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A New Proof of the Boundedness of Maximal Operators on
Variable Lebesgue Spaces

D. Cruz-URIBE, SFO - L. DIENING - A. FIORENZA (¥)

Abstract. — We give a new proofusing the classic Calderon-Zygmund decomposition that
the Hardy-Littlewood maximal operator is bounded on the variable Lebesgue space
LPO ywhenever the exponent function p( - ) satisfies log-Hélder continwity conditions.
We include the case where p( - ) assumes the value infinity. The same proof also shows
that the fractional maximal operator M, 0<a<mn, maps LPY into L1V, where

1/p(-)—1/q(-) =a/n.

1. — Introduction.

Given a measurable function p(-):R" —[1,00], let Q) ={reR":
p(x) = 0o}. We define the variable Lebesgue space LP" to be the set of functions
such that for some 1 > 0,

p(x)
Pp(<)(f/)“) = _[ <|fix)|> do + ;lefHL“(Qoe.m-)) <00

R™"\ Qs ()

LPY is a Banach space when equipped with the norm
1f ey = inf{ﬂy >0 pyo(f/A) < 1}.

These spaces are a special case of the Musielak-Orlicz spaces (cf. Musielak [18])
and generalize the classical Lebesgue spaces: if p(x) = po, then LPO = Lo,
Variable Lebesgue spaces have been known since the 1930’s, but have become
the focus of intense investigation in the past fifteen years. (See [8, 10, 22] for
further history and applications.) A central problem has been to extend the
techniques of harmonic analysis to these spaces, which in turn leads naturally to
the study of the Hardy-Littlewood maximal operator and the closely related
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fractional maximal operator. The purpose of this paper is to give a new and
simpler proof of the boundedness of these operators on variable Lebesgue
spaces.

Before stating our main result, we first make a few key definitions. Given a,
0 < a<mn, we define

M. f@ =sup Q"  |£)ldy,
Q>x Q

where the supremum is taken over all cubes @ C R" that contain .
(Equivalently, cubes may be replaced by balls containing x.) When a = 0 this is
the Hardy-Littlewood maximal operator and we write Mf instead of My f. For
a > 0 this is the fractional maximal operator introduced by Muckenhoupt and
Wheeden [17].

Given a function r(-): R — [0,00), we say that #(-) is locally log-Hdélder
continuous, and write »( - ) € LH,, if there exists a constant Cy such that

|r(x) — r(y)| < v,y € R", | —y|<1/2.

0
—log |v —y|’
Similarly, we say that »(-) is log-Hoélder continuous at infinity, and write
r(-) € LH, if there exists constants C., and 7(co) such that

C

—90’ c R"™.
log (¢ + |x]) v

[r(ac) — 1r(00)| <

We say »(-) is (globally) log-Hélder continuous if »(-) € LHy N LH,, and we
write (- ) € LH.

REMARK 1.1. — The LH,, condition is equivalent to the uniform continuity
condition

|7(x) v,y e R, |yl > |«

— 7”(?/)| < Ma

The LH,, condition was originally defined in this form in [4].
Finally, given a set E Cc R", let

p_(E) =essinfp(x), p,(E) = esssupp);
welk veE
If E = R", then we simply write p_ and p..

THEOREM 1.2. — Given a, 0 <a<mn, let p(-): R" — [1,00] be such that
1/p(-) € LH and 1<p_ < p; < n/a. Define the exponent function q(-) by
1 1 a

@ g o SR
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where we let 1/00 = 0 and 1/0 = oo. Then
1Mafllgey < CllFllpcy -

REMARK 1.3. — The constant in the conclusion of Theorem 1.2 depends on the
dimension %, the log-Hélder constants of 1/p(-), p—, and p(oco) (if this value is
finite).

REMARK 1.4. — The assumption that 1/p(-) € LH implies that 1/q(-) € LH
as well. Further, if p, <oo, then the assumption 1/p(-) € LH is equivalent to
assuming p(-) € LH, since

’1_1 _ ‘p(x)—p(y) . ‘p(x)—p(y)
p@)  p) p@p@y) |~ @) |

Theorem 1.2 combines a number of results that have been proved by the
authors and others. We first consider the case a = 0, that is, norm inequalities
for the Hardy-Littlewood maximal operator. In [6] Theorem 1.2 was proved with
the stronger assumption that p, < oo, p(-) € LHy, and p( - ) is constant outside a
large ball. The more general result, but still assuming that p, <oo, was proved
in [4] and a simpler proof was given in [2]. A somewhat different version with the
LH , condition replaced by a weaker averaging condition at infinity was proved
by Nekvinda [19]. The full result was proved in [8] (see also [9]).

In the case a > 0 and p, = n/a this result is new. Estimates for fractional
maximal operators were first considered by Kokilashvili and Samko [14].
Theorem 1.2 when p, <n/a and p(-) € LH was proved in [2].

REMARK 1.5. — The log-Hélder condition 1/p(-) € LH is not necessary: see
the examples due to Lerner [16] and Nekvinda [20]. In [7] a very general ne-
cessary and sufficient condition for the maximal operator to be bounded was gi-
ven. However, in some sense the log-Hoélder condition is close to necessary: see
the example by Pick and Ruzi¢ka [21] and also the example in [4]. This, combined
with the relative ease with which they can be applied makes these continuity
conditions useful in practice.

We can also give a new proof of a weak type inequality that extends to the
endpoint case p_ = 1. It generalizes a result first proved in [2] in the case

P <n/a.

THEOREM 1.6. — Given a, 0 <a<mn, let p(-): R" —[1,00] be such that
1/p(-)e LHand 1 =p_ <p; <n/a. Then

(1.1) Stuop tlx o, raystyllgey < CllF Nl pey-
>
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Our proofs of Theorems 1.2 and 1.6 have several features that we want to
highlight. First, each proof uses the machinery of Calderén-Zygmund cubes,
which are of great importance in harmonic analysis on the classical Lebesgue
spaces. This machinery was not used in proving earlier versions of Theorem 1.2
(though some of it was used in [7].) We believe that these techniques will be
applicable to other problems in variable Lebesgue spaces.

Second, our proofs, especially in the case p, <n/a, are simpler than previous
proofs. The proof in [2] for the Hardy-Littlewood maximal operator depends on
the following estimate: if || ||, < 1, then there exists a function S(-) € L' and
C > 0 such that for every ball B and x € B,

p() p-
(12) (f ol dy) <C (f Fappr- dy) +S@).
B B

The proof of this inequality required considering separately the averages of
Fxq 51y and fx( s <1y, and then subdivided the argument further by considering
the distance of the ball from the origin in comparison to its radius. Our proof still
requires that we divide f into its large and small parts, but the Calderon-
Zygmund decomposition provides the “natural” family of cubes on which to
consider the averages. Furthermore, the structure of the proof makes clear the
role played by the log-Hdolder continuity conditions: the LH( condition is ne-
cessary only on the set where f is large, and the LH , condition on the set where
f is close to zero.

Third, our proof gives a unified treatment of the Hardy-Littlewood maximal
operator and the fractional maximal operator. The proofs in [2] for the case a > 0
required first proving that the Hardy-Littlewood maximal operator is bounded
on LY, and then using this fact to prove that the fractional maximal operator
mapped LP(-) into LY(-). In the classical Lebesgue spaces, however, it is pos-
sible to give a single proof that works simultaneously for all a, 0 < a <n. This is
well-known; the proof is sketched in Duoandikoetxea [11]. This proof uses weak
type inequalities and Marcinkiewicz interpolation, and so cannot be used in the
variable Lebesgue spaces. In [2] the authors conjectured a generalization of (1.2)
that would yield unified proof: if p,,(f) <1, then there exists constant C and
S € L' such that

M, f@)" < CM,(f(HIPYP)@)T + S).

However, this conjecture remains open.

The rest of this paper is organized as follows. In Section 2 we gather together
some preliminary results about variable Lebesgue spaces and about Calderon-
Zygmund cubes. For complete information about these spaces we refer the
reader to the papers by Kovacik and Rakosnik [15] or Fan and Zhao [12]. In
Sections 3 and 4 we prove Theorem 1.2. The proof of the full result contains
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many technical details that obscure the overall argument, so we first prove it in
the special case that p, <n/a. Doing so results in some repetition, but it allows
us to make clear the basic ideas of our argument and to highlight the relative
simplicity of this proof compared to earlier proofs. Finally, in Section 5, we prove
Theorem 1.6. Throughout the paper, C will denote a constant that may depend
on # and p(-) but which may otherwise change value at each appearance. In
order to emphasize that we are dealing with variable exponents, we will always
write p(-) and q(-) for exponent functions; p and ¢ will denote constants.
Occasionally there will be minor differences in the argument depending on
whether a = 0 or a > 0. We will highlight these but will generally give full details
only for the latter case, as the former case is usually easier.

2. — Preliminary Results.

The following lemmas are some key technical results needed in our proof. We
have gathered them here to make our overall approach in the proofs clearer.

The first is the analogue of the monotone convergence theorem; in the more
general context of Banach function spaces it is referred to as the Fatou property
of the norm. (See Bennett and Sharpley [1].)

LEMMA 2.1. — Given a non-negative function f € L"), suppose the sequence
{fn} of non-negative functions increases pointwise to f almost everywhere.
Then || fn |l ) increases to || f1],.)

Proor. — We may assume ||f]|,., > 0 since otherwise there is nothing to
prove. Fix 7, 0<Z<||f||,,; then by the definition of the norm,

)\ .
t<not/n= [ (") des il
‘R”\ro,p(-)
: @\
—pm [ () e A
R"\Qu p(y

= lim pp(fa/2)-

Therefore, for all N sufficiently large, p,,(fy/4) > 1,50 | fn ||, > 4. Since we can
take any such /, the desired conclusion follows at once. O

To apply this lemma we need the following fact which is part of the “folklore”
of harmonic analysis. We include its short proof.
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LeEMMA 2.2, — Given a, 0 < a<n, and a sequence of non-negative functions
fn tncreasing pointwise a.e. to a function f, then the functions M, fx increase to
M, f pointwise.

ProoF. — It follows at once from the definition that the sequence M, fy is
increasing and M, fy(x) < M, f(x) for all x. Now fix x and K such that K <M, f(x).
Then there exists a cube @ > x such that

K<lQ" ffapdy = lim 1Q" @y < lim M, fy()
Q Q

The desired conclusion follows immediately. O

The next two lemmas are the only places we need to use the assumption that
the exponent function is log-Hélder continuous. The first appeared in [6] with
balls in place of cubes. The second is a special case of a result that appeared in [2]
(see also [4, 5]). For the convenience of the reader we include their short proofs.

LEMMA 2.3. — Given v(-) : R" — [0, 00) such that v(-) € LHy and v < oo,
there exists a constant C depending on n and the LH, constant of v( - ) such that
given any cube Q and x € Q,

|Q|T(90)*T>(Q) <C and |Q|T7(Q)*T(%) <C.

Proor. — We prove the first inequality; the proof of the second is identical. If
UQ) > 2y/n)"", then
|Q‘T(x)*h(Q) < (2\/7;)%(7%*"2) =Cn,r(-)).

If é(Q)<(2\/7—L)_1, then for all ¥ € @, |x — y|<1/2. In particular, since (- ) is
continuous, there exists y € @ such that »(y) = »,(Q). Therefore, by the definition
of LHO,

|Q|’I‘(ﬂf)—1‘+(Q) S (n71/2|x _ y|)*7b‘7’(9€)*7‘(?/)|

1/2y _ _
O

LEMMA 24. — Let v(-): R" —[0,00) be such that v(-) € LH., and let
Rx) = (e + |9c|)’N , N > n. Then there exists a constant C depending on n, N and
the LH ., constant of v( - ) such that given any set E and any function F' such that
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0<F(y)<lforyck,

(21) f Fy)Wdy <C f F)"™ dy +C f Ry dy,
E E B

22) [Fay®dy <c[Foy®ay+c[ Ry ay.
E E B

Proor. — We will prove (2.1); the proof of the second inequality is essentially
the same. By the LH ., condition,

R(y) """ = exp (Nlog (e + [y)[r(y) — 7(o0)]) < exp (NC).
Write the set E as EiUE;, where Ei={xe€FE:F(y) <R(y)} and
E; ={x € E:R(y)<F(y)}. Then

[Fwy® dy < [ R dy
E, E,

< [ Ry R(y) ") dy < exp(NCw.) [ Ry dy.
i 7

Similarly, since F'(y) <1,

fF(y)r(y) dy gfF(y)T(OO)F(y)—\V(y)—r(oo)l dy
E; Es

< [F) ™ R(y) "0 dy < exp(NCw) [ F(y)"™ dy.
i FS

O

The last two lemmas give some basic properties of cubes. The first defines the
so called Calderon-Zygmund cubes. This result is well-known for a = 0—for a
proof see Duoandikoetxea [11] or Garcia-Cuerva and Rubio de Francia [13]. The
same proofs go through without significant changes for the case a > 0. (For
details, see [3].) Hereafter, given a cube @ and » > 0, let 7€) denote the cube with
the same center as € and such that /(rQ) = r4(Q).

LEMMA 25. — Fix a, 0 < a<n. Given a function f such that §|f )| dy — 0
Q

as |Q| — oo, then for each A > 0 there exists a set of pairwise disjoint dyadic
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cubes {Q;} such that
{w e R": M, f@) > 22"} c | 3@/,
J

and

Q" f 1@ de > 2.
&

REMARK 2.6. — The hypothesis on f is satisfied if it is bounded and has com-
pact support.
The final lemma is a clever application of Holder’s inequality.

LEMMA 2.7. — Given a, 0 <a<mn, and p,q, such that 1<p<mn/a and
1/p —1/q = a/n, then for every cube Q and non-negative function f,

s p/q
o frwds < ( [reras) ( frwadd)
Q Q Q

PRrOOF. — When a = 0 this reduces to an identity, so we only need to consider
the case a > 0. By Hoélder’s inequality with exponent n/ap > 1 and then with
exponent p,

|Q|a/n ff(ﬁﬁ)d% _ |Q‘a/n ff(x)up/nf(x)lfap/n da
Q Q

ap/n 1—ap/n
< IQ“/”(ff(x)dx> (ff(ac)dx)
Q Q
a/n 1—ap/n
< ( f Flp dx) ( Jf f@) dac) !
Q Q
T /
- ( [ray doc) (f f@) dac)p q
Q Q

REMARK 2.8. — As a corollary to Lemma 2.7 we have that
M, f@)" < || £157 Mf oy
Hence, the fact that M, : LP — L7 follows immediately from the fact that the
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Hardy-Littlewood maximal operator is bounded on L”. In some sense, our proof
of Theorem 1.2 is a generalization of this approach.

3. — Proof of Theorem 1.2: The case p, <n/a.

Since p. <n/a, we have that p,, ¢, <oco. Therefore, we will use our hy-
pothesis on p( - ) in the equivalent form that p(-), q(-) € LH.

We begin the proof by making some initial reductions. First, clearly we may
assume that f is non-negative.

Second, we may assume without loss of generality that f is bounded and has
compact support. For if we can prove the theorem in this case, then given any
non-negative f € LV, let fyy = min (f, N)y,;<n;- Then fy increases to f as N
tends to infinity, and the general result follows from Lemmas 2.1 and 2.2. This
assumption allows us to apply Lemma 2.5 to f.

Third, by homogeneity we may assume that || /]|, = 1. Then

Py (f) = f F@ey® de < 1.

R"

Decompose [ as fi +fz2, where fi =fxipw>1y and fo =fx(mrw<1); then
/)p(A)(fi) < ||fi||p(,) < 1. Further, since M, f < M, fi + M, f5, it will suffice to show
that for 7 = 1,2, that ||Mafi||q<,) < C(n,p(-)); since g, < oo it will in turn suffice to
show that

Pq(')(Mafi) :erlﬁ(x)Q(x) dex S C
R"
The estimate for fi. Let A = 22"~ and for each k € 7 let
Qp={xeR": M,fi(x) >Ak}.

Since f; is bounded and has compact support, by Lemma 2.7, M, f; € L*, so
M, fi(x)<oo a.e., and R"” = [J Q2 \ Q.1 (up to a set of measure 0). Further, for
k

each k we can apply Lemma 2.5 to form the pairwise disjoint cubes {Q]’?} such
that

o.cJsqF and Q" fA@de > A4,
J Q;_c

Define the sets Ej’C inductively: E¥ = (@), \ Qi1) N3Q%, EE = (2 \ Q)N
3QN \ E¥, E% = ((Q1 \ Qi) N3QE) \ (E¥ UEE), ete. The sets E]’“ are pairwise
disjoint for all j and & and Q;, \ 21 = U E}.

J
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We now estimate as follows:

[Mfi@@dw =3 [ Mofiey™ de

R" b Qn\Qpn

(31) < Z f [Ak+1]q(9€) dax

ko \Qpn

2q.9q.(n—a) ka/n @
< A%3em0 N L3RI F A dy ) da.

kI g 3Q)

To estimate the integral in the last sum, we apply Lemma 2.7 with exponents
Pk = p-BQY) and gj = ¢ BQY):

B i/
BQfI" J[fl(y)d?fﬁ ( ffl(y)”-fk dy)‘ | < ffl(y)dy> .

3Q! 3Qf 3QF

Since f; = 0 or f; > 1 pointwise,

[Awray < [ g ay <1.

3! R"
Therefore,
q(@) i)/ qx
S [ (i@ frwar) <X [( frwar)
IC] El]‘ 3Q;” IC] El]r 3Q§C
P-q(@)/qj
<> ( f @y dy) d.
BT B s

Sinece ¢q(-) € LHy and g, <oo, by Lemma 2.3 there exists a constant C de-
pending on ¢( - ) and » such that

BQII" < CI3QfI ™.

Further, arguing as before,

[rwyrore-ay < [ gy dy <1.

Q) i
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Therefore, since for « € E;‘ C SQ;“, q(@) > Qs

—q@)/qjx
> [( fawrr dy)p T

A

q@)p—/ gk
<c> | |3Q§-“|p( [ yor- dy) d

EE i
P
o) —p- (@)/p-
<oy [isare ( [awror i) as
7y i

< CZ _[M(fl( . )20(-)/1L Yee)P- da

k.j g
J

< C[ MA@ d.

R"

Since p_ > 1, M is bounded on L”-. Hence,

<C f AP de

JP\"
<C.

The estimate for f;. We argue exactly as we did above for f1, forming the sets
Q;, and EJ’C using Lemma 2.5. We thus get

q(x)
[Moaras <Y [ (@ faway)
R" k.j Ej/u 3Q;_c

We claim that

(3.2) F = 3@ Jf fpdy < 1.
3Q

If a = 0, this is immediate since f; < 1. If a > 0, then by Hoélder’s inequality and
since p(y) < n/a,

a/n a/n
F< ( f fz(y)"/“dy> < ( f fz(y)"(y’dy> <1

o i
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Therefore, by Lemma 2.4 with R(x) = (e + |x) ™",

S [ (s faw a)

o1 5 5

<cy” f (|3Q_;?a/” J[fz(y) dy)q(oo> de+CY fR(x)q<°°> de.

5 B 3 b B

We can immediately estimate the second term: since g(co) > 1 and the sets E]’C
are disjoint,

> [R@™ de < [ R@"™ dw < C.
ki g R

To estimate the first term we apply Lemma 2.7 with exponents p(co) and q(oo):

) p(c0)/q(0)
( fewar)

1
e
3RS ][fz(y) dy < ( f fz(y)p(‘”)y q
3Q 3Q 3Q
To estimate the first integral on the right-hand side, we again apply Lemma 2.4
with R(x) = (e + |x) ™"

f L™ <C f L@Pdy +C f Ry dy < C.
& ! !

Since p(co) > 1, M is bounded on L, Therefore,

S [ (s frwa) a<ey [( frwa) e

“I B 5 B g
<CY [ Mp@™ dx
k.j gk
J

<C f M@ da

R"
< C[ flay™ do;
R"
since f> < 1 we can apply Lemma 2.4 again to conclude
< C [ ey da+C [ Ry da

R™ R"

<C.
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4. — Proof of Theorem 1.2: The general case.

The proof of the general case has much the same outline as the proof when
p+<n/a given in the previous section, but it is made more complicated by the
technicalities needed to deal with the fact that the exponent function q(-) is
unbounded and may in fact equal co on a set of positive measure. In the proof
that follows we attempt to strike a balance between brevity and completeness,
and we will refer back to the proof in Section 3 for those details which remain the
same.

Arguing as we did before, we may assume without loss of generality that f is
non-negative, bounded, has compact support, and that || f|,,., = 1. Then

o= [ F@de+|fl,,,) <1

R™\Qu ()

Decompose f as fi +f2 + f3, where
A :f}({x;f(x)>1},
fo =Flwern . orw=1ys

fs=rx {2€Qu poyif @)<1}

(Note that f3 # 0 only if a =0.) Then supp (fi) C R" \ Q. p¢) (up to a set of
measure zero), and P 5 <|fll 20 < 1. We will show that there exist constants
2i = Ai(n,p(+)) > 0 such that

poyMafi)3) < 1.

In each case, we will write the constant 1; as a product of constants needed at
different stages of the proof.

The estimate for f;. Let /lfl = a10;7;. Then

Pey(1 By Mof1) = f [01/))1V1Mafl(90)]q(x) dx + a1y [|Mafill Lo
R\ gy

o.q())”

We will show that each term on the right is bounded by 1/2. To estimate the first,
let A = 227—¢ and define

Q= {2 € R"\ Qy40) : Mo fil@) > AF}.

Since M, fi € L™, M, fi(x)<oo a.e., and so R"\ Q) = U2k \ Qi1 (up to a
k

set of measure 0). By Lemma 2.5 there exist pairwise disjoint cubes {Qj’?}
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such that

o c|Js@) and Q)" ffl(ac) do > AR,
J Q;_r

and we can form sets E’j’“ that are pairwise disjoint for all j and k and such that
e\ Qi1 = UE]’?. Now let a; = A~23" and estimate as follows:
J

f [onfyuMofi@1"” dw:Z _[ la1 171 Mo i @) dae

R\ Qo 409 k 0\

o <X [

k Q \Qk+1

q(x)
SZ](ﬁlVﬂSQﬂa/n fﬁ(y)dy) de.

k.j gk y
E.f 3Qj{

To estimate the integral in the last sum, we apply Lemma 2.7 with exponents
Dik = p_(SQ]’?) and gy, = q_(SQ;“). (Since E’]’C C Q) C R"\ Q4 4), both of these
exponents are finite.) This yields

11

Py Pin/ Gk
3Q1"" f iy < ( [ A= dy)' | ( fﬁ(y)dy)

& & &

Since fi = 0 or f; > 1 pointwise and supp (f1) C R" \ 2« ,),

f )P dy < f A@PY dy < po(f) < 1.

3Q;‘ R™"\Qx p
Therefore,

pram q(x)
S [ (poset” f ) dy) s
b g 3

<> [ (n( faw) dy)wq’jm &

RN

S Zf(ﬂﬂl( ffl(y)pjk/pf d?/>p/qjk)q(x) da.

BRI
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Define the exponent function »(-) =1/q(-). Then »(-) € LHy, . <1, and
m(SQ;?) = 1/gqji. Therefore, by Lemma 2.3, we can choose f; <1 so that

/))1|3Q;§|*P—/‘ka < |3Q§_C|*P—/Q(m).

Further, arguing as before,

fﬁ(y)P(y)/pf dy Sffl(?/)p(y) dy < 1.

9 9

Therefore, since x € E;C C SQ]’?, q(x) > gjr, and assuming for the moment that

yl < 17
-/ 9
S [ (b o ap) ) e

b B 3

q@p-/qj
< Z f|3Q§c|—P7 <y1ff1(y)i)(y)/ﬁ dy) dx

o &
P
<y f 13Q¢( <y1 f iy 0/p- dy) dac
i 3

< [ A MA@ do

k.j gk
i

< f P MCAC PP Y- da.

R™

Since p_ > 1, M is bounded on LP-, so we can choose y; <1 such that

1 1
[ A MOy do <5 [ Ay < 5.

R" R"

We will now show that a1ﬁ1y1||Maﬁ||Lx(Qw‘)) < 1/2. Since a1, < 1/4, it will
suffice to show (after possibly taking y; smaller than the value chosen above) that

(4.2) niMafill g o) < 2-

oc.q('))

Fix & € Q. 4). Since supp (fi) C R" \ Q. 4), when computing M, fi(x) we
can restrict ourselves to cubes @ > x such that |Q N Q2 \ 2 4| > 0. In particular,
there exists such a cube that satisfies

M. fi@) <2Q""  fiwdy.
Q
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Fix r, ¢_(Q) <7 < oo; then by the continuity of 1/q( - ) there exists &, € @ \ 2w 40)
such that q(x,) = ». If we now repeat the argument above, beginning with the
estimate of the integral in (4.1) and replacing p_ with 1, we see that for y; > 0
sufficiently small (but not depending on our choice of r),

qar)
a/n d ) p(y)d el
(V1|Q| 6Jffl(y) Y <ff1(y) y < |Q|

Therefore, we have that

Q" f fidy - 1Q <1
Q
Since this is true for all » large, we can take the limit as » — oo to get

nM.fi@) < 21Q"" £ iy <2.
Q

Since this estimate holds for almost all x, we have proved inequality (4.2). Thus
we have proved that p,., (a1, M. f1) < 1.

The estimate for fo. Let 25" = agffy)502. Then

pur asBrre0eMafe) = [ [oeBeradoM fo(a))™ do + asfyada | Mofoll o
R"\ R4 40)

xq()

We will again show that each term is bounded by 1/2. The second is very easy to
estimate. Since M, : L"/* — L> with constant 1, and since f> < 1,

a/n
azﬁzyzézHMafZ”L"C(qum) < a2ﬁ27252( ffZ(y)n/a dy)

R™

a/n
< az/)’27252< f fe(y)P? d?/) < a0y ()" < azfayade.

R"

As we will see below, agflsysds < 1/2.
To estimate the first term, we form the sets Q, Qk and E’“ as before using
Lemma 2.5. If we set ag = A~23%"", and argue as we dld for fl, we get

q@)
[azﬁzyzézM F@I d < Z i <ﬁz)’252|3Qk ) dy) da.

W\Q k,j Ek 3Qk

At this point we consider two cases: g(co) = oo and (o) < oo. For both cases, we



A NEW PROOF OF THE BOUNDEDNESS OF MAXIMAL OPERATORS, ETC. 167
make use of the fact that

F =i f ppdy <1
3Q

this is proved exactly as we did in Section 3, inequality (3.2).
The first case is very easy. In this case, since 1/q(-) € LH,

q(@) > CMog (e + |x)),
and so we have that (since the sets Ef are pairwise disjoint)
q() .
S [ (st ffay) " do < [ (o5 do < 172,
k.j E;.‘ SQ;‘ R"

where the last inequality holds if we fix fy7,02 > 0 sufficiently close to 0.

We now consider the more difficult case when g(c0) <oo. Define go(y) =
L)’V if y € supp(fz) € R" \ Qa0 (), and set it equal to 0 elsewhere. Thus we
have to estimate

) q(@)
S [ (o fo ™0 ay) " a.

kB i

We first estimate the integral by applying Lemma 2.7 with exponents p(co)
and q(o0):

3Q1"" f ga)"" ay

3Q]
mEImTCy p
< ( fgz(y)li(oo)/ﬁ(y) dy) < fgz(y)l/li(?/) dy)

9 Y

(00)/q(o0)

Since gz(y)p(“‘) <1land1/p(-) € LH., we can apply Lemma 2.4 to conclude

f g2y dy < C f g2 dy +C f R(y)"/7> dy,

where R(y) = (e + )™, and N is chosen so that the second integral converges
and in fact so that

[ R ay < [ Rap" ay <1.
R R"
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(The reason for this choice will be made clear below.) Since we also have that

f g2(y) dy < f HyyP? dy <1,

3Q% R

we can choose ff; > 0 so that

q(ﬂf)
S [ (o™ fon™ ay) s

k,j EA 3QA

Since the quantity in square brackets is less than 1, and since 1/q(-) € LH,, we
can again apply Lemma 2.4 to conclude that we can choose 7, > 0 such that

) p(c0)q q(a)/g(co0)
> yﬁ{( f o d@/) ] dx

k.j B 3Q!
(o)
1
<y f 52< Jf go(y)/PY dy) da + f R()Y 1% e
k.j Ek 3Qk R™

< [ Mg FPOP ™ i 4 ¢
R"

The maximal operator is bounded on LP since p(co) > p_ > 1, and so we can
apply Lemma 2.4 a third time to conclude that

fM(gz(')l/m‘))( )P der < Cfgz )/P@) g

R™ R™

< Cfgz(ac) dz: + ch(x)l/P<°°> dz < C.

R R

Therefore, we can choose ds > 0 so that

[ o:Mga( PO ds +
R?I

@\H
w\r—
S =
l\').\r—a

This completes the estimate for f5.

The estimate for f;. Recall that by the definition of f; we only need this estimate
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when a = 0, so p(-) =q(-). Let a7 = as < 1/2. Then

Py (asMf) = f lasMfs (@)1 dac + as||Mfs]| <o
R\ 25 0

3<‘I’(

We will show that each term is less than 1/2. To estimate the second, since M is
bounded on L* with constant 1,

L\'.)IF—‘

w3 Mpsllr~o. ) < 03l Bllp~ < 03 <

To estimate the first term, we consider two cases: p(co) = oo and p(oo) < oc.
In the first case we argue exactly as we did before in the estimate for f;. Since
1/p(-) € LH, p(x) > Cog (e + |x|). Since f3 < 1, Mfs < 1. Therefore, for as
sufficiently close to 0,

—1
(s der < [ a8 e <
RN\t R

[\'.JIP—l

Now suppose p(co) <oo. Then, since Mf; < 1, by Lemma 2.4,

lasM#s ()P dze < as f My ()PP

R™\ Q0 ) R™\Qo p)
< Cag f Mfs(2)"™) dc + Cas f R(x)7) d,
R™\ Q40 ) R\ p)

where R(x) = (e + \ac|)_N , Where N is so large that the last integral is less than 1.
Since p(co) > p_ > 1, M is bounded on LP, and since f3 < 1 we can again apply
Lemma 2.4 (with the same function R) to conclude that

Mfy(2)"™ dae < f f(@)P da

R" \ro,p(-) R
< cff3 @ gy 1 C f R(x)/"™) de < C.
R Rn\‘ro,p(-)

Combining these estimates, we see that we can choose a3 > 0 such that

f lasMfs ()P dae < %

R™"\Qu ()
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5. — Proof of Theorem 1.6.

The proof is nearly identical to the proof of Theorem 1.2 and we sketch the
details. We begin by making the same reductions as before, and writing
f =fi +fo +f3. Then for fixed ¢t > 0,

{x e R" : Mf@) >t} C | J{w € R" : Mfi@) > 1/3} = @

Therefore, it will suffice to show that for each i, ¢[|x, |, < C, and in turn it will
suffice to show that for some a; > 0,

<1

0g() =

potaitza) = [ 10t dw + aitl gl
Qi\Q2u 40y

As before, for each 7 we will show that each term on the right is bounded by 1/2
for suitable choice of a;.
The estimates for the second term are immediate. For all 1,

ait|lxe, ||L°<(Qm(.)) < ;|| Mo fi ||Lx(s2m,q(,))7

and the bounds on the right-hand side given above did not depend on the fact
that p_ > 1. Since the other hypotheses hold, the same proofs yield the desired
estimates.

To estimate

f [(li t] 4@ dx

Qi\240.40)

we have to avoid using the Hardy-Littlewood maximal operator, since our hy-
potheses no longer guarantee that it is bounded. We apply Lemma 2.5 to find
disjoint dyadic cubes {Q;} such that

t

2 cJsq and Q1" frdy > 2
J

Q
Then we can find disjoint sets £; such that £; C 3Q; and Q; \ Q. 4, = UE;.
J

Now if ¢ = 1, we argue as we did in the estimate of f; in the previous section,
replacing 3QF by @ and using the fact that p =1 to get

[ wtrde <3 [ fA@rY ay e

21\ 20 40) J B Q
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Since E; C 3Q; and the cubes @); are disjoint, we can choose y; > 0 so that

Z f " J[fl(y)p“’) dy dw < z]:% é[ APY dy < % f ALY dy < %

iEQ R"

If 1 = 2, the estimate when g(co) = oo is exactly the same as in the estimate
for f> above. When ¢(co) < oo, then we can argue as before to get that

p(0)
f [agt]q(w) da < zj:f§2< J[gg (y)””(y) dy) dax +%

22\ 2s0,90) E; Q&

< f52 ’ gz(?/)p( )/p(y) dy dx : §f5292(y)p( )/p(y) dy 3
J E e R"
J Q/

At this point we can repeat the end of the proof and choose d2 > 0 such that right-
hand side is bounded by 1/2.

Finally, if 7 = 3, we may assume as before that a = 0. In this case, since f3 < 1,
Mfs <1, so £3 is non-empty only if ¢t <3. If p(co) = oo, then

f a3t dae < f 3 da,

25\ Qoo py Q3\ Qo0 )

and we can repeat the argument for the estimate of f5 given above.
If p(co) < o0, let ag = f5/3. Then arguing as before, by Lemma 2.4,

f lat]”® dc < f it/3]P@ das

2\Q0 ) 23\ Q0 ()

[N

Q3
where the last integral is at most 1. Since p(co) > 1, by the weak (p(c0), p(c0))
inequality for the maximal operator and again by Lemma 2.4,
f [t/37 d < C f F@P de < C f F@P® dz 4 C f R(@)"P™ dee < C.
fo) R" R" R"
Therefore, we can choose a3 = f§3/3 > 0 such that

1
f [t dx < 3.

03\990,17(-)
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