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Asymptotic Formulae for
Bernstein-Schnabl Operators and Smoothness

FRANCESCO ALTOMARE (*)

dedicated to Professor Paul L. Butzer
on the occasion of his 80th birthday

Abstract. — Of concern are Bernstein-Schnabl operators associated with a continuous
selection of Borel measures on the unit interval. With respect to these sequences of
positive linear operators we determine the classes of all continuous functions ver-
ifying a pointwise asymptotic formula or a uniform one. Our methods are essentially
based on a general characterization of the domains of Feller semigroups in terms of
asymptotic formulae and on the determination of both the saturation class of
Bernstein-Schnabl operators and the Favard class of the relevant Feller semigroup.

1. — Introduction.

Consider the sequence (B,,),>1 of Bernstein operators on C([0, 1]). It is well-
known that, if a function » € C([0,1]) is differentiable in a neighborhood of a
point x € [0, 1] and if, in addition, it is two time differentiable at x, then

(1 —x)
2

moreover, if u € C?([0,1]), then the limit above is uniform with respect to
x € 0,1].

The main aim of this paper is to determine both the class S([0, 1]) of those
functions u € C([0,1]) for which there exists v e C([0,1]) such that
%11&10 n(By, (1) —u) = v pointwise on [0,1] and the class 2([0,1]) of those func-

u' (x);

nlgrolo n(B,w)(x) — ulx)) =

tions u € C([0,1]) for which there exists lim n(B,(u) — ) uniformly on [0, 1].

In fact we deal with the above mentioned problems for the more general
sequences of Bernstein-Schnabl operators which are an interesting general-
ization of Bernstein operators and which furnish, other than new general ap-

(*) This work has been partially supported by the Research Project “Real Analysis
and Functional analytic Methods for Differential Problems and Approximation
Problems”, University of Bari, 2008.
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proximation processes for continuous functions, also some useful tools to ap-
proximate the solutions of the initial boundary value problems associated with a
class of degenerate diffusion equations on [0, 1] ([1], [2], [3], [12], [17]).

Our main results (see Section 5) state that S([0, 1]) coincides with the linear
subspace of all functions u € C([0,1]) N C%(]0,1[) such that Alin& a(@)u’(x) =
xhj{l, a(e)u” (x) = 0, a being a suitable continuous function on [0, 1%], vanishing at 0
and 1 (a(x) = x(1 — x)/2 in the case of Bernstein operators) while ¢/([0, 1]) coin-
cides with the linear subspace of all functions u € C([0,1]) N C?(]0,1[) whose
second derivative is bounded on ]0, 1[.

The proofs are essentially based on a general characterization of the domain
of Feller semigroups in terms of asymptotic formulae and on the determination
of both the saturation class of Bernstein-Schnabl operators and the Favard class
of the Feller semigroup generated by the differential operator associated with
them which is of the form Au = au” coupled with Ventcel’s boundary conditions.

As we explained before, our results apply also for Bernstein operators
showing some new properties of these operators together with some hold ones.

2. — Asymptotic formulae for Bernstein-Schnabl operators.

Throughout the paper we shall denote by C([0, 1]) the Banach lattice of all real
valued continuous functions on the interval [0, 1] endowed with the sup-norm
|l - || and the natural pointwise ordering. For every x € [0, 1] we shall denote by
& the point-mass measure concentrated at x, i.e.,

0 if xeB,
ex(B) := { 1 if w¢B, for every Borel subset B of [0,1].

The symbol 1 stands for the constant function 1 and for every =n > 1,
e, € C([0,1]) denotes the function e, (¢) :=t" (0 <t < 1).

A continuous selection of probability Borel measures on [0,1] is a family
(4)o<z<1 of probability Borel measures on [0,1] such that for every
f € C([0,1]) the function

1
(2.1) o [ fiu,
0
is continuous on [0, 1]. Such a function will be denoted by 7'(f), i.e.,
1
2.2) T(f)(x) := f fdu,, (0<z<1).
0

The operator T : C([0,1]) — C([0, 1]) is positive (hence continuous) and 7(1) = 1
(and hence ||T|| = 1).
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From now on we shall fix a continuous selection (u,)o<;<1 of probability Borel
measures on [0, 1] satisfying the following additional assumption:

1

2.3) f erdp, =, O<w<l)
0

(i.e., T(e1) = e1) and
(2.4) U, # & for every 0<ax<1

(i.e. 22 < T(ez)(x) for every 0 <x <1).
Setting

1
(2.5) a(x) = % (T(e2)(x) — xz) :% (bf esdy, — x2> 0O<x<),

we then have that a € C([0,1]), a(0) = a(1) = 0 and

x(1 —x)
2

For everyn > 1, consider the positive linear operator B,, : C([0, 1]) — C([0, 1])
defined for every f € C([0,1]) and x € [0,1] by

(2.6) O<alx) < for every 0<x<1.

B = [ (P awn, e
[0,11"

f...ff(u)dﬂx(%l)“'dﬂx(xn)7
0 0

n

2.7

where £ denotes the tensor product of yx, with itself n-times.

B, is called the n-th Bernstein-Schnabl operator associated with the selection
()o<z<1-

This sequence of operators was first introduced by Schnabl ([17]) in the
context of sets of probability Radon measures on compact Hausdorff spaces and,
subsequently, it was investigated by Grossman ([12]), the author ([1]) and many
others in the setting of convex compact subsets (see [2, Chapter 6 and the re-
levant Notes and References]). More recently a rather complete analysis on the
operators (2.7) has been carried out in the paper [3] to which we refer in the
sequel without no further mention.

If we consider the selection of measures u, :=xeg + 1 —x)g (0 <2x <1),
then the operators B,, turn into the classical Bernstein operators given by

(2.8) By (f)(w) == zn:(;:) f(%) 21— )

k=0
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(see, e.g., [2], [10], [14]) for some relevant results on these important and in-
teresting operators).
Moreover in this case

x(1 —x)

(2.9) alw) = =

0<e<]

For other examples see [3] and [2].
Given x € [0, 1], consider the auxiliary function

(2.10) w ) =t—-= O<t<1),
Then for every n > 1
(2~11) B, (1) =1, B,(e1) = ey, Bn(l//x) =V,
and
2 C
(2.12) B =22 b < o,

where (' is a constant independent of n > 1.
Moreover, for every f € C([0,1])

(2.13) B.(HO) =f©) and B,(f)1) = fQ).

From [2, Theorem 5.1.2 and the subsequent Remark] it also follows that, if
f € C([0,1]), then for every x < [0,1]

(2.14) 1B(f)) — f@)] < 2 2a7(bx) “’(f ’ W)

where w denotes the usual modulus of continuity.
In particular, if f’ € Lip(M,1), ie., f' is Lipschitz continuous and
| f'@) — ') |< M |~y | for every z,y € [0,1], then

aM
(2.15) |Br(f)(@) — fl)] < 70(%).
In [3, Theorem 3.1] it was shown that, if u € C3([0,1]), then

(2.16) lim n(B,(u) — u) = au” uniformly on [0, 1].

Below we state some further asymptotic formulae. We shall denote by
C,%(]O, 1[) the linear subspace of all continuous functions on [0, 1] which possess a
bounded continuous second derivative on ]0, 1.

PRrOPOSITION 1. — Let u € C([0, 1]). Then
(1) 1f u 1s differentiable in a neighborhood of a point xy of 10,1[ and if, in
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addition, it is two times differentiable at it, then

(2.17) Jim (B, (w)(@o) — ulo)) = alwo)u” (xo).

(@) ifu € C2(10,1D), then

lim n(B,(u) —u) = au”
uniformly on each compact subinterval of 10,1[.

PrOOF. — (7). By the Peano form of Taylor’s formula we may consider a
function w : [0,1] — R such that lim w(x) = 0 and
X—Xo

W @ = uleo) + e m) + o @ ) + o) - )
for every x € [0,1, i.e.,
w'(xo) o

u = u(xo) + ' (@), + W, + a)l//io.

2

Therefore for any # > 1, on account of (2.11) and (2.12), it follows that
n(By(u)(@o) — ulito)) = alo)u’ (o) + nBy (s’ )(o).

Thus (7) will be proved if we show that lim nB,, (60%200)(900) = 0. To this end fix

¢ > 0 and choose ¢ > 0 such that | w(x) |< ¢for any x € [0,1],| x — a9 |< 6. Note
also that, if © € [0,1],]|  — 29 |> J, then (1) shows that

20 % ||so w'(x u” (x
o) |< I ||2 (o) (o)
| © — o | | & — o | 2
2%l wo) u”(xp)
< =: M.
STz 5 5 M;
Therefore
M‘
oyl < eyl + 5—4(’1//30
and, for » > 1, by (2.12)
MsC
nBy(wyy,) < 2eawo) + <52

which gives the desired result.
(71) Let [a,b] a compact subinterval of ]0,1[. If « € [a,b] and y € [0,1], by
Taylor’s formula there exists & in the interval I(x, y) having « and y as end points
such that
’I/L//(.')C)
2

u"(€) —u"(x)
2

@ u) =u@ +u' @y — )+ (y — o) + (y — a7
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Setting w,(x,¥y) := w, we then have
@ ) =@ @y - )+ Ly~ 0 + oy - o
and
4) | wu(,y) |[< M = S | u"(#) ] .

Since %" is uniformly continuous on each compact subinterval of 10, 1[, we also
have that

5) lim w,(x,y) = 0 uniformly with respect to x € [a, b].
y—w

Consider, indeed, J; > 0 such that [a — 61,0 + d1] C ]0,1[. Since %" is uni-
formly continuous on [a — J1,b + J1], for ¢ > 0 there exists 0 <dJ <J; such that
| u’(s) —u'(t) |< 2¢ for every s,t€fa—0d1,0+01],|s—1t|<d. Therefore, if
x €la,b] and y €[0,1],| x —y |< I, then I(x,y) C [a — d1,b+ J1] and hence
| oy, ) [< e

Given now x € [a, b], from (3) we infer that

u = u(@)l +u' (@), + v 2(90) WE + o, e

so that for any n > 1

B, (u)(x) = u(x) + %”(%)

+ By (wy(a, )‘//?C)(x)

Accordingly, to get the result it is sufficient to show that
lim 1B, (w, (@, )y2)@) =0

N—00

uniformly with respect to x € [a, b].

Consider therefore &> 0; then by (5) there exists 0 >0 such that
| w,(x,y) |< ¢ for every x € [a,b] and y € [0,1],| x — ¥ |< J. By (2.12) we may
choose v > 1 such that for n > v and x € [0,1]

ed?
<
) < Nk
where M is defined by (4). Note also that, if « € [a,b] and y € [0, 1], then
2e05(y) if lx—yl<o,

My < %wﬁ(y) if le—y|>

nB, (!

| (e, PE) |< {

so that, in any case,

M
| oy, W2 |< 2a9% + yu/i
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and hence for » > v and « € [a, b]

M
1 | By, (@, Y2 @) |< nBy(| o, (@, )y2 | (@) < 2enB, (y2)(@) + ?an(t//;ﬁ)(ac) <e
O
The previous result can be further refined.
Ifuc Cf(]O, 1[) we denote by A(u) the function on [0, 1] defined by
ae)u’(x) if O<x<l,
Au)(x) = .
0 if =01
Clearly A(u) € C([0,1]).

THEOREM 2. — If u € C2(10,1]), then
(2.18) lim n(B,(u) —u) = A(w) uniformly on [0,1].
n—o0o

PrOOF. — On account of (2.13) and Proposition 1, clearly lim w(B,(u) —u) =
n—00

A(u) pointwise on [0,1]. Therefore, in order to get the desired result, it is sufficient to
show that the sequence (n(B, () — u)),>1 is equicontinuous on [0,1]. This is cer-
tainly true on ]0, 1[ by virtue of Proposition 1, part (ii). As concerns the endpoints 0
and 1, setting M := sup |u"(x) |, clearly w' € Lip(M,1). Therefore by (2.15)

O<x<1

n|By(u) (@) — u@)| < 4Ma(x) (0 <x <1).

So, given ¢>0, choose 0<d<1 such that a(x) <e/dM for every
x €1]0,0]U[1 —9,1] and hence

n|B,(w) (@) — u@)| — n|B,w)(0) — u(0)] = n|B,w)(x) —ulx)| <&
and

1n|By(w)(x) — w(@)| — n|By(w)1) — u(l)| = n|B,(w) (@) — ulx)| <e.

In the last section of the paper we shall show a converse of Theorem 2.

REMARK 3. — When the operators B,,, n > 1, are the classical Bernstein op-
erators, then part (i) of Proposition 1 gives the well-known Voronovskaja formula
([19]). However, also in this particular case, part (ii) of Proposition 1 and Theorem
2 seem to be new.

3. — Generators of Feller semigroups and asymptotic formulae.

In this section we shall present a characterization of the domains of Feller
semigroups in terms of pointwise asymptotic formulae.
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Consider a locally compact Hausdorff space X which also is countably at in-
finity. As usual we shall denote by Cy(X) the Banach lattice of all real-valued
continuous functions on X vanishing at infinity, endowed with the sup-norm and
the natural pointwise ordering.

A Feller semigroup on Cy(X) is a strongly continuous semigroup (7'(¢));>¢ of
positive linear operators on Co(X) which also are contractive, i.e., || 7() ||< 1 for
every t > 0.

For more details on Feller semigroups we refer, e.g., to [11], [5], [18].

We finally recall that a linear operator B : D(B) — Cy(X) defined on a linear
subspace D(B) of Cy(X), is said to verify the positive maximum principle if
Bw)(xy) <0 for every u € D(B) and xy € X satisfying sup u(x) = u(xy) > 0
([5], [18]). X

If this is the case, then necessarily (B, D(B)) is dissipative, i.e.,

| 2 —Bu||> A ul for all w € D(B) and 4 > 0.

The next result is well-known but we present the (short) proof for the reader
convenience.

LEMMA 4. — Let (A, D(A)) be the generator of a strongly continuous semi-
group on a Banach space E. Then (A, D(A)) does not admit any (mon-trivial)
dissipative extension.

ProoF. — Let (B,D(B)) be a dissipative extension of (A4,D(4)), i.e.,
D(A) ¢ D(B) and B = A on D(A). Given a sufficiently large A > 0 and u € D(B),
since A1 — A is bijective (here the symbol I stands for the identity operator), there
exists v € D(A) C D(B), such that lv — Av = Au — Bu.

Since Al — B is injective on D(B), it follows that u = v € D(A). Therefore
D(B) = D(A). O

THEOREM 5. — Let (A, D(A)) be the generator of a strongly continuous semai-
group on Co(X) and consider a net (Li)fE ; of positive linear contractions on Co(X)
and a net ((,o(i))fE ; of positive real numbers such that limp(i) = +oc0 and
ljr? o) (L;(u) —u) = Au pointwise on X for every u € D(A).Ze
IS

Then D(A) coincides with the subspace of all functions u € Cy(X) for which
there exists v € Cy(X) such that ljr];l o) (L;(u) —u) = v pointwise on X.

1€

In particular, if u € Co(X) and lim p(2)(L;(u) — u) = 0 pointwise on X, then

u € D(A) and Au = 0. el

ProoF. — Denote by D(B) the subspace of all functions u € Cy(X) for which
there exists v € Cy(X) such that l_irgl o(1)(L;(u) — u) = v pointwise on X and con-
(S
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sider the linear operator

B(u) = limp()(Liw) —w)  (u € D(B)).

By assumption D(A) ¢ D(B) and B = A on D(A). On account of Lemma 4 to
get the result it is sufficient to show that (B, D(B)) is dissipative.

In fact we shall show that (B, D(B)) verifies the positive maximum principle
and, to this end, fix u € D(B) and xy € X satisfying sup u(x) = u(xy) > 0

reX
Since X is countable at infinity, we may choose an increasing sequence (¢,,),,>1

of positive continuous functions on X having compact support such that
supg, =1 on X.

>1
““GivenieIandx e X , an application of the Riesz representation theorem to

the positive linear functional f —— L;(f)(x) on Co(X), shows that there exists a
bounded Borel measure 1, ; on X such that

L@ = [ flu;  (f € CoX.
X

Therefore, by also appealing to the Beppo Levi theorem, we get

Liu)e) = [ udp,; < u@o) [ supp,dp;
e e n>1

= u(wo) sup f P Ai, i < ulo).
n>1
X
In particular, B(u)(xy) = Lim p(i)(L;(u)(@o) — u(xp)) < 0 and this completes
the proof. el 0

COROLLARY 6. — Let (A, D(A)) be the generator of a Feller semigroup (T ()0
on Co(X) and fix u € Co(X). Assume that

(?) there exists a net (t(i))fE ; 10, +oo[ converging to 0 such that the limit

lim%w = € Co(X) exists pointwise on X.
iel t(2)
Then w € D(A) (and Au = v).

T@)u —u
t(7)
Au =0, i.e., T(tu = u for every t > 0.

In particular, if lir? =0 pointwise on X, then u € D(A) and
1€

Proor. — It is sufficient to apply Theorem 5 to the nets L; := T(#(7)) and
p@) :=1/t@) (@ € I). O
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We finally point out that the previous assumption (2) is satisfied, for instance,
TOu —u
t
additional hypothesis that X has a countable base, if the family (

= € Cy(X) pointwise on X or, under the
Tu — u) i
t >0
equicontinuous and pointwise bounded on X and, provided X is non compact, if
. Tulr) — wlx)
Hm t

Ascoli-Arzela theorem for the space Cy(X)).

if there exists the limit tlir(%

= 0 uniformly with respect tot € 0, 1] (apply a version of the

4. — The saturation class of Bernstein-Schnabl operators and the Favard
class of their limit semigroups.

Consider the differential operator A : Dy (A) — C([0, 1]) defined by

at)u”(x) if 0<x<l,
(4.1) A)(x) = {

if x =0,1.
on the linear subspace Dy (A) of all functions u € C([0, 1] NC%(J0, 1[) such that

(4.2) lin[r){ ate)u (x) = li“{{ at@)u(x) =0

The boundary conditions (4.2) which we have incorporated in the domain
Dy (A) are often called Ventcel’s boundary conditions.

The operator (4, Dy(A)) is the generator of a Feller semigroup (7(#));>o on
C([0,1]) (I8, Theorem 2]). Moreover, for every t > 0 and for every sequence
(k(n))y>1 of positive integers such that k(n)/n — ¢

(4.3) T(t)f = lim BX™f  uniformly on [0, 1]

(f € C([0,1D)([3, Theorem 3.5 and final Note]).

By the next result we determine the saturation class of Bernstein-
Schnabl operators and the Favard class of the semigroup (7'(¥))>¢ which
are, respectively, the linear subspaces of all functions f € C([0,1]) such

that supn||B J = lloo < + 00, resp. supw

o<t
[7, Sectlon 2.1]). Among other things, the characterlzatlon of the Favard class

reveals some “spatial regularity” properties preserved under the evolution
governed by the semigroup (7'())io.

However, apart its own interest, the next result will be fruitfully used to
obtain a complete characterization of functions verifying asymptotic formulae.

<+ oo (see, e.g.,
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THEOREM 7. — Given f € C([0,1]), the following statements are equivalent:
(1) There exists My > 0 such that for every x € [0,1] and n > 1

| Bn(f)(x) —f(%') |§ Mia@) .

n

(1) There exists My > 0 such that for every n > 1

M
| Buf =f o< =5
(112) There exists M3 > 0 such that for every t > 0
| TS —f [l < M3t

(w) f € CY[0,1]) and f' is Lipschitz continuous with some Lipschitz con-
stant M > 0.

If; in addition, a is concave, then statements (1)-(1) are also equivalent to
(v) There exists My > 0 such that for every t > 0 and x € [0, 1]

| TO()@) — f(@) |[< Matalx).
Finally, if one of the previous statements holds true, then
My =Mz =My | al=4M | a =M1 || a || -

Proor. — (2) = (#). It is sufficient to set Ms :=M; || a || -
(11) = (127). Forn > 1 and p > 1 we get

p—1
6)) Bif —f =Y BSlB.f -1,
k=0
so that
p—1
| Bof =f 1< 3 1 BEH I Buf =) l1< 2 e
k=0

Now, given ¢ > 0 and considering a sequence (k(n)),>1 of positive integers
such that k(n)/n — t, we obtain

I B50r 1<,

and hence || T@)(f) — f ||< Mat by (4.3).

. N . T —
(117) = (w). By definition, if 4 € Dy(A), then thr(g M

t
on [0, 1]. Therefore, given x € [0,1], since y2 € Dy(A) and y* € Dy(A), we get

o TOWD@) _ . TOWD@) — i)
t—0+ t t—0" t

= Awu uniformly

= 2a(x)
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and, similarly,
4
i TOWA@ _
t—0+ t
Moreover, by (4.2) and (2.11), 7(t)1 = 1 and T(¢)(w,) = w,, for every t > 0.
Therefore, the same proof of part (i) of Proposition 1 adapted to the family

(T(@))>0, shows that, if a function € C([0, 1]) is differentiable in a neighborhood
of a point ¢ of ]0,1[ and if, in addition, it is two times differentiable at it, then
. Tulxo) — ulwo)
m

tliw ; = a(xo)u” (a).

0.

We may then apply Theorem 1 of [4] to the sequence of positive linear op-
erators (T'(1/n)),>; and hence we obtain that f € C'([0,1]) and f” is Lipschitz
continuous.

() = (7). The result follows directly from (2.15).

Assume now that a is concave. Then B, (a) < a for every n > 1 ([16]; see also
[2, Theorem 6.1.13]).

(1) = (v). By assumption and by formula (1) above we get

p1 M,y 222 pM;
k—1 k—1
| BLf —f|< ;;:an (IBuf =11 an kEZOBn (a)STa

foranyn > 1and p > 1. So, ift > 0 and if k(n)/n — t, from the previous estimate
and from (4.3) the result follows.
(v) = (117). It is sufficient to set M3 := M,y || a || - O

REMARK 8. — In the case of classical Bernstein operators the equivalences
(i) & (11) & () are due to G.G. Lorentz ([13, Theorem 11, p.102]; see also [9]) and
the equivalences (i) < (iv) < (v) are due to C. A. Micchelli ([15, Theorem 3.2]).

As a consequence of the previous result we have an indication of some“spatial
regularity” properties which are preserved by the semigroup (7(¢));>0, i.e., by the
solutions of the corresponding evolution problem (see (5.1)). For other properties
preserved by the semigroup see also [3, Corollary 3.6].

COROLLARY 9. — Let f € CY([0,1]) with f' Lipschitz continuous. Then, for
every s > 0, T(s)f is continuous differentiable on [0,1] and its first derivative is
Lipschitz continuous.

ProoF. — For every t > 0 we get

| TOTS)f = TGS o<l T) [[I| TOS = f o<l TOS = f oo
and hence the result follows by applying Theorem 7 both to f and 7'(s)f. O
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The characterization of the Favard class as stated in Theorem 7 can be re-
formulated for a large class of Feller semigroups which implicitly are re-
presented by iterates of Bernstein-Schnabl operators.

Consider a € C([0,1]) such that

(44) a(0) =a(1) =0, O<a(x) for every O<ax<1
and
(4.5) ap :== Ssup _o® < + o0,

0<w<1 (1 —x)

and consider the differential operator (4, Dy (A)) defined by (4.1) and (4.2). By
[8, Theorem 2] (4, Dy (A)) generates a Feller semigroup (7'(?));>¢ on C([0, 1]).

COROLLARY 10. — The Favard class of the semigroup (T()):o s the linear
subspace of all f € C1([0,1]) such that ' is Lipschitz continuous.

Proor. — The function a := % € C([0,1]) vanishes at 0 and 1 and satisfies
0

O<a(x) < 2 — )

for every 0 <x<1.

By [3, Theorem 3.10] there exists a continuous selection (u,)o<y<1 0f
probability Borel measures on [0,1] satisfying (2.3) and (2.4) such that
1

1
alx) = 5 ( [ eady, — 2%) (0 <x <1). Therefore considering the differential
0

operator

Ao {&(m)u”(x) if 0<x<1,

if x=0,1.

and the relevant semigroup (T(t))tzo, by Theorem 7 its Favard class is the linear
subspace of all f € C1([0, 1]) such that f” is Lipschitz continuous. Since A = 2(1021,
clearly T(t) = T(2a0t) for every t > 0. Therefore the Favard class of (T'(¢));>¢ is
the same of that one of (T(t))»o and hence the result follows. O

5. — Converse results for asymptotic formulae.

Combining the results of the previous sections we shall characterize those
functions u € C([0, 1]) for which formulae (2.16) (or (2.18)) and (2.17) may hold.

Consider the linear operator (A,Dy(A)) defined by (4.1) and the Feller
semigroup (7))o generated by it. From Proposition 1 it also follows that

lim n(B,(u) —u) = A(u) pointwise on [0,1]
NnN—00



148 FRANCESCO ALTOMARE

for every u € Dy(A) and, finally, the Bernstein-Schnabl operators are positive
and contractive. Therefore Theorem 5 applies.

THEOREM 11. — Given u € C([0, 1]), the following statements are equivalent:
(@) There exists v € C([0,1] such that lim n(B,(u) —u) = v pointwise on
[0,1]. e
(i1) u € Dy(A),i.e. u € C%(J0,1]) and
lirglA ate)u (x) = lir}r)l+ alx)u(x) = 0.
. . T - . .
(i12) Thereexistsw € C([0, 1] such that thrérl+ W = wpointwise on [0, 1].
Moreover, if one of the previous statements holds true, then v =w = Au. In
particular, if lim n(B,(u) — u) = 0 pointwise on [0,1] or if tliI(I)l W =0
N—00 —0t+

pointwise on [0,1], then u is linear.
REMARK 12. — It seems to be worth stressing that the functions » € C([0, 1])

satisfying one of the previous conditions (i), (ii) or (iii) are the only ones for which
the following initial boundary value problem

OW (x,t) OPW(x, )
— - 7 >
o a(x) 92 O<x<l1, t>0,
(5.1) lim a(mw = lim a(ac)w =0 t>0,
20+ Ox? 1 Ox2
tlir(% W, t) = u(x) 0<x<1,

has a unique solution W : [0,1] x [0, +oo[— R which is given by

(5.2) Wi, t) = T(Hu(x) = lim BEy ()

(0 <x<1,t>0) where (k(n)),>1 is a sequence of positive integers such that
k(n)/n — t, and the limit above is uniform with respect to « € [0, 1].

This follows at once from the general theory of strongly continuous semi-
groups ([11]) and from the representation formula (4.3) of the semigroup (7'(¢))¢>¢
in terms of iterates of Bernstein-Schnabl operators.

We refer to [3] and to [2, Section 6.3.4] for several applications of re-
presentation formula (4.3) and for a discussion of a stochastic model from ge-
netics governed by (5.1).

A “uniform” counterpart of Theorem 10 is stated below. For Bernstein op-
erators this result can be also find in [6, p. 703] where, however, completely
different methods are used.
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THEOREM 13. — Given u € C([0, 1]), the following statements are equivalent:
(i) There exists lim n(B,(u) — u) uniformly on [0,1].
n—00

() u € C%(]O, 1]). (@)
(iii) There exists w e C(0,1] such that sup —— < +oo and

Tu —u 0<e<1 a(X)

lim = w uniformly on [0, 1].

t—0+ t

ProoF. — As regards the equivalence (i) < (ii), on account of Theorem 2 we
have only to prove that (i) implies (ii).
Under assumption (i) we get, in particular, that sup» || B,(w) —u || < + oo.
n>1

By Theorem 7, u € C'([0,1]) and %' is Lipschitz continuous. On the other hand,
by Theorem 10, u € C2(]0, 1[) and hence «” is bounded on 10, 1[.
The equivalence (ii) < (i7) is obvious. O

We finally point out that some of the results we have established in this paper
seem to be extensible to other sequences of positive linear operators acting on
continuous function spaces defined on a not necessarily compact interval. We
shall develop such an analysis in a forthcoming paper.
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