos§> for x; €[0,2 —cosO[, if

—& <6 <0. It is easy to check that u, € AD(y,,2) and that Du, is bounded in
LA(Q, \ I'; R?) uniformly with respect to &. This implies that

lim sup E,(2) < lim sup \Dit,|? doe < +o0,

+ +
e—0 e—0 QNT®)

and condition (a) is satisfied.
We continue by proving condition (b), i.e., E.(— 2) tends to infinity as ¢ goes to
zero. Let us first consider the model problem

28 min Dulrdx : u > 1 on "R, u < —1 on bR,
2 2
R,

where
(29) R,.:=10,1[ x ] — g,s[, OR; :=10,1] x {s}, &R, :=10,1] x { — e}.

It is easy to see that problem (28) admits a solution and that it is equivalent to
. 2 1 1
min f|Du| dx :u =5 on "R, u= ~3 on RR, 3,
R,

. . . 1
which admits the affine solution u®(x1, x2) := % x for every x = (x1,%2) € R..

Going back to the domain Q,, let us consider the same problem with different
constants: the rectangle R, is defined now by

R, :=1A,,2 —cos¢[ x ] —sing, sine[ C T,

1
where A, is a positive constant such that y (x) > 5 on R, :=[A;,2 — cose] X

1
{sine}, (and w, (x) < —3 on R, :=[A,,2— cose] x {—sine}), when ¢ is suffi-
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ciently small. Then
E(-2) = f \Du(— 2)2dae > f Dué(— 2)Pdae > f \DucBdz
QN\I'=2) R, R,
Since f |Du"’|2dac — 400 as ¢ — 0, condition (b) is proved.

It remains to show that condition (c) is satisfied, i.e., that the first derivative
of 0 — E.(0) at 0 = —2 is bounded as ¢ goes to zero. Since

(30) Ej(0) = (o),

2, . .
see, e.g. [12, Theorem 6.4.1], where K;;(O')ﬁ is the stress intensity factor asso-

ciated to u“(0) at the tip (o, 0), see Proposition 2, it is enough to show that x.(o)

. . 5
remains bounded when, for instance, — 5 <o<-— 5"

For o € [ —5/2,—-3/2], let v(0) be the solution of the following problem:

(31) min { f \Dul*dz : u € H'(B_ \ I'(0)), u = sin g on 0B_» \ r(a)}.
B_2\I'(0)

Let us extend v(¢) to R x [ — 1, 1] constantly on the horizontal lines and denote
now by v(o) this extension.
We claim that

(32) u*(g) — v(g) strongly in H B, \ I'(0)).

Assuming the claim true, we now use the following characterization of r, (see
Proposition 3):

(33) K2(0) = f (D1 — (DauY)D1p + 2Dyu Do Doy dac
B_o\I'(0)

with ¢ € CL(B_z) such that ¢(s,0) = 1. By (32) and the definition of v(¢), we can
pass to the limit in the right-hand side as ¢ — 0" and define in such a way the
quantity:

(349 @)= [ (D)~ D2(0))D1p +2D10(0)Dsv(0)Dsg)] div.
B_s\I'(0)

Therefore, by (30),

5
(35) limsup £ (0) = —1%(e) for every — 3 <g< —g )
e—0t

As, by (34), k(o) is bounded, formula (35) concludes the proof of condition (c).
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PROOF OF THE CLAIM. Let Q, := T, U By and let w, be the solution of the fol-
lowing problem:

min { f|Du|2 da:u e H(Q,), u =y, on 9Q,N 8@6}.
Q,

We consider a cut-off function ¢ € C*(R) such that 0 < ¢ <1, ¢(xy) =1 for

2 1
1 < —3 and ¢(x1) = 0 for a; > —3 Then the function { := ¢pv(o) + (1 — p)w,

belongs to AD(y,, o) and
(36) E@= [ Dwofde< [ 1D dx
Q\I(o) Q\I (o)
By convexity, we have
(37) f IDCRde < f IDv(o)|? daz + f \Dw, | de + f IDv(o)|? dae
Q\I (o) B_o\I'(0) Q, T:

+ f (2Dp(pDv(0) + (1 — 9)Dw,)(w(0) — w,) + |De[*(v(a) — w,)*) da.

T.N(supp Dy)
Now
. 2 _
lim f IDv(o)2 dac = 0,
(38) .
lim f Dy Ew(o) — w,)? da = 0,
o T.N(supp Dg)
and, for any > 0,
(39) [ 2006Dv@) + A~ D )wE) — ) de

T.N(supp Dp)

<2 f DopDv(@)w(o) — w,) dx
T:N(supp Dy)

1
+o [ e -wPdern [ DwPA - P da.
T:N(supp Do) T.N(supp Dp)

Since the first two terms in the right-hand side tend to zero, it remains to prove
that

. 2 .
(40) lim f \Dw,?dec = 0.
T:N(supp Dy)



AN ARTIFICIAL VISCOSITY APPROACH TO QUASISTATIC CRACK GROWTH 33

As in the proof of condition (b), we consider first a model problem. Similarly to
(29), we now set

RS::]_170[X]_838[3 alRSIZ[—l,O]X{E}, 82R8::[_170]X{_8}?
and define %, as the solution to the following problem:

Ah, =0 on R,

h, = hd on O1R,,
(41) 2
he = _E on 82R67
1726/l < 1.
We claim that
. 2 _
(42) lim f DI, 2 dze = 0,
RS
where

Rs ::} —%,—%[x]—s,s[cRg.

Indeed, note that the function z,(xq,x2) 2:%%2 solves (41) (for ¢ <1). By a
Caccioppoli type estimate we obtain

f \D(h, — 2,)fde < C f Iy — 2,2d < Cy|R,|,
R, R,

&

for some positive constants C and C; which do not depend on ¢, hence (42) holds.
Applying this argument with

R,=]-1,0[ x]—sine, sine[ and Rg:}— ,—%[x]—sins,sine[

(SN

it follows that (40) holds true.

/// \\\ QE

/
/ \\
/ \
! | F<U) \ |
f T T I
\ _ f =
\ 2 TR0 2
\ /

\ /

AN 7

~N 7

Fig. 3 — The rectangle R, where we apply a Caccioppoli type estimate in order to obtain (40).
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From (36), (37), (38), (39), and (40) we deduce that

[ pwfdc< [ 1Duo)de+ [ 1Dwfdz -+ o(1).

Q\I'(0) B_2\I'(0) Q,
Since
f \Dut (o) [Pdae > f \Duw,2dee
Q. Q.
we obtain
(43) [ pw@par< [ puofde+om<c

B_o\I'(0) B_o\I'(0)

uniformly with respect to e. Thus, there exists u*(a) € H'(B_3 \ I'(0)) such that

(44) u*(g) — u*(o) weakly on H 1B, \ I'(0)),
and
(45) u*(o) = sin g on O0B_3 \ I'(0).

As (Du#(a), D) = 0 for every 9 € HY(B_2 \ I'(c)) with ¢ = 0 on dB_» \ I'(c), by
(44) we obtain that (Du*(g),Dep) = 0. By (31), this fact, together with (45), im-
plies that

(46) u* (o) = (o).

In addition, by the lower semicontinuity and by (43), we have

(47) f \Du(o)? dae < lim inf f Do) dac < f Do) da
B_5\I'(0) & B_2\I'(0) B_s\I'(0)

By (44), (46), and (47), we deduce that (32) holds.
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