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Complex Structures
and Conformal Geometry (*)

SIMON SALAMON

Abstract. — A characterization of certain complex structures on conformally-flat do-
mains 1 real dimension 4 is carried out in the context of Hermitian geometry and
twistor spaces. The presentation is motivated by some classical surface theory, whilst
the problem itself leads to a refined classification of quadrics in complex projective 3-
space. The main results are sandwiched between general facts in real dimension 2n
and some concluding examples in real dimension 6.

Introduction.

The title above is that of the author’s talk given at the 18th Congress of the
Ttalian Mathematical Society in Bari in September 2007. As explained at that
event, a better title might be “Conformally flat Hermitian geometry”, or even
“Hermitian geometry without too many tensors”. The article itself is based both
on the Bari lecture, and a subsequent talk entitled “Advances in twistor theory”,
given at the CIRM in Luminy in November 2007 for the 20th anniversary of the
publishing of Besse’s Einstein Manifolds [8]. Whilst Einstein manifolds and
twistor theory have a lot in common, the subject of this article is somewhat
complementary to that intersection.

We shall investigate the existence and (in a suitable sense) the uniqueness of
complex structures that are orthogonal with respect to a given Riemannian
metric g on a manifold of even dimension 2xn. The associated endomorphism J
(with J? = —1) is called an “orthogonal complex structure”, abbreviated “OCS”.
If one starts with a complex manifold, it is always possible to choose a Hermitian
metric g so that the endomorphism J is an orthogonal transformation relative to
¢. But in general, if we start with a metric g and » > 1, one can identify part of the
curvature of g that provides a local obstruction to the existence of an OCS J. We
shall explain how this works in Section 3.

It is actually conformal, rather than Riemannian, geometry that underlies the

(*) Conferenza Generale tenuta a Bari il 24 settembre 2007 in occasione del XVIII
Congresso dell’'Unione Matematica Italiana.
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problem above. This is because if J is orthogonal with respect to g, it will be
orthogonal with respect to any conformally related metric e’g. Our focus will be
on the “flat” case in four dimensions, that is the construction of complex struc-
tures on open sets of R? that are orthogonal with respect to the Euclidean metric.
The associated conformal structure extends to that of the one-point compacti-
fication S*, since the “round” metric on the sphere is also conformally flat.
Sections 4 and 5 incorporate characterizations of such OCSes, discovered jointly
with J. Viaclovsky in an attempt to clarify some imprecisions in an earlier survey
article [37].

The main technique for the investigation of OCSes is the construction of a
twistor space with which to parametrize the structures pointwise. This approach
has its origins in work of R. Penrose and E. Calabi in the 1970’s, but took off in
the 4-dimensional Riemannian setting with the papers of Atiyah-Hitchin-Singer
[4] and Atiyah-Ward [5], which heralded striking applications. It led in particular
to a focus of attention on that class of oriented 4-dimensional manifolds with self-
dual conformal structure, meaning that half the Weyl tensor (namely W, or W_)
vanishes. Non-trivial examples of such manifolds were constructed by Poon [35],
and subsequently LeBrun [29], and they were interpreted as quaternionic quo-
tients by Joyce [26]. Later Pontecorvo [34, 20] developed the 4-dimensional
theory in a direction closer to that of this article.

The use of twistor theory in higher dimensions was pioneered by (amongst
others) Bérard Bergery-Ochiai [7], O’Brian-Rawnsley [33] and the author [8]. It
was exploited in connection with harmonie maps or minimal surfaces by Bryant
[12], Burstall-Rawnsley [13, 18]. Significant progress in 6 dimensions was made
by Slupinski [40], and we shall touch on this aspect in Section 6. More recent
applications of twistor theory in different contexts can be found in, for example,
[6, 17].

The article is divided into six sections, and roughly two parts. The first part
(Sections 1, 2, 3) surveys known theory, whilst the second (Sections 4, 5, 6)
presents the newer work. Section 1 provides motivation from the classical theory
of surfaces. The next two sections address the algebraic parmetrization of OCSes
and questions of integrability. Sections 4 and 5 deal with the real 4-dimensional
theory, and a final section draws together some observations mainly relevant for
the 6-dimensional case.

1. — The classical case.

Let M = M? be a real surface embedded in R®. The standard inner (dot)
product induces on M a Riemannian metrie by restriction:

9X,Y)=X"Y, X, YeTl,M.
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In local coordinates on M,

2
(1) g=">_ gydu; ® da,

i,j=1

where (g;) is a 2 x 2 postive-definite symmetric matrix. The same equation is
written more traditionally as the first fundamental form

(2) ds® = Eda® + 2Fdxdy + Gdy?®.

If M is the 3 x 2 matrix of partial derivatives determined by the parametrization,
then EG — F? = det (M M) > 0 and VEG — F2dxAdy is the skew-symmetric
area form at each point. The interplay between symmetric and skew forms is an
important feature of the theory of surfaces.

The vector cross product of R? induces extra structure on 7T, M. Assuming
that M is orientable, one may choose a continuously-varying unit normal vector
N. This allows one to define an endomorphism J of each tangent space by setting

3) JX=NxX, XeT,M.

Since J2X = N x (N x X) = —X, we conclude that J2 = —1, so that J is an al-
most-complex structure (the linear version of a complex structure on a vector
space). An analogous construction with Cayley numbers allows one to define an
almost-complex structure on any hypersurface of R” [14, 11]; the one on S¢ will be
mentioned at the end of the paper.

N

Fig. 1. — An oriented surface with unit normal vector.
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In order to make a viable analytic statement, one must suppose that g is at
least of class C? in local coordinates, though in practice it will be C*. The fol-
lowing result asserts the existence of so-called isothermal coordinates on such a
surface M, and an effective proof can be found in [16].

THEOREM. — On a neighourhood of any given point of M, there exist co-
ordinates x,y for which E = G and F = 0 in (2) so that ds®> = G(dx? + dy?), and
g = (g3) s a scalar function times the identity matrix.

Given the conclusion, we can re-write (1) as
g =G(dx ®dx + dy @ dy),

and it follows that, up to sign,

0 0
4) J—dx®8—y—dy®%.
Observe that the function G does not feature in the second equation. This ab-
sence reflects the conformal invariance of J, and means that the coordinates x,y
render the coefficients of J constant. In other words, the geometrical structure
defined by the tensor J is flat or integrable.
In the current situation, we can define a complex coordinate

z2=1x+ 1y,

and assert that any other z (defined by an alternative choice &, i satisfying (4)) will
equal f(z) where f is a holomorphic function (or more precisely, one satisfying the
Cauchy-Riemann equations). This reflects the fact that any oriented conformal
mapping between open sets of C is necessarily holomorphic. In this way, M has
become a complex manifold of complex dimension one. In conclusion: in real di-
mension 2 an oriented conformal structure is equivalent to a complex structure.

There are many advantages in using isothermal coordinates «,y. One is that
the Gaussian curvature K can be computed using the associated Laplacian

PP 1P
o2 Oy 40207
Indeed, it follows (see e.g. [22]) that

PRrROPOSITION. — We have K = — %Alog G.

We next present Mercator’s Projection as an example of this theory. Consider
first the standard metric

ds® = d6P + cos® 0 d¢”

on the unit sphere, written in terms of latitude ¢ and longitude ¢. The fact that
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there are no mixed terms df d¢ means that curves of constant latitude (parallels)
and those of constant longitude (meridians) are everywhere mutually orthogonal.
Whilst the angle 6 faithfully measures distance along a meridian (note that the
“earth” here has radius 1), distance along a parallel is (cos 0)¢, a quantity which of
course vanishes at the poles.

From the isothermal point of view, the combination of 6 and ¢ in the second
term on the right is bad, but we can improve matters by extracting cos®0 as a
common factor:

ds® = cos® 0 (sec® 0 d0* + dg”).

The next step is to integrate secant; setting ¥ = log (tan 0 + sec 0), we obtain
dy = sec0df, and

(e’ cos 0 — 1% = sin®0 = 1 — cos? 0,
whence

cosf =

=i sechy.

Setting ¢ = x gives Mercator’s parametrization
(5) (cosasechy, sinxsechy, tanhy)
of the sphere, with first fundamental form

ds® = sech? y (da? + dy?),

emphasizing its conformal nature. In theory y ranges over R, but in practice the
domain of the parametrization fits into the page of an atlas because y = 8 reaches
latitude 0 > 1.57.

OBSERVATIONS. — (i) Students discover (5) in differential geometry courses
when they first compute the Gauss map of the catenoid

(6) x(x,y) = (cosx coshy, sinxcoshy, ¥).
Indeed, the unit normal vector
X, X Xy
7 N=——
g x|

coincides with (5). The same is true if we replace (6) by the parametrization
(8) x(x,s) = (scosx, ssinx, s),

of the helicoid, and substitute s = sinh . It is well known that the Gauss map of
any minimal surface is conformal, though the fact that (6) and (8) have the
same unit normal is indicative of the more intimate relation between these
surfaces [22].
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(ii) The proposition tells us that

2
K = cosh®y j—yz logcoshy =1,

confirming that the sphere has constant Gaussian curvature. A solution of the

form G = G(y) with K = —1 is given by G = 1/%?; the associated metric

1
(9) ds? = ﬁ(daf + dy),

is complete in the upper half plane H? and gives rise to one model of hyperbolic
geometry.

(iii) According to the theory, any holomorphic function of z = x + iy will give a
valid conformal chart. For example, we see from (5), that

cosxsechy + isinxsechy

e* = e Y(cosx + isinx) =
( + ) 1+ tanhx

is precisely the stereographic projection (from the south pole) of the point (5) to
the equatorial plane.

2. — Parametrizing orthogonal structures.

Let M?" be an oriented manifold with a fixed conformal structure [¢g]. The
latter denotes the set of all Riemannian metrics ¢/g in the same conformal class
as a fixed one g.

PROBLEM. — Find, on an open subset  C M?", an orthogonal complex
structure (OCS), meaning an almost-complex structure J such that

(10) 9WJX,JY) =gX,Y)
and
(11) JUX, Y1+ JIX,JY]+[X,Y]-[JX,JY] =0,

for all vector fields X, Y.

The compatibility condition (10) depends only on [g]. It means that JX is a
vector orthogonal to X but of the same norm, and generalizes the concept of a 90°
rotation in RZ. Indeed, when n = 1, a conformal structure and orientation de-
termine a unique J for which (11) is automatie. The left-hand side of (11) is the so-
called Nvyenhuis tensor, whose vanishing guarantees the existence of holo-
morphic coordinates [32] generalizing the theorem in Section 1.

Ignoring the integrability condition (11) for the moment, let us consider the
pointwise choices constrained by (10). We shall generally suppose in addition
that J is compatible with the orientation of M (so if n is odd then — J is excluded).
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Such a J determines a subgroup
U(n) Cc SO@2n)

(consisting of transformations that commute with J), that is a point of the
Hermitian symmetrie space

~ S0@n)
(12) Zn = W

The uniqueness statement above for n =1 merely reflects the fact that
SO@2) = U(1) and Z; is a point. In slightly higher dimensions, one has the fol-
lowing well-known isomorphisms:

~S0@)  SU@)xSU2)

_ vpl
Z2 = U2 UL xSUQ) e
_S0®) _SUW/Zs _ s
LBETe - e
7= 508  S0(@8) o

T U@ ~ S06)xS0@)

in which Q% denotes a complex 6-dimensional quadric hypersurface of CP7.

An almost-complex structure J on R?" (i.e. an endomorphism with J? = —1)is
defined by specifying its +i eigenspace T"°. The condition (10) is equivalent to
asserting that 77 is isotropic, so that

(13) g(u,v) =0, Vau,v € TH.

In this way, we see that Z, parametrizes maximal isotropic subspaces of C2"

compatible with the chosen orientation.

The identification above has an interpretation in terms of Clifford algebras.
Let 4=4, ® 4. denote the total spin representation of the double cover
Spin(2n) of SO2n), so that dim 4. = 2”1, Clifford multiplication determines
an equivariant linear mapping

my:C @A, — A,
and an element & € 4, is a pure spinor if its annihilator
T = (e C® :m (v =0}

is a maximal isotropic subspace, so that 70 @ 710 = C?", This construction
identifies Z,, with the variety of such pure spinor classes [v] inside the complex
projective space P(4.).

An alternative characterization of a pure spinor can be given in terms of the
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SO(2n)-equivariant isomorphism

Aﬁ@A"‘2®-~~@AO, 7 even
AL @Ay = ) )
A" "@---® A, nodd.

A spinor £ € 4, is pure if and only if it has the property that ¢ ® & belongs to the
highest weight summand A" [15]. Analogous conditions arise in the character-
ization of nilpotent elements of a Lie algebra.

A third characterization arises from the choice of a reduction of SO@n) to
U(n) (i.e. an “origin” in Z,,). Relative to this choice,

(14) A, =Nela)e. . @i

where the “small” exterior powers are 2 = A*C". If & has non-zero component in
2%, then it must be proportional to an element of the form

(15) e =l+o+ioro+- -

for some w € A% This fact is well known in (and explained by) the theory of
generalized complex structures [23].
The next result shows how to construct the manifolds (12) by induction.

PROPOSITION. — Z,,41 18 the total space of a fibre bundle over the sphere S** as
base, with fibre Z,.

PROOF. — Regard S?* as the symmetric space SO2n + 1) /S0O(2n), and con-
sider the homogeneous (non-symmetric) space

, SO@2n + 1)
(16) n+l — # .

An element of the latter is a coset gU(n) with g € SO@2n + 1), and maps in a
consistent way to gSO(2n) € S?". The fibre of this projection (formally the quo-
tient of two fractions!) is SO@2n)/U(n) = Z,. The point now is that Z ,; can be
identified with the set of maximal isotropic subspaces (of dimension #) in C#**,
Any such subspace extends uniquely to an oriented isotropic subspace of di-
mension 7 + 1 in C**%, and we obtain an isomorphism Z,,, = Z,,1. Indeed,
SO@2n + 1) acts transitively on Z,, 1 with stabilizer U(n) and there is a well-de-
fined map sending gU(n) € Z,, ., to gU(n + 1) € Zy 1. O

A celebrated example of this construction occurs when » = 2. One can iden-
tify S* with the quaternionic projective line T1P!, so as to obtain the fibration
(17) n: CP? = Pe(H?)— Py (H?) = HP! = 8

that merely maps a complex line to the quaternionic one it spans. A study of the
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relevant group actions reveals that this coincides with the map of cosets we have
already considered. A similar interpretation using Cayley numbers can be used
to construct the fibration Z, — S°.

The proposition is generalized to define the twistor space & of an arbitrary
oriented even-dimensional Riemannian manifold M = M?". Let P denote the
principal SO(2n)-bundle of oriented orthonormal frames at points of M.

DEFINITION. — The twistor space of M?" is the total space Z of the associated
bundle P xso@n Zn = P/UW).

Here again, U(n) is the stabilizer of the standard complex structure J; on R,

By construction, the twistor space Z of S?*" is none other than Z, . Its
complex structure can be constructed in a more abstract fashion that extends (at
least in spirit) to the general case. We shall explain this at the start of the next
section.

3. — Questions of integrability.

An almost-complex structure J satisfying (10) on an open set Q of M de-
termines in tautological fashion a section J: @ — Z. We refer to this section as
the graph of J, and its definition and properties underlie all our subsequent
results.

It turns out that, if we restrict to orthogonal complex structures, then the
endomorphisms J induced on each tangent space J,(T,,2) are the restrictions of
a unique almost-complex structure J on 2. Moreover, the fibres are complex
submanifolds of (£, J), and acquire their standard complex structure in this way.
It follows that, for a general smooth section J:Q— Z,

(18) J satisfies (11) on @ <« J is a holomorphic map,

where “holomorphic” is taken in the pseudo sense that J, o J = J o J,.

It is a fact that the above construction, when applied to M = S?*, yields the
standard complex structure of Z, .1, so the latter coincides with J. Over a
general base, the integrability of J is a function of the Weyl tensor W of M that
(if defined carefully) depends only on the conformal class [¢g]. When n = 2,
there is an additional splitting W = W, + W_ where W. is a self-adjoint en-
domorphism of Ai. Itis W, that is more relevant here, since (with our choice of
orientation) Z can be identified with the 2-sphere bundle of elements of any
fixed norm in Ai.

THEOREM [7,33,4]. — If W = 0 then (M,J)) is a complex manifold. The con-
verse is true if n > 3, though if n = 2 a sufficient condition is W, = 0.
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We omit any mention of the proofs, except to remark that the statements are
closely related to the discussion of the Weyl tensor below.

ExXAMPLE. — If we take M* to be the complex projective plane CP?, then we
can identify 2 with the projectivization

PA @ K) =P 12 g KH?),

where 1 denotes a trivial line bundle and K = A2°CP? the canonical bundle. This
bundle has global sections corresponding to +J where J is the standard complex
structure on CP?, but the fact that & — M is a holomorphic bundle is not re-
levant here, since (Z, J) is not integrable. With its standard orientation, CIP* has
W, #0 but gV_ = 0. To get something integrable, we need to take the twistor
space of CP~ obtained by reversing orientation on the base. This time, 2 is
diffeomorphic to the flag manifold SU(3)/T?, and (Z,J) is biholomorphic to the
projective tangent bundle P(TH°CP?) relative to a different projection to CIP%.

Much of the remainder of this section is lifted almost verbatim from [37]. This
is justified on the basis that many of the problems in dimensions 2 > 6 remain
open. However, during the past ten years, considerable progress has been made
in 4 dimensions with the theory of bihermitian metrics, initiated in [27] and
advanced in [1, 3, 25].

Given the fixed Riemannian metric g, we have its associated Levi Civita
connection V. Let X' denote the space of (1, 0)-vector fields on M. Consider the
condition

(19) X, Y e ¥ = vyy e ¥
Since V is torsion-free, we have
VxY - VyX =[X,Y],
so (19) certainly implies that
(20) X, YexW = [X,Y]e ¥,

which is directly equivalent to (11). However, it is known that (19) and (20) (and
so (11)) are in fact equivalent. It is then condition (19) that underlies the ex-
istence of the almost-complex structure J on 2.

These observations have an important consequence for the Riemann curva-
ture tensor R, computed as

Rxy =[Vx,Vyl - Vix y.
Indeed, (19) and (20) yield immediately
X, Y, ZeX" = RyZex',
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or equivalently
X, Y. ZWex" = gRxyZ, W)=0.

This condition is equivalent to the vanishing of the component W; of W lying in a
certain real subspace W; of the space W of Weyl tensors, identified by Tricerri-
Vanhecke [41]. The tensor W; is determined by the restriction of R to the
complex subspace A4*° @ A*°, and evidently has no Ricci contraction.

LemMA [41]. — If J s an OCS on an even-dimensional Riemannian manifold
then W; = 0.

The full space of curvature tensors on a Riemannian manifold of dimension »
(half what we have) equals

1 = Snfm? - 1).
The space W has dimension
Wy = 1y — In(n + 1) = Lnw? — T — 6).

The real subspace W; underlies the kernel of the mapping S24%° — A*? arising
from the first Bianchi identity (just like R itself), and so its real dimension equals
2r,. Hence,

dim WJ B 27‘2

§—=1 + én,

8 dim W N Way,

where ¢, > 0 for all » and ¢, — 0. This striking “8-fold” asymptotic behaviour is
illustrated in the following table.

2n | 2r, Wop | &

4 2 10 | 0.6

6 12 84 10.142

8 40 300 | 0.067
10 | 100 770 | 0.039
12 | 210 | 1638 | 0.026
14 | 392 | 3080 |0.018
16 | 672 | 5304 | 0.014
18 | 1080 | 8550 | 0.011
20 | 1650 {13090 | 0.008

Given two OCSes J,J’ on an even-dimensional Riemannian manifold M, we
shall say that J, J' are curvature-independent it Wy N Wy = {0}. This definition
is tailor made so as to record the
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COROLLARY. — If M admits eight curvature-independent OCSes then it is
conformally flat.

The theory of generalized twistor bundles provides many instances in which a
non-conformally flat manifold admits (at least locally) infinite families on OCSes.
Such situations typically arise by investigating the zero set of the Nijenhuis
tensor of J. They have been completely classified when M is an inner symmetric
space [13], but we can only conclude that the associated subspaces W; are heavily
constrained.

PrOBLEM. — Find and classify Riemannian metries which are not conformally
flat, but which admit two or more curvature-independent OCSes.

Some examples along these lines can be found in [2].

One might imagine that knowledge of J is necessary to identify the sub-
space Wj. This is not in fact the case, at least in real dimension 2» = 4. In this
situation, each of the two SO(4) (indeed, SO(3)) components W, , W_ can be
viewed as a quartic polynomial in a spinor variable parametrizing orthogonal
almost-complex structures. A generic tensor W, will have four “roots”
J, —dJ,J', —J' at each point with J,J’ curvature-independent (and therefore
exhausting 4 of the 5 dimensions of W, ). The point is that any positively-or-
iented OCS must be one of these four [38].

4. — Liouville theorems.

We now turn to the parametrization of complex structures on R*, basing our
approach on the concept of deformation.

The standard complex structure J; on CZ can be characterized by means of its
space of (1, 0)-forms:

(21) AYN(To) = (dz1, dzs).
Modify this structure by setting 4*°(J) = (&1, E2), where

E1 = dz + &1dzy + E0dze,
(22) { 1 1+ Endzy + Eppdze

—

Ep = dza + Cndzr + Eopdzs.

It helps to think of the functions &; = &;i(21,22) as “small”, but (22) is in fact a
valid deseription of a generic almost-complex structure J on R*, subject only to
the proviso that

(23) AT N A () = {0}.
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There are no other dz; terms needed in (22) because we are effectively re-
presenting J by the echelon form

¢ 512>

S S

10
01

that defines a mapping from (21) to its conjugate space at each point. In more
sophisticated notation,

(&) € I(C* 00 4™,

where @ = T0(J,) denotes the holomorphic tangent space relative to J.

In order that J be orthogonal, we need to take &;; = & = 0 and &y = —&qs.
This skew-symmetry reflects the fact that the cotangent space to Zj is iso-
morphic to the 1-dimensional representation A% (on which A € U2) acts as
(det A)™Y). The remaining function is effectively a projective parameter and
defines a mapping

E=¢y : C2CP = CU {00} = Z2.

We can easily identify J explicitly as an element in SO(4) N $0(4); it works out as
the skew-symmetric matrix

0 1—[¢f 2 2a
_ =L s 0 20 —2b
T+|EP s+ 0 1-F)

* * * 0

where ¢ =a + b and an asterisk stands for minus the corresponding entry
above the diagonal. Whilst & = 0 gives Jy, in the limit & — oo the matrix tends to
—Jy (in the compact group SO4)).

Next set
Wi =21 — &2o,
(24) 1=21 672
Wy = 2o + &21,
and observe that
(25) AN = (W7 + Zod&, dWy — Z1dE).

The integrability condition (11) amounts to asserting that this a differential ideal,
which will be the case if and only if d¢ itself belongs to AM(J), so that & is “self-
holomorphic”. More precisely,

9L _ 98 _
821 62’2 B
e Lo

0z Coa

0,
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but (from (25)) these equations will be automatically satisfied if we succeed in
solving (24) so as to express & = E(W1, Ws) as a holomorphic function of Wy, Wo.
Here are some examples:

0) ¢ =0, giving Jy defined on R* = 2, Taking & to be a non-zero constant
would merely result in P~1/,P for some constant orthogonal matrix P.

1) ¢ = Wy, so that & = 21 /(1 + z2). This yields an OCS J; for which
AT = (A + Z2)dzy — 21dZ2, (1 + Z2)dze + 21d7).
In this way, we see that J; is defined on C2\ {(0, —1)}.
2) & = Wy /Wy, which yields the quadratic equation
2o + @1 —21) + 22 = 0,

and two distinct roots for & unless z; = z; and ze = 0. We can consistently choose
one root so as to obtain an OCS J, this time defined on C? \ L, where
L ={(z1,22) : Rez; =0, 23 = 0} is a straight line.

Fig. 2. The domain R*\ L = S? x H2.

Both the complex structures J, and J; are defined on all of S* minus a single
point. They are in fact conformally equivalent; this is best shown using the
quaternionic formalism introduced in the next section. On the other hand, Js is
defined on the complement

(26) Q=R*"\L=~ R xR~S8*xH?,

where we have identified R* x R with the upper half-plane H?. The S%’s lie in
planes in R? orthogonal to L, and are shown as circles in Figure 2. Just as R?
minus a line admits a natural vector field (representing the magnetie field of a
current running along the line), so (26) admits a natural almost-complex struc-
ture preserving the transversal 2-dimensional leaves on which it induces the
standard complex structures. The resulting OCS is precisely Jz, and is
Hermitian relative to the product of the metries with constant but opposite



COMPLEX STRUCTURES AND CONFORMAL GEOMETRY 213

Gaussian curvatures on S? and H? (see (9)). This makes (2, J2) a complete Kéhler
(but conformally flat) manifold.
These simple examples led us to the

PROBLEM. — On what other domains Q of R* can we find OCSes that do not
extend to R* \ Q?

To tackle this problem, we consider the graph of an orthogonal complex
structure J. Given our choice of inhomogeneous coordinates on C'’, this graph is
defined explicitly by the mapping

TR = CF, eIl & Wi, Wal,

in which ¢ (and so Wy, Ws) are functions of 21, z2. From (18), we obtain

PROPOSITION. — Given an OCS on an open subset Q of S4, its image J(Q) is a
complex surface in CIP2, Conversely, every complex section in CP? (lying over
an open set Q C RY) has the form J(Q) where J is an OCS on Q.

No graph can be defined over the whole of S* because the latter does not
admit a global almost-complex structure for topological reasons (compare the
analogous situation in Figure 1!). Other than S?, the only even-dimensional
sphere to admit an almost-complex structure is S°.

ExampLES. — We are now in a position to interpret Jo,J1, 2 twistorially.

0) Any projective plane CIP% in CIP® contains exactly one fibre 7~ 1(p), and so
determines a unique point p € S*. (This gives a dual projection (CP?)* — S%.)
For example,

Jo(z1,22) = [1,0,21 — &2, 22 + &2,
and the image of J(R*) equals CP?\ CP! where
CP! = {[0,0,Z,Z5] : Z; € C} = 7 (c0)

is the fibre over the point “at infinity”.
1) J1 corresponds to the section

J(21,22) = [1, W1, Wy, Wal = [1,21 — &2, 21, — 22, 22 + E21]

defined over S*\ {(0,-1)}.
2) J corresponds to the quadric

(27) {[éOa éa Wl7 W2] : éW1 = éOWZ}a

which contains 7~ 1(p) for p in the circle L c S*. In this case, we remove the circle
and choose one branch of the quadric to define Js.
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Fig. 3. — The limit of period-doubling.

It is possible to characterize these simple solutions. It was proved in [42] that
if J is an OCS defined on all of R* then J is necessarily constant (and similar
methods were used in [28]). We improve on this result with

THEOREM [36]. — Let J be an OCS on an open set S* \ 4 IfHY(A) = O then J is
conformally constant.

Here, H? denotes d-dimensional Hausdorff measure (see [19] for its definition
and properties). Hypothetically, 4 could be a fractal. Although the theorem
dispenses us from the study of such sets, we digress briefly to illustrate a non-
trivial example.

EXAMPLE. — Figure 3 that depicts iterates of the quadratic map f(x) = 1 — ca?
for 1 < ¢ < 2. The vertical line represents the exact limit ¢ = 1.4011 ... of period
doubling at the onset of chaos, and contains the so-called Feigenbaum attractor
A. The latter is a Cantor-type set defined as the closure of the orbit
{f@(0) : k > 1} and is contained in a union A; LI A of two disjoint intervals of
length ¢;, each of which is subdivided ad infinitum in approximately the same way
[21, 30]. By a standard argument, the resulting Hausdorff dimension D = D is
given by the formula (¢/1)” + (/)P = 1, in which ¢; is computed using the solution
of the universal equation

ag(g(%)) = g(), a=—2.5029...

to estimate the behaviour of the functions /", which are not exactly self-similar.
The set A is a “multifractal” in the sense that other measures D of its dimension
do not agree [24].
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The result is D = 0.538.. .. so, in terms of measure, we can be certain that

00 if d < 0.53

d _
" (A)—{o if d > 0.54.

Of course, the theorem tells us that any OCS J defined on the complement in R*
of a set like A (with Hausdorff dimension less than 1) extends to R* \ {pt} or R*.

SKETCH PROOF OF THE THEOREM. — We shall only outline an argument by means
of which potential “singularities” (in the compactification) can be eliminated.
The graph J(Q) is a complex analytic set in CP®\ z-1(4). A theorem of
Shiffman [39] then implies that the closure A is analytic in CP3. Shiffman’s
theorem is based on Bishop’s theorem, itself a generalization of that of
Remmert-Stein [9]. Chow’s theorem now imply that A is algebraic, and it has
to be a surface of degree 1. This last step is well explained in the book by
Mumford [31]. O

In order to interpret Jy, we first need to discuss the appropriate real struc-
ture on CP?. Bearing (17) in mind, multiplication by the unit quaternion j in H?
induces an antilinear involution ¢: CP®> — CP?. On each fibre CP! 2 S2, the
involution ¢ acts as the antipodal map sending J (pointwise) to —.J.

THEOREM [36]. — Suppose that J is an OCS defined on S* minus a round circle S*
(equivalently, R* minus a straight line), and that J does not extend to S* \ {pt}.
Then the graph of J in CIP? lies in a quadric Q with o(Q) = Q.

This is proved directly from Bishop’s Theorem [9] by comparing the graph J
with a quadric Q carefully chosen so that it ramifies over the given S'. The end
result is that J is conformally equivalent to =+ Js.

5. — Classification of quadrics.

A complex symmetric 4 x 4 matrix @ determines a quadric surface
(28) Q={[wl € CP*:v'"Quv = 0}.

Two matrices @, Q' determine the same set of points Q if and only if @' = c@ for
some non-zero complex number c. Although this action by C* (and, in particular
the circle group U(1)) seems obvious, it becomes encoded in a non-trivial way in
certain canonical forms.

In practice, we may choose an identification

(29) Ct=CtgC?
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to reflect a well-known isomorphism of Lie groups
(30) S04, C) =2 SL2,C) xz, SL2,C).

The factors on the right preserve respective skew-symmetric 2-forms wy, wz on CZ,
and the product w; ® ws is the symmetric bilinear form that provides (29) with its
complex orthogonal structure. The resulting quadric Q is formed from elements of
rank one in the tensor product, which explains why it is biholomorphic to
CP! x CPL Of course, any non-degenerate quadric in CIP? arises in this way, and
is associated (with a suitable choice of basis) to the identity matrix @ = 1.

The fibration (17) is preserved by the conformal group

(31) S0,(5,1) = SL2, 1)/ Zs.
This acts on the set of quadratic forms and provides a decomposition
(32) SH(CH >y aix,

where X is a real 10-dimensional vector space consisting of those complex
symmetric 4 x 4 matrices of the form

53 A B
. o

Such matrices belong to the Lie algebra gl(2, 1), but being symmetric also sa-

tisfy AT = A and B' = BorBe u(2). If m denotes the real 6-dimensional
subspace generated by the matrices with B = 0, then

(34) 2=u@)em
can be identified with the Lie algebra 3p(2), associated to the symmetric space

Sp@ _  SO0®)
U@ S0@) x S0B3)’

(35)

which is both the complex quadric ©Q? and the real Grassmannian Grz(R5).

The matrix (33) is consistent with ordering the inhomogeneous coordinates
that we previously adopted for CP? as (1, Wy, &, Wa), and then identifying this
vector with (1 +j&, Wy +jWs) € 2. Then (24) boils down to the quaternionic
product

Wi +iWa = (21 +jz2)A +jé)

that itself determines the fibration (17). With this notation, the mapping dis-
cussed at the end of the last section is

g (17 Wl; éa WZ) '_)( - Ev _W27 17W1)~
Note that the quadrie (27) defining J; is indeed g-invariant.
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An alternative way to carry out the identification of C* with I1? is to endow
the first factor on the right of (29) with a real structure and the second with a
quaternionic structure. Choose an antilinear map o;: 2 — 2 with (01)2 =1,s0
that the first C? is identified with the complexification of the fixed set RR? of a7.
We similarly pick an antilinear map g2: C? — C? with (g2)* = —1, so that the
second C? becomes H. The product ¢ = ¢; ® g2 then gives the tensor product
(29) a quaternionic structure, and (with some abuse of notation) it becomes
H? = R? @ H. Moreover, (30) reduces to

(36) SO@2, ) = SL2,R) x, SU2),
and in these terms
(37) {Rp@H : peR% p+#£0}/C" =RP x CP!

is the subset of Qg consisting of entire fibres of .

The description (34) can be used to show that any two non-degenerate g-in-
variant quadrics (ones arising from matrices in 2) are equivalent under
GL(2, H). The stabilizer at @ = I decomposes 2 into the direct sum of RQ and
the tensor product

(38) S?R? ® SPH = 32, R) ® su(2)
of Lie algebras.

PrROBLEM. — Describe the orbits of the conformal group on the quadrics (28),
or equivalently the orbits of C* x SL(2,H) = U(1) x GL(2,H) on the vector
space (32).

The generic stabilizer is zero-dimensional, so the orbits will be described by
20 — 15 — 2 = 3 free parameters. To solve the problem, it is sufficient to study
the action of (36) on (38). Passing to a 72 quotient, this is equivalent to the action
of

(39) SO@, 1)/ 7s = 80.(2,1) x SOB)

on the set of real 3 x 3 matrices X. If X has rank 3 then a suitable version of the
singular value decomposition (SVD) implies that X can be diagonalized by (39).
This is the main step in the proof of the

THEOREM. — Under the action of the conformal group on CIP3
quadric is equivalent to the one defined by a matrix

, 0 generic

el—%—iv 0 ' 0 0

B 0 eHh—w 0 0
(40) Q),.,,u‘v = 0 0 87/1+iv 0 .
0 0 0 er™

with J,u,v € R.
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Note that (40) has unit determinant, so this fixes the matrix in its C* orbit up
to multiplication by powers of i. In this way, we have “recovered” the C* action.
Replacing x4 by u+ 7 has the effect of multiplying Q; ,, by —1, so it is obvious
that we may restrict u to lie in the interval [0, 7). But more is true: multiplication
by ¢ results in an equivalence Q; ,,, ~ Q,,J,H%. Similar equivalences allow us to
choose a unique matrix (40) with 0 </ <u and 0 <v < 7w/2, except that
Q/l.)..v ~ Q/l,).,%ﬂr-

Not all non-degenerate quadrics belong to the 3-parameter family (40). There
is a 1-parameter family of non-diagonalizable quadrics that arise from 3 x 3
matrices X of lower rank.

Qiven a quadric Q in CIP?, a generic fibre 7 1(m) = CP! will intersect Q in
two distinet points. For special points p € S*, there are however two other
possible scenarios: the fibre may lie in Q or be tangent to it. This leads us to
define

Dy={peS:nlp c 9},
Di={peSt:#xn1p)nQ =1},
and state the

DEFINITION. — The discriminant locus of Q is the disjoint union D = Dy U Dy.
If both Dy, D; are non-empty, one expects Dy to be the singular locus of D.
Combining the previous theorem with some special cases yields

THEOREM. — Let Q be a non-degenerate quadric in CP®. There are four
possibilities under the action of the conformal group on CP3:

0) Dy = 0 and D = Dy is a smooth unknotted torus in S*

1) Dy = {p} is one point, and D is a torus in S* pinched at p.

2) Dy = {p, q} consists of two points, and D is a torus in S* pinched at p,q.

o0) Dy is a round circle S* in S* and Dy = 0.

In the last case, the S? coincides with the RP! in (37), and we are effectively
deaing with Jy. On the other hand, Case (1) arises when Q is not diagonalizable.

In R?, it makes no sense to talk about the “inside” of a torus. Indeed, in cases
(1) and (2) we may view the discriminant locus D as a spindle torus and horn
torus obtained by rotating a circle about an axis that either touches or intersects
it. The truncated views shown in Figure 4 were obtained from [22].

In the generic case, the smooth torus D will not disconnect Q into two leaves,
but there is a canonical way of extending D to a solid torus S! x U (where U
denotes the closed disc in Rz), and we can then define a single-valued OCS on its
complement in S*. The inverse image 7~ 'U consists of two disjoint disks glued
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Fig. 4. — Singular tori of revolution.

along their common boundary to form a 2-sphere. Compared to the case of J3, we
have therefore again cut out an S' x S? from Q, but it is configured differently
relative to the Penrose fibration (17).

6. — Higher dimensions.

We include this final section, in part as an introduction to the use of co-
ordinates on twistor space in higher dimensions.

We can easily generalize the approach of Section 4. Consider the almost-
complex structure J on R*" whose space A°(J) is generated by

(41) Ey=Godzi+ Y &dz,  i=1,...,m.
J

Then J is orthogonal if and only if

so (&) is a skew-symmetric matrix, and w = éijei Aé a complex 2-form. The
annihilator of (41) is the space of (0,1) vectors

— 0 0 .
(43) Di—foa—zi-i-jZfija—zj, i=1,...,n,

best thought of as differential operators.

If we set &, = 1, then the &;; determine local coordinates on the subset of Z),
consisting of structures that satisfy (23). These correspond precisely to those
pure spinors that can be written in the form (15) with o = (;;). However, to
cover Z, with charts more effectively, one needs to introduce quantities
Eijit> Sijiimn» - - - to parametrize the susbpaces 2% of (14) with k > 1 (this is ex-
plained in [10]).
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The integrability condition (11) is
(44) Di&y, — D¢y, =0, Vi, j, k.

Given the skew-symmetry (42), this equation asserts that Eiéjk belongs to the
kernel of the linear mapping

LA cAodead - Ao L
well known to be an isomorphism. Hence, (44) is equivalent to

The operators (43) can be regarded as covariant derivatives, and the same ar-
gument underlies the uniqueness of the Levi Civita connection, and the
equivalence of (19) and (20).

In view of (45), it makes sense to define

(46) Wi:fozi*Z@jEj, izl,...,n.
J

If &) = 1, the functions W; and &;; determine local holomorphic coordinates on a
dense open set of the twistor space Z = Z,,,1 of S?". Note however that the fibre
7~ 1(c0) (for which the z; are not finite) is completely excluded.

Let us illustrate the set-up in six dimensions, so that Z is a subset of

Pdy) = PUY @ 22 @ h.

Pretend that the symbols &;, &, &, &, (even though we have not defined them)
form a basis of 2! = C*. Then we identify &;, with W; and decree

Wi, Wa, Wi, &, &1, 2

to be a basis of /2. Relative to the Klein quadric in ’(4%) generated by simple 2-
forms, the first three elements span an “a plane”, and the last three a “f plane”.
Moreover, we take &, to span 40 and

(47) Wo = — (21823 + 22831 + 23¢12)
to span A*. It follows that
(48) Wolo + Wies + Wacls + W3lip =0,

and we take this to be the defining relation for the quadric £ in P(4,). This is
consistent with the exponential description (15) in which we see one quadratic
relation between the components.

We have seen that an orthogonal complex structure J on an open set of R® is
defined, via (41), by functions &; satisying (42). Referring back to (46) and (47),
we can now identity the graph of J:
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LEMMA. — J (21,22, 23) = [, &3, E31, E12, Wo, Wi, Wa, W31,

Standard projective geometry tells us that 2 incorporates two families of
linear subspaces CP? also parametrized by the quadric Z, (this is a special
feature of the triality phenomenon associated to $0(8)). In our twistorial context,
these were first described by Slupinski [40]. They are:

a) the subspaces CIP? consisting of fibres of 7, as well as those that are twistor
spaces of S*’s conformally embedded in S (we call these reduced twistor spaces).

) subspaces CP? that surject to S® and are ramified only over one point
p € S8, which is “blown up” into a CP* C 7~ 1(p).

Two spaces in the same family are either disjoint (such as distinct fibres) or
intersect in a CP! (such as fibre and reduced twistor space). Spaces in different
families intersect in a single point or a CP? (necessarily the latter if one con-
testant is a reduced twistor space).

Given an OCS J on R® let I' = J(R®) denote (the image of) its graph in
Z = Z4. We consider the case in which the closure I is an analytic subset of P
and so algebraic [31]. By Bishop’s Theorem [9], this will be true if the L norm of
VJ is finite, provided the norm and covariant derivative are taken relative to S°.
With this assumption, we may define the degree d(J) by taking the cup product
between the homology classes defined by I” and any CP? of the () family. The
first step in classifying such an OCS J is to show that I” has the same behaviour
as such a “horizontal” CI’%.

In joint work with L. Borisov and J. Viaclovsky, it is shown that if T is
analytic then I" N 7~ !(c0) is a projective plane. It does not however follow that I"
is itself a projective subspace CIP® or (equivalently) that J is conformally con-
stant. It turns out that this is only true if d(J) = 1. Orthogonal complex struc-
tures on R® for which T is analytic are classified in [10], and we refer the reader
to this paper (completed after the author’s lectures). If d(J) > 1 then " N 7~ 1(c0)
necessarily contains singular points, and all the examples arise in some sense
from the following construction.

EXAMPLE. — Set &3 = &3 = 0 and (for convenience) &, = 1. Suppose further
that £, = £ is a polynomial in z3. Then
Wo=—Cz3, Wi=21—-Cz, Wa=2z22+21, W3=z;
the condition (44) is satisfied, and we have
(49) J(z1,22,23) = [1, 0,0, &, —Ca3, 21 — B, 22+ &2, 23]
Hence I” belongs to a complex 4-dimensional quadric Q*, and

T N t(oo) = {[0,0,0,0, Wo, Wy, W2,0] : W; € C} = CIP?,
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as predicted. Observe also that J = J(z3) @ Jy, where J(z3) is a constant OCS on
R* = {23 = 0} and J is the fixed OCS on R” given by z3. An example of this type
was discovered by Wood in the context of harmonic morphisms [42, 6].

To conclude, we return to a construction in Section 1, by reducing SO(7) to
the exceptional Lie group Gs. This enables us to identify R” with the space Im O
of imaginary octonians and adopt the cross product defined by Cayley multi-
plication. The latter induces, exactly as in (3), an almost-complex structure J on
8% c R" and a corresponding section J of the twistor space Z = Z4. There is a
complementary subbundle Z of Z whose fibre CP? consists of almost-complex
structures K for which J + K has rank 2. Although J is not integrable (the re-
sulting structure is strictly nearly-Kdihler), Z is a complex submanifold of Z, a
fact implicit in [33, 12]. Indeed, Z can be identified with the complex 5-dimen-
sional quadric Q°.

The example (49) involved the hypersurface of a 4-quadric. An even more
obvious choice is a complex 3-quadric Q°, which can be identified with the real
Grassmannian (35) relative to some fixed splitting R? = R? @ R®. Retaining the
G, structure, we map a 2-subspace (u, v) (with %, v an orthonormal pair in R%) to
u x v € S8, It is easy to see that this restricts to a diffeomorphism

Gira(R?) \ Gra(R*) — S0\ 82,

The resulting OCS J; has discriminant locus S2 (covered by Gra(R*) 2 82 x S2in
0%), and is an analogue of the OCS Jy characterized at the end of Section 4.
Whilst CIP? is in some non-standard sense the blow-up of S® at a point (relative to
a constant OCS on R undefined at that point), so Q° is the blow-up of S¢ along a
CP! (relative to Js).
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