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Bollettino U. M. 1.
(9) II (2009), 175-198

Convergence to Equilibrium of the Solution of Kac’s
Kinetic Equation. A Probabilistic View (*)

EUGENIO REGAZZINI

Abstract. — Let f(-, t) be the probability density function representing the solution of Kac’s
Boltzmann-like equation at time t, with initial data fo, and let g, be the Gaussian
density with zero mean and variance o2, o> being the value of the second moment of fy.
Henry McKean Jr. put forward the conjecture that the total variation distance between
S, 1) and g, goes to zero, as t — + oo, with an exponential rate equal to —1/4. This
lecture aims at explaining the main efforts made to a view to validating this con-
Jecture, and concludes with the theorem stating that this holds true whenever fy has
finite fourth moment and its Fourier transform o, satisfies |py(©)| = o(|E]F) as
|€| — + oo, for some p > 0. The first part of the lecture expounds the derivation of the
Kac Boltzmann-like equation from the Kac master equation. A detailed description of
the probabilistic methods resorted to prove the above-mentioned theorem is then given.
The final part mentions further applications of these methods to other kinetic models.

1. — Motivation and scheme for the lecture.

The focus of this lecture is on quantitative investigations pertaining to the rate
of relaxation to equilibrium of solutions of a Boltzmann-like equation known as
Kac’s caricature of a Maxwellian gas. Boltzmann-like equations have probabil-
istic origins, which are more or less explicitly expressed. Thus, considerable work
has been done to analyze the speed of approach to equilibrium of their solutions
from a probabilistic stance. Mark Kac and Henry McKean Jr. have been pioneers
in this field of studies, as the following passage from [29] clearly shows

According to Boltzmann’s classical investigation, the entropy
should increase to its bound log[ov/27e] as ¢ | + oo, while the
solution of Kac’s kinetic equation tends to the Maxwellian
function g. Entropy does increase, the entropy production
vanishes only for the Maxwellian function, and the approach to
the Maxwellian is usually considered self-evident on this basis...

(*) Conferenza Generale tenuta a Bari il 29 settembre 2007 in occasione del XVIII
Congresso dell’'Unione Matematica Italiana. Ricerca effettuata con fondi MIUR (PRIN
2006/134525).

Mathematics subject classification number: 60F05, 82C40.
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But, while the fact cannot be doubted, no proof of it has been
advanced, except by Carleman for a 3-dimensional gas of hard
balls. Wild’s sum suggests a simpler explanation: the central limit
theorem for Maxwellian molecules.

This hint at the central limit theorem of probability theory actually constitutes
a starting point for this lecture. Indeed, it aims at describing how this fundamental
theorem could be applied in order to obtain both precise evaluations of the rate of
approach to the Maxwellian distribution and bounds on the error in approximating
for fixed time . The rest of the lecture is divided into the following sections:

2. Kac’s master equation and derivation of Kac’s equation for the density of
the velocity of one molecule (Kac’s equation, for short).

3. Wild expansion for the solution of Kac’s equation and its probabilistic
interpretation.

4. Analysis of the convergence of the solution with respect to “weak” me-
trics such as Kolmogorov’s and Monge-Wasserstein’s.

5. Analysis of the same problem in the total variation metric.

6. Final remarks.

Section 2 provides motivations for the subsequent exposition. Basic ideas for
application of probabilistic methods are presented in Section 3. By means of the
Wild expansion it is shown that the solution of Kac’s equation represents the
probability distribution of a random weighted sum of random variables. Via sui-
table conditioning, such a sum can be studied as a weighted sum of independent and
identically distribuited (i.i.d., for short) random variables. This paves the way for
application of classical results related to the central limit theorem. In particular,
upper bounds for the Kolmogorov distance between the solution of the Kac equa-
tion and the Maxwellian distribution are presented in Section 4 by means of re-
sorting to the Berry-Esseen inequality (see, e.g., [11]) and to some of its more
recent refinements. Bounds are also stated for Monge-Wasserstein’s distances of
order not greater than (2 4 9), for some ¢ in [0, 1]. The study of the speed of con-
vergence of the total variation distance between the said distributions is deferred to
Section 5 by using suitable refinements and modifications of Cramer’s asymptotic
expansions. Possible extensions of these methods both to multidimensional kinetic
models and to inelastic kinetic equations are briefly mentioned in Section 6.

2. — Kac’s master equation and derivation of Kac’s equation for the density
of the velocity of one molecule.

We start by describing the Kac model. As emerges from [24] and [25], Kac
was motivated by the desire to find an appropriate methodology for the study of
relaxation to equilibrium for kinetic models connected with the Boltzmann
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equation. Kac’s stance was that one should be able to get quantitative results
about a many-particle evolution equation and, as a result, this could lead to
analogous statements in the case of the one-particle (i.e., the Boltzmann-like)
equation. The said deduction, in turn, ought to be made possible by a connection
between many-particles and one-particle model, which Kac himself stated by
showing that the basic Boltzmann assumption of independence (Stasszhlansatz)
propagates in time. Let us now get down to detail.

For the sake of simplicity, Kac considered also an n-particle system in one
dimension. Assuming the positions are in equilibrium, he analyzed the velocities
(v1, ..., v,) under the sole restriction that the total energy % + - - - + 12 = no? is
conserved (hence the restriction to the sphere). Particles are supposed to ex-
change energy as follows. At the times of a Poisson process with rate n4, a subset

-1
{1,7} is assumed to have probability (Z) . Moreover, the initial velocities v; and
v; change into the post-collisional velocities according to

(v;,v;) — (v; cos 0 + v;sin 0, —v; sin 0 + v; cos 0)

with 0 uniformly distributed on [0, 27). So, if for every {¢,;} one defines RL” ;tobe
the clockwise rotation given by

i J
10 0 0 - 0
R, =" ‘ S0 a<icizw
0 -8 ¢ 0
0 - - 0 - 0 - 1]

where all the diagonal entries are 1 except for the (¢,7) and the (j,j) entries that
are ¢ := cos 0, and all the off-diagonal entries are 0 except for the (¢,7) and (5, )
entries that are equal to s:= sinf and —s, respectively, one can write the
operator

H; = exp{—nitl — Q)}

on L? of the n-sphere with

2n

1
QW)= e > [ FRIIO (V=i 0).

(2) 1<i<<n




178 EUGENIO REGAZZINI

With this operator one can define a Markov process on the sphere, in the stan-
dard way. If an initial probability density ¢,(V,0) is given, with respect to the
Haar measure on the sphere, then a density ¢,(V,t) of the process at time ¢ is
given by

6,(V,t) = Hl,(V,0).
{H;} is a semigroup and the differential equation associated with it (the

Kolmogorov backward equation for the Markov process) yields the so-called
Kac’s master equation

0 ,
ggn(vv t) =—nid — Q)L,(V,1)

(1) 2n
_ S [ @y - 6w}

2”(2) 1<i<j<<n |

In order to obtain a (non-linear) Boltzmann-like equation from (linear)
equation (1) Kac focused on the marginal densities of the first coordinate v; and
of the first two coordinates (vi,v2), indicated by fV and f® respectively.
Assuming each term of the sequence of initial densities (¢,(:,0)),>2 is symmetric
in the argument (vy,...,v,) and varies with # so that the marginals approxi-
mately factor and, therefore,

[Py, v2,0) ~ [P @1, 0)f P (w2,0)

as n — + oo, for every (vi, v2), Kae proved the already mentioned propagation in
time of the factorization property — a phenomenon commonly known as propa-
gation of chaos —

FO1, 9, 1) ~ fD w1, ) D(wg, t).

Substituting this in (1) with 4 = 1/2 and indicating the one-dimensional limiting
density (as n — + o0) by f(-, 1), one obtains the Kac equation

2n
of 1 . .
(2) m(v,t)%_!i![f(vcosﬂwsmﬂ,t)~f('us1n9+wc0s0,t)

—f,t)f (w,H)]dwdf (v € R,t > 0)

with initial datum given by some specific probability density function on
R:fo(-) =f(,07).

This is the desired one-dimensional Boltzmann-like equation derived from
the Kac model that is encapsulated in (1). Such a derivation explains the way Kac
expected to deduce quantitative results on the limiting behaviour of solutions of
(2) from quantitative results on the linear master equation. In fact, H:,(V,0)
converges to the uniform density % on the n-sphere (a.e., as ¢ — + oc) and the
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question is just how fast this relaxation actually occurs. After defining the
quantity

= sup{ f F@QN)@)dz - f @de =1, f f)de = o}
R

and observing that
n
An = E(]- - /ln)

represents the spectral gap for the generator of the semigroup (see the right-
hand side of (1) with 1 =1/2), Kac conjectured that C := limsup 4,, must be
strictly positive. If this was true, then one could write, as an easy consequence of
the spectral theorem,

1/2

R

1/2
®) (f iV, 0)—u(V>|2dV> < exp{—Ct}< [, 0)—u(V)|1/2dV>

This, in turn, would imply that the L! distance (on R") between ¢,(-,t) and » had
an upper bound that went to zero exponentially, at a rate equal to —C, as
t — 4+ o0.

The first statements which bear the Kac conjecture out are contained in [13]
and [23]. In the latter paper, the author supplies a lower bound of the form c¢* /n
for (1 — 4,) without adding, however, any information on the value of ¢*. More
recently, in [7] Carlen, Carvalho and Loss have specified that

1 n+2
b
Hence, one can say that the rate of convergence to zero in the right-hand side
of 8)is (—1/4).

At this stage, one wonders whether an analogous rate holds for the one-di-
mensional model, as a consequence of the described connections between models
(1) and (2). So far, bounds for (2) have been obtained, independently of the re-
lationship between (1) and (2), and independently as well of the above-mentioned
remarkable Carlen, Carvalho and Loss’s statement.

It is easy to see that the Gaussian density (Maxwellian density in the kinetie-
theoretical literature)

1 x?
ch—>gg(96') —Wexp{—ﬁ} (%6R70>0)

is a steady-state solution of the Kac equation (2) when ¢“ coincides with the
second moment of fy. In Section 4 we will state that the Gaussian distribution is

2
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the sole non-degenerate admissible limit distribution, and that such a limit is
actually attainable if and only if 0 < ¢® := [22fy(x)dx < + co. Thus, our problem

R
lies in verifying whether there is some constant ¢, depending only on fj, such that
~ t
(4) j|f(90, ) — go(x)|dx < cexp{—z}
R

holds true for every ¢ > 0 and any initial data in some fair class of probability
density functions on R.

Taking into consideration the difficulties inherent in following the Kac ap-
proach to prove or disprove (4), McKean tried to get evidence from linearizing
Kac’s equation (2) about g,. See [29]. He found that the spectral gap for the
linearized form coincides with 1/4. Being unable to extend this fact to (2), in
order to obtain (4) McKean indicated an alternative route which, as it will be
shown in Section 5, brings to a successful conclusion.

3. — Wild expansion for the solution of Kac’s equation and its probabilistic
interpretation.

Applying the Fourier transformation to both sides of (2) and setting

o(y,t) := [e""f(x, t)dx for every y in R, (2) becomes
R

2r
O 1 .
() SrEh=5 Of p(Ecos 0, p(Esin0,Hd0 — g, 1) (E€ R,t > 0)

with initial condition

(6) po() 1= f FEh@de (< R).

R

Problem (5)-(6) could be seen as a new, slightly more general problem, if com-
pared to (2). Indeed, ¢, and ¢(-, ) could be viewed as Fourier-Stieltjes transforms
of not necessarily absolutely continuous probability measures y, and u(:,?),
respectively. With reference to (2), one has uy(4) = f fow)dx and u(A,t) =

A
f f(a,t)dt, for any A in the Borel class on R, .Z(R). So, in the following, we will
A

say that u(-,t) is a solution of (5) provided that its Fourier-Stieltjes transform
o(-,t) satisfies (5) and ¢, is the analogous transform for .
One can prove that (5)-(6) has a unique solution in the class of the Fourier-
Stieltjes transforms of all probability laws on (R,.Z(R)). Cf., e.g., [29], [34] and [ 14].
Now, from [37], the solution admits the following series expansion

(7) pE )= e —e "G pp)

n>1
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where

e]l(f;(ﬂo) = (00(5)
®) o) = S o0t duaCio (=23 )
C]n ,(00 - m;% 7¢0 *(]n—k a(oo n = 9Dy ..

are valid, for every ¢ in R, with * defined by
9 G+ IO = o ]2 (& cos 0 sin 00
9) g =g J g(&cos sin .

Then, § =/ gives the Fourier-Stieltjes transform of the so-called Wild con-
volution, i.e.

2n
1 .
5 '0[ L(V cos 0 + W sin 0)do

where 4 (Y) denotes the probability distribution of Y, gnd V, W are independent
random variables with characteristic functions ¢ and & respectively.
For n = 2, (8) yields

2n
R 1 .
(10) (F; 9 = > b[ 0o(& cos 0)py(& sin H)dO

and, for n = 3,

(11) 33(&; 0)
_ (21)2 f 90 cos 01)pg (& cos Oz sin 01)po (¢ sin Oz sin 01)d01d0;
T
[0,27)?

f 0 (& cos B2 cos 61)py(E sin Oy cos 01)py(E sin 61)d 61 dbs.
[0,27)

L
@n)*

In extending these computations to any #, McKean proposed to make use of
certain tree graphs, commonly referred to as McKean trees. They are char-
acterized by the fact that each node has either 0 or 2 children: a “left” and a
“right” child, respectively. So, for each », the set G(n) of all trees with » leaves
has cardinality equal to the Catalan number

1/2n-2
@:—(" >.
n\n-—1
See Section 15 of volume 1 of [12]. For n = 1, as well for n = 2, there is one
McKean tree, i.e.
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0,

\7 c(61) s(61)

Vi \%)

whereas, for n = 3, there are exactly two trees as in the figure below

Shaded circles stand for nodes, whilst unshaded ones stand for leaves and
¢ = cos, s = sin. Nodes are labelled with 61, 60;,... according to a level-left to
right order, while leaves are labelled by vy, ve, . . . following a left to right order.
Finally, arcs are identified by circular functions cos(-) and sin( - ) according to
the following criterion: cos (6;) or sin (0;) for an arc coming out from the node 0;,
depending on whether such an arc is “left” or “right”. The path that connects
each leaf to the root, in a specific tree, turns out to be completely described by a
finite sequence of circular functions whose product will be indicated by (), »
being the “name” of the tree and ¢ the index of the label (v,) associated with the
leaf taken into consideration. The number of factors (arcs) is called depth of this
leaf, and will be denoted by J,.

After describing McKean trees, define #* to be the Daniell-Kolmogorov pro-
duet measure on ([0,27)>°, Z[0,27)>°) which makes the coordinates 0, i.i.d. with
common uniform distribution on [0, 27). Then, consistently with (10) and (11),

(12) wGo =Y p» [ TLeb)on@0)

yeG(n) [0,27) (=1

with p,(y) > 0 for each yin G(r) and > p,(y) = 1. In view of (8), the coefficient
7€G(n)
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Py, can be determined recursively as follows. For the unique element y of G(1), set
p1(y) = 1. Next, for each y in G(n) with n > 2, erase the root to obtain two trees: a
“left” tree and a “right” one y, and y, respectively. It is easy to see that

1
(13) Pu(y) = mpk()’e)l)nfk(%«)

holds true when k stands for the number, in {1,2,...,n — 1}, of the leaves of y,.
At this stage, plugging (12) in (7) gives

(14) Mm:ZjZeM—WW%mj'H%%mmww

n>1 G [0.2m> =1

ie.: p(& 1) turns out to be characteristic function of a random weighted sum of
random variables. This fact is crucial for future developments and, therefore, we
pause over the definition of this random sum.

Put G := |J G(n)and with each ¢ > 0 associate a copy Q; of the product space

n>1 )
N x G x [0,2n)> x R*™

with N := {1,2,...}. Equip Q; with its natural product topology and denote the
Borel o-field on Q; by .7 ;. Designate the coordinate random variables of Q; by

Vi, Tt, O := (et,n)nzhvt = (?)t,n)nzl
and form the probability space (£;,.7 ¢, P;) by specifying
Pt{vt =MN,T4 = y,f)t EA,Ut S B}

DL y & Gn)
et @ = e p Ot A)py(B) y € G(n)

for every nin IN, yin G, A in .#[0, 27)™ and B in .Z(R), u; being the probability
distribution of (v;,),>; that makes the random variables v;,, i.i.d. with common
probability distribution u,. Throughout the rest of the paper, E; will denote
expectation with respect to P;. Moreover, it is understood that 0;; (v;;, respec-
tively) will replace 6; as labels of nodes (v;, respectively, as labels of leaves) and
that, consequently, arcs will be labelled by c(0; ) or s(0;;) in place of c(6;) or s(6,),
respectively, whenever f,(r;) will be used in the place of §,(y). Now, we are in a
position to make precise the McKean probabilistic interpretation of the solution
of (5), in a form recently given in [20].

THEOREM 3.1. — For each t > 0, one gets

p(&, 1) = By (exp{ifzm(ft)vt,z}> EeR).

(=1
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This is tantamount to saying that u(-,t), the solution of (5) with initial datun w,
turns out to be the probability distribution of

(15) Vi= Zﬂ[(ft)vtf‘t
=

Sforanyt > 0. (Fort = 0, Vj is to be meant as any random variable with probability
distribution g,.)

At this stage, it is worth emphasizing a few important facts such as:
(a) The identity

(16) Zﬂ%(ft) =1
=

is valid for any ¢ > 0 and 7; in G.
(b) For any n > 2, one has

[ Tewowan= [ Tln.6o0w @ ¢ery

[0.2m)> (=1 [0.27) =1
for every y in (G(n), with

20(&) + (= &)

= (Regy)d) (€ e€R).

The probability distribution of any random variable having characteristic func-
tion (17) is given by
Ho(A) + p( — A)

2
for every A in .Z(R) and —A := {x € R : —x € A}. Hence, designating the solu-
tion of (5) by ¢(-,?), when the initial datum g, is replaced by ¢, ;, one gets

20 = (=)
2

(18) o 4(A) =

ie.

tHoA) — (- A4)
2 (4

1 being the probability whose Fourier-Stieltjes transform is just ¢,(-, ?).

In view of (b), one is allowed to investigate the integro-differential problem (5)
assuming that the initial datum is a symmetric distribution, without real loss of
generality. This is useful since, in general, the symmetry assumption simplifies
certain types of computations and reasoning. In particular, one gets

uA,t) = u,(A,0) + A e Z(R),t>0)
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(¢) If uy is a symmetric probability distribution on R, then V; and

Vt

Z 1Bo(ze)|ves
=

have the same probability distribution.

Before clarifying the link Theorem 3.1 establishes between convergence of
the solution of (2) or (5) and central limit problem, let us look at a possible
physical interpretation of (15). Recall that the Kac kinetic equation originates
from the n-particle Kac model, as n diverges to infinity, through he propagation
in time of the Boltzmann factorization property. Now, fix one of these infinite
particles and let v; be the (random) number of particles with which the fixed one
collides at time t. Each McKean tree provides a description of the collisions
experienced by each of the v; particles, represented by the leaves, before each
particle contributes to the velocity V; of the fixed particle, which, in turn, is re-
presented by the root. For an Zin {1, ..., v} the contribution of particle ¢ is given
by its initial velocity vy, multiplied by the reducing factor f8,. The factor is de-
termined by the number of collisions (the depth of £) before contributing to V3, by
the rotation angles 01, 0., ... and by the position of ¢ in each collision. All these
circumstances are characterized by the path that, in the tree, connects leaf ¢ and
the root. See also [5].

Getting down to examining connections with the central limit problem, it
should be noted that the probability distribution of V4, i.e. the solution of (5), can
be written as expectation of any version of the conditional distribution of V; given
Ui := (v, 14, 0;). Tt is easy to check that there is a version of the conditional
distribution of (v, ¢, 0;, v¢), given Uy, with respect to which the random variables
v;¢ are ii.d.. Pick one of these versions, say P*(-; U;), and consider its determi-
nation for U; = (n,y,a) with y in G(n) and a in [0,27)*°. Moreover, let
qe = qe(n, y,a) be the value of f,(z;) at U; = (n,y,a). At this point, we can de-

n
termine the probability distribution of ) q,v, where v1,vs,. .. are ii.d. random

=1
variables with common probability distribution y,. Notice that, substituting, in
the expression of this distribution, (v, 7;, ;) for (n,y, a), we get a version of the
conditional distribution of V; given U;. In any case, one can write

(19) P{Vi<a}=> " > e'd—e )" 'py

n>1 yeG(n)

=1

: f P (Z qeve < ;U = (n, y, a)) w*(da)
[0,27)>

n
for every x in R. It must be noted that, with respect to P*, >_ q,v, turns out to be
=1
a (standard) weighted sum of independent random variables. Under suitable

conditions, the asymptotic behavior (as n — + oc) of the probability laws of these
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sums can be successfully studied by resorting to the central limit theorem.
Hence, in view of the structure of (19), it is easy to understand the role played by
such a theorem in studying the convergence to equilibrium of the solution of
Kac’s equation.

4. — Analysis of the convergence of the solution with respect to “weak”
metrics: Kolmogorov and Monge-Wasserstein.

A sequence of probability measures 1,7 = 1,2, ..., defined on (R,.Z(R), is
said to converge weakly to the probability measure y if

(20) nEToo Hn(A) = (A)

holds for every u-continuity set A, i.e. any A in .Z(R) with u(0A) = 0. This is
expressed by writing p,, = . It is well-known (see, e.g., Chapter 5 of [3]) that the
following three conditions are equivalent:

@ 1, = .

(@) [fdu, — [fdu for every bounded, continuous real function f on RR.
R R

(111) Fp(x) — F(x) for every continuity point « of F, with
Fp(@) := p,,(— oo, x]) and F(x) := u(( — oo,x]) for any x in Randn =1,2,. ..

The importance of the weak convergence of probability measures is mas-
terfully explained, for example, in Chapter 4 of [26]. We will explain that if F' is
continuous, then weak convergence of yu, to u is equivalent to the condition
K(u,, 1) — 0,asn — + oo, where K stands for the Kolmogorov distance between
1, and g, defined by

(21) K(u,, 1) = sup|F, () — F(x)|.
xeR
Now, given a pair of probability measures m; and ms on (R, #(R)), let

F(my, mg) denote the class of all probability measures m on (Rz,ﬁ(RZ)) such
that

mA x R) =mi4), mR x B) = ma(B) A,B € . Z(R)).
If [ |x|’m;(dx) < + oo for i = 1,2 and for some p > 1, then the real number
R
meH (my,ms) -

1/p
(22) Zplmy,mg) := { min f|ac — y|pm(dxdy)}
R2

is called Monge-Wasserstein distance between my and mg. The Italian statisti-
cian Gini first introduced distance (22) in [22] for statistics-theoretical purposes,
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when p is either 1 or 2 and probabilities m; and myg are discrete. In general,
convergence with respect to £, entails both weak convergence and convergence
of any (pseudo-) moment of order » in [1,p]. Viceversa, weak convergence
combined with moments convergence, up to order p > 1, implies convergence
with respect to . See Corollary 7.5.3 in [32].

Let us now present a few results concerning the speed of approach to equi-
librium of the solution of Kac’s equation with respect to both the above-men-
tioned metrics. In the light of the next statement, in the present case weak
convergence holds if and only if either of the other two types of convergence
comes true.

From now on, F(-,t) will denote the probability distribution function asso-
ciated with the solution u(-,?) of (5). y, and G, will designate the Gaussian dis-
tribution and the corresponding distribution function, respectively, with mean
zero and variance ¢2. The same symbols with ¢ = 0 will be used for the unit mass
at zero and the corresponding distribution function.

THEOREM 4.1. — The solution u(-,t) of the Boltzmann problem (5)-(6) con-
verges weakly, ast — + oo, if and only if uy has finite second moment. Moreover,
if [ 2P py(dw) = 6% < +o0, then uy(-,t) = y, ast — + oo.

R

For a proof of this statement, see [20]. Since G, is continuous whenever ¢ > 0,
from a classical theorem due to Pélya (see, e.g., Theorem 1.11 in [31]) one obtains
that K(u(,1),y,) — 0, as t — + 00, when 0 < g < +oco. In other words, in
Theorem 4.1 weak convergence can be replaced with convergence with respect to
the Kolmogorov metric. An analogous conclusion holds for Monge-Wasserstein
metries &, with 1 < p < 2. To see this, first note that, if o is finite, then the first
two moments of u(-,t) satisfy

f vu(de,t) = et f wpo(de) — 0 = f xy,(da)
(23) R R R

f Pudet) = o = f o2y (de).

R R

Then, recalling the above-mentioned relations between weak convergence
and £ ,-convergence, combination of (23) with Theorem 4.1 implies that
Spu(-t),y,) — 0,as t — 4 oo, for every p in [1, 2], provided that z, has finite
second moment. These remarks suffice to justify the equivalence statement
made immediately before Theorem 4.1.

Now, before providing bounds for the rates of convergence, we give a short
account of the reasoning used in [20] to prove the necessary condition specified in
the previous theorem. This way of reasoning is essentially the same as in [18] and
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rests on the discussion (see the end of the previous section) about the condition of
conditional independence. After denoting a version of the conditional distribu-
tion of V3, given Uy, by A,,, the first step of the argument consists in proving that
convergence in distribution of V; as t — + oo, implies that any increasing and
diverging (to infinity) sequence of positive terms (¢,),>; contains a subsequence
(t,y) for which

(24) the probability law of A, weakly converges to the law of A

where A is some (random) probability measure. It is worth noticing that, for the
theory of weak convergence of probability measures, we refer both to [4] and to
[16]. In the second step, via the Skorohod-Dudley representation (see, e.g., pages
70-71 of [4]), one transforms (24) into a statement about (almost sure) weak
convergence of a suitably defined random distribution A‘,* towards a random

probability measure A, where A*f has the distribution of AH , and A" the dis-

tribution of A. At this stage, the general central limit theorem (see for example,
Theorem 3.3 in [31]) can be employed to deduce a necessary condition for the
convergence of /4. . Finally, one concludes by showing that this condition boils

byt

down to the existence of a bounded variance for the initial distribution . To
verify that the condition of the theorem is sufficient, it is enough to check that
either of the distances K(u(-,?),7,), < p(u(-,t),7,) is o(1) as ¢ goes to infinity. In
fact, putting

2n 2n
— 1 m _i . m
B, ._%Of | cos 0] de_znof | sin 0" d0

and

iy = [ Jol ()
R
for any positive m and p, one can prove

THEOREM 4.2. — If u, has finite second moment * and a,p, p are numbers
obeying
1-2B
0O<a<l, p>2 O<p<T”,

then, for any t > 0, .

1 ,
Ku(,0),7,) <124 — f 2P py(dee) + e 11 72B2) 4 o7 1A=2Bp=pp)

gt

where x; := exp{pt(l — a)}. Furthermore, if Moys < +oo for some ¢ in (0,1],
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then

K(u(-,1),7,) <7 22;;’ exp—t(1 —2Bs.s) (¢t > 0).

This proposition is proved in [21] by applying an improvement of the Berry-
Esseen theorem, contained in [17], to the conditional distribution of V3, given Uy,
and by using certain identities given in [19]:

B (Z@é{ w) _fetn-1)

0
2 rorey 70

(25) )
B, (ZIMQ)I”) =exp{—t(1 —2B,)}  (m>0,t>0).
/=1

An analogous statement for the Monge-Wasserstein distance <7 can be ob-
tained as above, by replacing the Feller theorem with Theorem 2.1.24 in [33] and,
when s, s is finite for some ¢ in (0, 1], with Theorem 2.1 in [10].

THEOREM 4.3. — If u, has finite second moment o2, then, for any triplet
(a,p,p) with a > 0,p > 2 and p > 0 such that

P e
p )

one obtains
L1, 1), 7,) <0{9_t(1_23”_p(a+p))(3\/2_n +6(1 —e™) +6e (1 + e

+30L22_n f aczpo(dac)}+mlet (t > 0).

o] >20ert

Moreover, if Mg.s < +oo for some 6 in (0,1] then there is a universal
constant C* such that

g)l(ﬂ(" t)7 ))r) = C* 2+o 7t(1 ZBZ+()) + mleit (t > O)

In the same paper where the previous proposition has been formulated, i.e.
[21], bounds for s have been obtained. The argument employed is rather
technical and difficult to be summarized in a few words.

THEOREM 4.4. — If f 22 uy(dx) = 6% < + oo then, for any (a,p, p, &) satisfying

-2
ae1),p>20<p<_2P

,& €(0,1), there is A = A(a, p, p, €) for which
2

o 2 —t
7|lnh*(t)|1/2 +8d% 7t (t>0)

Gau-, 1), 70" < A
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with

+o0o
. 1
() = mm{e‘g, ¢ 11-2B20) 4 9p—t1-2By=pp) | ~ f 2% up(dae) }

a-e/)t(l —a)

Moreover, if Mg, s < +oo, then there is a universal constant Ct for which
Mo

= Sexp{—t(1 — 2Bs,)} +8a%¢ ' (t > 0).

When o2 is finite and [ |x*™uy(de) = + oo for every 6 >0, the upper
R

bounds in the previous theorems cannot go to zero exponentially: they depend
on u, essentially only through the behaviour near » =0 of the function
re J JoPugldo).

[v|>1/r

If 2 is not finite, then u(-,t) converges to the null measure vaguely. More
precisely, the next theorem says that if the initial energy is infinite, then the total
mass of the limiting distribution splits into two equal masses (of value 1/2 each)
which adhere to —oo and +o0, respectively.

THEOREM 4.5. — Set 11 := (— 00, —R], 72 := [R, +00) and

L= exp{t(l—%)}.

Assume [2?uy(dx) = + oo and let n be a fixed element in (0,1). Then, there is a
0

R
time t, such that, for every t>t,,nVv (1 — 7)< mo(Ly) < 1 is valid and, for
1<i#j<2

S~ AW+ By ) < (e 0) < + B0
holds for every R > 2{(my(L;) — m(@ — \/i)}fl, with

R 1
At) = +se
ma(L)" 2 lmo(Ly) — n]'/? 2

and
1
B; ;@) := 564{#0(‘51) — fo(T}

m(L) == [ v*uy(dv),k=0,1,...,L > 0.
[-L,L]

For the proof, see [8].
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5. — Convergence of the solution in the strong sense.

Given two probability measures m;, mg on (R,.Z(R)), the total variation (or
variational) distance between them is defined by

dTv(ml, Ma) = sup{|m1(A) - 7%2(A)| : Ae ﬁ(R)}

If m; and mgy are dominated by the Lebesgue measure, then

1 1
drvmy,my) = 5 [ 1@ —f@lde =5 |1 ~ £l
R

f; being any probability density of m; with respect to that measure (¢ = 1, 2).

The literature on convergence to equilibrium of the solution of the Kac
equation focused chiefly on the study of the behaviour of | f(-,?) — gs|;, as
t — + oo, where f (-, t) represents the solution of (2) with initial density f;. With a
view to describing the main contributions to the subject, it is worth recalling that
they have been predominantly influenced by the McKean conjecture (4) already
mentioned in Section 2. In [29] he proved that

(26) 4e) Y| F, 1) — golF < crat?2e®/CDD (a5t — 4 00)
holds true with a constant ci2 = c12(fy) depending upon fy alone, under the
conditions: ¢ = 1,f |v|3f0(v)dv < + o0, (H[f] > — o) and I[f] < +occ. Here, H

R

and [ stand for the entropy and the Linnik functional, respectively. For the sake
of completeness, we recall that the entropy of a probability density function f, on
R, is defined by

HIf]= — f F@)In (f@)dz.
{f>0}
As to the functional I[ - ], Linnik was the first to notice its importance in de-

veloping an information-theoretic proof of the central limit theorem. See [27]. In
the beginning he defined such a functional as

(f' (@)
J f@)

If1= da

when the probability density f is a strictly positive element of C(R). Afterwards,
MecKean extended [ to the set D of all probability densities with finite variance,
according to the rule

where x indicates convolution.



192 EUGENIO REGAZZINI

Since the rate of exponential decay in (26) is rather different from the one
conjectured by McKean (see (4)), in [9] Carlen, Gabetta and Toscani tackled the
McKean conjecture and obtained an estimate that can be considered to be ar-
bitrarily close to the desired rate, i.e.

(27) 1FC 0 —gill, < cgexp{—iu —s)t}

where ¢ is an arbitrary strictly positive number and C, a constant which, in
general, depends both on f; and, unfortunately, on ¢ in such a way that C, goes to
infinity as ¢ goes to zero. Moreover, they obtained (27) assuming rather strong
hypotheses of three different kinds on the initial density fy: finiteness of all
absolute moments; Sobolev regularity in the sense that fy must belong to H,,(R)
for any integer m; finiteness of the Linnik functional at f. A further noteworthy
progress is made in [6], where it is shown that the above second group are un-
necessary in order to get (27).

The first actual validation of the McKean conjecture (4) has been obtained
recently by resorting to suitable developments of the probabilistic viewpoint we
explained in Section 3. A noteworthy feature of the approach is that the proof
rests on a set of assumptions which are definitely weaker than those considered
so far.

THEOREM 5.1. — Assume that the initial probability density function, fy, of
Kac’s equation (2) has finite fourth moment. Moreover, suppose

(28) @ = [ f@idr = o) (¢ = +00)

R
for some strictly positive p. Then there is a constant C depending only on the
behaviour of fy for which

1fC0) —golly <Ce ™t (¢>0)

where 6* = [ x?fo(x)d.
R

A complete proof of this proposition can be found in [15]. Here we confine
ourselves to providing brief descriptions of the main steps. First, to pave the way
for application of classical central limit arguments, we deal with i.i.d. real-valued
random variables Xi,Xo,...,X, on some probability space (Q,.7,P), with
common non-degenerate distribution f,. It is assumed that f, is symmetric and
has moment of fourth power. We denote the k-th moment and the absolute k-th
moment of j, by my and my, respectively. Moreover, we define ¢, to be the

Fourier-Stieltjes trasform of ji,, consider real constants ci,...,c, such that
n

z;cjz-:l, and form the sum V), of Yi,...,Y, where Y;=cX;/\/mz for
J=
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j=1,...,n. We prove that there are universal constants c¢; and ¢y such that the
following inequalities
A 1/2
(29) [1o.@—eerpas | <art
-A
A ) 1/2
_ 82 < 4
(30) f F© - ) <er)

n

hold true for A = a/I", whenever a belongs to (0,1/2] and I" 4 (’WL4 Z G ) / mg

Secondly, it should be noted that Theorem 5.1 is proved once it is Verlﬁed that
f |fs, ) — govidv < C, e~"* holds for some constant C, and for any density f;(-, )

'of the symmetrized probability u, defined in Section 3. Thus, without real loss of
generality we can assume that fy and, consequently, f(-,?) are even functions. At
this stage, one can start working at some version, say F*, of the conditional
probability distribution function for V; given Uy, to obtain

(31) E [

d
WF (ov) — g1(v) 1

U} <2P(U) < 2+ 2" -mhe "/,

Here Ey[-; S] denotes integral — with respect to P; — over the measurable set S,
while U := {v, <7} U { [T vfie) = } { S BT > 5} with 3 := @77) ",
(=

being equal to the least 1nteger not less than 9/ (2a) and a determined along with A
in such a way that |y (&)| < (12 / (2% + E]* for every &. Existence of a and 4 follows
from (28). Moreover, by resorting to a result due to Beurling (see [2]) we can write

)< fat = ot o1
<( f|A|2) ;U”}+Et[( f\AI) U]

Et[H—F (o) —

[¢l<A [4p:
()] (] )
[¢]<A [g[>A

with A = (74{27}@4(%:%(‘[,5))1/4}71 and 4:=¢*(E/o) — e <2, A = dAjde.
=1

Then, recalling (29), (30) and (25) we state there are constants c3 and c4 for which

1/2
( f |A|2dé> ‘|<C 0-4 7t/4
¢]<A

(32) By
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and

1/2
(33) EtK f |A’|2d£j> ]gcﬂ;ffef/‘*.

|é]<A

Finally, we apply the Minkowski inequality to get

< f|A|2>1/2§< fI(/)*(é/a)F)l/er( fe52>1/2

[¢[>A [E]>A [<[>A

1/2 p o\ 172 1/2
(Jut) <( Jlswamf) +( fees)
I€/>4 |&]>A I&>4

Now, from elementary inequalities for the error function, we find constants cs
and cg so that

1/2
a/2
(34) Et( fefzaﬁ) §c5<2;ri4) et
[¢[=4

1/2
. a/2
(35) Et( f@e%) Scs<2"ff4) et
[£>A ?

and from Berry-Esseen-like arguments there is ¢7 such that

1/2 1/2
a 2 M*
(36) B ( / |¢*<é/a>|2> +< | ‘d—é(/)*(f/a)‘) <ot

l<I>A [<]=A

and

In order to complete the proof it suffices to combine inequalities from (31)
to (36). O

After touching on the proof of the theorem, it is worth comparing its
assumptions with previous work. To start with, our moment assumption shows
that the finiteness of all moments is actually redundant. Also the finiteness of
I[fy] is not needed since, in view of Lemma 2.3 in [9], one can write
f 1€ ()da < |& |71 v/1[fol. Hence, the tail assumption on ¢, i.e. (28), turns out to

R
be weaker than finiteness of I[fy]. It should also be noted that assumptions in
Theorem 5.1 are substantially independent. Indeed, for instance, initial char-
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acteristic functions like

1/n
PO = ay <$€2> (an > 0 for every n, y @, = 1)

n>1 n>1

possess the moment property but do not meet the tail condition. Conversely, the
Fourier transform of

Cm 1 1
() =—"2 reRm>1,—=] ——dx
.ﬂ) 1+ |.’)C|m+1 ( Cm !1 + ‘x|m+1 )

has “good” tails but fy does not possess m-th moment.

One could wonder whether the assumptions made in Theorem 5.1 may be
weakened in some significant manner preserving, at the same time, the validity
of the rate —1/4. In Subsection 2.2 of [15] one can find an example of symmetric
initial density like

p y
Jolx) = Wl{‘xlzl} @eR;3<f<4)

which yields a solution f(-,?) for (2) satisfying
1fC,0) —goll, > Cexp{— (1 —2Bp)t} (¢t >0).

Now, since (1 — 2Bp) < 1/4, one can say that m4 = + oo can in general imply that
| £(-,0) — gs|l; goes to zero exponentially, but with a rate which is slower than the
one provided in Theorem 5.1 under the assumption of finiteness of the fourth
moment. For the sake of completeness, it should be noted that assumptions
about finiteness of the entropy or of the Linnik functional could not compensate a
possible lack of finiteness for moments of a certain order.

As to the tail hypothesis (28), note that it is connected with (it is actually
slightly stronger than) statements like: there is some integer N such that the N-
fold convolution of fj is bounded. In fact, the latter statement often recurs, with a
role of sufficient condition, in local limit theorems within the classical Lindeberg-
Lévy framework. See, for example, Chapter 7 of [30].

6. — Concluding remarks.

In the previous sections we studied a significant example of investigation into
the limiting behavior of solutions of Boltzmann-like problems (the Kac equation,
specifically) by resorting to methods in the domain of the central limit theorem of
probability theory. We also explained how to use them in order to obtain sharp
bounds for the error of convergence, under hypotheses which are definitely
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weaker than those considered so far in the state-of-the-art literature. This ap-
proach, in line with the McKean stance on the convergence to equilibrium in the
Kac model, proves quite innovative with respect to results attained in the last few
decades, when the authors have prevalently followed strategies of an analytical
nature. See, e.g., the recent survey in [36]. In a forthcoming paper, a new pro-
blem will be tackled, i.e.: can the upper bound stated in Theorem 5.1 be im-
proved? It will be proved that the answer is in the affirmative only if the fourth

cumulant of s ( Jatduy, —3( [ aczd,uoys)Q) is zero, which, in any case, is a rather
R R

peculiar condition.

To conclude, it should be recalled that the Kac model provides the pattern for
the analysis of certain more physically realistic kinetic models. Many of the es-
sential features of these more realistic models are, in any case, preserved in the
Kac simplified setting. In particular, the specific probabilistic methods utilized in
the previous sections can be applied to the study of the asymptotic behaviur of
solutions of equations of Maxwellian molecules with constant collision kernels
supported by compact subsets. Additionally, these very same methods can have
applicability to the approach to equilibrium of solutions of certain inelastic var-
iants of the Kac model in connection with the study of the behaviour of granular
materials and of the redistribution of wealth in simple market economies. For
these two topics, cf. [35], [28], [1].
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