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Bollettino U. M. 1.
(9) II (2009), 105-134

Three Dimensional Vortices in the Nonlinear Wave Equation

MARINO BADIALE - VIERI BENCI - SERGIO ROLANDO
Dedicated to the Memory of Guido Stampacchia

Abstract. — We prove the existence of rotating solitary waves (vortices) for the nonlinear
Klein-Gordon equation with nonnegative potential, by finding nonnegative cylind-
rical solutions to the standing equation

1% _ 1N w?
—Au+——su+iu=9g(u), uweH R"), | —mdr<oo, M
lyl v [l

where x = (y,2) € R¥x RV N >k >2 1> 0and 2> 0. The nonnegativity of the
potential makes the equation suitable for physical models and guarantees the well-
posedness of the corresponding Cauchy problem, but it prevents the use of standard
arguments i providing the functional associated to (1) with bounded Palais-Smale
sequences.

1. — Introduction and main results.

In this paper we are concerned with the existence of vortices for the nonlinear
wave equation

1) Oy + W(y) =0,
where W' is (under the standard identification between C and R?) the gradient of
a C! potential function W : C — R satisfying W (e”y) = W(y), that is,

2) W) =V(w|) and W’<w>=V’<|w|>ﬁ for some V € C'(R; R).

Roughly speaking, a vortex is a solitary wave with nonvanishing angular mo-
mentum. A solitary wave is a nonsingular solution which travels as a localized
packet in such a way that the energy is conserved in time in the region of space
occupied by the wave. A solitary wave bears not only the energy

i 2 1 2
® £tw) = [ glowt =5 97 W) ax
R
but also the other integrals of the motion, such as the angular momentum

) M(y) = Re [ By (x x Vy)da,
R?
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which represent intrinsic properties of particles. In addition, the solitary waves
of (1) exhibit all the most characteristic features of relativistic particles, such as
the equivalence between mass and energy. Owing to this particle-like behaviour,
solitary waves can thus be regarded as a model for extended particles, in contrast
with point particles, and they arise in many problems of mathematical physics,
such as classical and quantum field theory, nonlinear optics, fluid mechanics,
plasma physics and cosmology (see, for instance, [36], [26], [22]). For an in-
troduction to the theory of solitary waves in nonlinear field equations we refer,
e.g., to [3], [9], [32].

Here we are interested in the existence of vortices of equation (1) with
nonnegative potentials, that is,

W>0 and M(y)#0.

Observe that W > 0 implies £ > 0, which is an important request for the con-
sistence of physical models related to the equation since the existence of field
configurations with negative energy would yield negative masses. Furthermore,
the positivity of the energy also provides good a priori estimates for the solu-
tions of the corresponding Cauchy problem and these estimates allow to prove
that, under very general assumptions on W, the problem is well posed (cf. [9]).

The most natural way for finding solitary waves for (1) is to look for static
waves, i.e., time-independent solutions of the form

y(t, @) = wo(v),

and then to obtain travelling waves by Lorentz transforming. Unfortunately, this
forces to assume that W takes negative values, for it is well known, since the
renowned paper [19] of Derrik, that W > 0 implies that any finite-energy static
solution of (1) is necessarily trivial.

Such a difficulty can be overcome by looking for standing waves, namely,
finite-energy solutions having the following form:

(5) w(t, ) =wo(w)e ™, > 0.

In the literature a lot of work has been done in proving the existence of standing
waves in the case in which y,(x) € R (we recall, e.g., [12], [13], [29], [30], [31]).
Also in the physical literature there are many papers dealing with this topic,
among which we recall the pioneering paper of Rosen [27] and the first rigorous
existence paper [15]. In physics, the spherically symmetric standing waves have
been called Q-balls by Coleman in [16] and this is the name used in all the
subsequent papers.
From the results of [12] (see also [9]) it follows that, if W satisfies (2) together

with

@ V>0andV(0)=0

@) V'(u) = Q®u + O(i™1) as u — 0T for some Q% > 0 and q>2



THREE DIMENSIONAL VORTICES IN THE NONLINEAR WAVE EQUATION 107

1
(i) V(wo) < éQzu% for some uy > 0,

then, setting
1
(6) Qo = inf{w >0: V(u) < §w2u2 for some » > O},

equation (1) has standing waves (5) with w,(x) € R for every frequency
wy € (29, 2), where the limit value wy = Q is also admitted if ¢ > 6 in (ii) (ac-
tually, for wy € (29, 2) the result holds also replacing (ii) with V"(0) = > 0).
However y(x) € R implies M () = 0 and so, in order to get vortices, one has
to consider complex valued y,’s.
Making an ansatz of the form

() w(t,x) = u(x)eEl@-t) = () >0, 0(x) € R/2n7Z, wy > 0,k # 0,
equation (1) is equivalent to the system
— A+ E2VOPu — ofu+ V' (u) =0
{uA0+2Vu-V0:O.

Moreover, if we denote x = (y,2) = (y1,¥2,?), assume u(y,z) = u(|y|,z) and
choose the angular coordinate in R? as phase function, that is,

arctan(yz/y1) ify3 >0
arctan(yz/y1) +n if y1 <0

(8) O(x) := .
n/2 ifyg=0and yz >0
—n/2 ifyy=0and y2 <0,
we get
1
NO=0, VO-Vu=0, |VOf=—;,
[y
so that the above system reduces to
k2
9) —Au—kﬁu—ﬂf’(u) =ofu  in R
Y
and direct computations show that (3) and (4) become
. 1 1( k2
’L(k[)O(.%')*LUOt) — - 2 - _0 2 2
(10)  &(u@e ) f[z [Vuf+3 (W + w())u V() |de
R

(11) M(u(m)eﬂk"e(”)"“ot)) = (0,0, —wokofu2dac> .
R?
By studying equation (9) we will prove the following result.



108 MARINO BADIALE - VIERI BENCI - SERGIO ROLANDO

THEOREM 1. — Let W : C — R satisfy (2) and assume conditions (1),(i1), (112).
Then equation (1) has nonzero finite-enerqgy classical solutions of the form (7)-(8)
Sfor every ko # 0 and wy € (Qo, Q), where Qy is given by (6) and the limit value
wy = 2 1s also admitted if ¢ > 6.

Notice that 2y < 2 by assumption (iii), so that the interval (Qy, Q) is none-
mpty. The finite energy and angular momentum of the solutions we find are
given by (10) and (11), and the angular momentum does not vanish since u is
nonzero.

We observe that the assumptions of Theorem 1 are satisfied for example by
the model potential

1 b 1
W(y) = 592\wl2—5|wlq+5|w|p, Q#0,p>q>2

which is nonnegative provided that b > 0 is small enough.

In the physical literature, the existence of solitary waves with nonvanishing
angular momentum in classical field theory seems to be an interesting open is-
sue, which has been recently addressed in a number of publications (see for in-
stance [33], [17], [14] and the references therein). In particular, the existence of
vortices for equation (1) has been investigated in [21] and [34], for very particular
potentials.

From the mathematical viewpoint, the existence of vortices has been studied
in [11] and [4] (see also [7], [8], [10], [18] for related equations and results), but
the requirement W > 0 was not permitted by the results there. We also mention
a forthcoming paper [5], where the problem of vortices with prescribed charge is
investigated.

REMARK 2. — Theorem 1 also gives travelling solitary waves with non-
vanishing angular momentum, since, by Lorentz invariance, a solution
v, travelling with any vector velocity v can be obtained from a standing one by
boosting. For instance, if y(t,x) = u(x)e!%?@-=t) is a standing solution and
v=(0,0,), |v] <1,then

o (t,0) = 1y, (2 — wE) e )y (1),
is a solution representing a bump which travels in the z-direction with speed v.
REMARK 3. — The same arguments leading to Theorem 1 also yield the

existence of standing and travelling rotating solitary waves for the nonlinear
Schrédinger equation

(12) iy =Dy +W (), w(te)eC, (tx)eR xR
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Actually we stated the result for the nonlinear Klein-Gordon equation (1) because
it is for this equation that, as already mentioned, the assumption W > 0 has
special importance on physical grounds.

According to the previous discussion, the proof of Theorem 1 relies on finding
nonnegative symmetric solutions to equation (9) with suitable integrability
properties. In fact we will perform this study in a more general situation, that is,
we will study the existence of nontrivial solutions to the following problem:

Y
(13) u(y,z) =u(lyl,z) 2 0 in RY

w e H'(RY), f—dx < o0
yl?

RY

where @ = (y,2) € R* x R¥* with N >k > 2, the nonlinearity ¢ : R — R is
continuous and such that g(0) = 0, and i > 0 and 1 > 0 are real constants. More
precisely, we introduce the spaces

’LLZ
(14) H:= ueHl(RN):dexmo CHy={we H:uly.2) = ullyl.2)}

RY |

and look for weak solutions in the sense of the following definition: we name weak
solution to problem (13) any nonnegative u € Hy such that

1) [vu Vhdochuf dac+/1fuhdx [o@nde foratneH.
RY RY ly RY
Regarding the nonlinearity, we will assume
(90) ftog(s)ds > M2 /2 for some ty > 0
(91) ;(t) =0 ) ast — 0" for some q > 2
together with one of the following conditions:

(g2) 9(B) = 0 for some f§ > f, :=inf{t > 0: fg Yds > it?/2}

(g3) g(t) = OP~1) as t — 4+ oo for some p < 2*

where 2* := 2N /(N — 2) denotes the critical exponent of Sobolev embedding.
The relationship between (9) and (13) is clear: writing

V(lyl) = 3 @WP-Glly)),
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equation (9) reduces to the equation of (13) with A = Q- a)% and g = G'. This
leads to not assuming the well known superquadraticity condition due to
Ambrosetti and Rabinowitz [1], namely

(16) oG(t) < G'(t)t for some ¢ > 2 and all ¢t € R,
since, together with (g,), it implies
G(ly|) > (const.)|w|” for |y| large

and thus forces W to take negative values.
Our existence result is the following.

THEOREM 4. — Let N >k >2, u>0 and 1> 0. Assume that g € C(R; R)
satisfies (gy), (g1) and at least one of hypotheses (g5) and (gs), with ¢ > 2* if A =0.
Then problem (13) has at least a nonzero weak solution, which satisfies
HuHLoc(RN) < B if (g3) holds.

The proof of Theorem 4 will be given in Section 4, where a solution to (13) will
be found as a mountain-pass critical point of the Euler functional associated to
the equation. In Section 3, we will prove the existence of a bounded Palais-Smale
sequence without the aid of condition (16).

As a matter of fact, the case 4 > 0 can also be studied by suitably adapting the
constrained minimization technique of [12], but such an argument fails for 4 = 0,
when the H' variational theory does not apply (in particular one cannot obtain
compactness by exploiting well known results such as [35, Lemma 1.21]) and a
different approach is needed.

Still concerning the case 4 = 0, we also observe that Theorem 4 actually gives
a version of the results of [4] without (16) and that a similar result was announced
in [24] without proof.

Finally, we remark that Theorem 4 applies to more general situations than
the ones needed to deduce Theorem 1. For instance it also admits pure power
nonlinearities, or, more generally, nonlinearities which may satisfy Ambrosetti-
Rabinowitz condition.

We conclude this introductory section by collecting the notations of most
frequent use throughout the paper.

e Given N,k € N, N > k > 2, we shall always write « = (y,2) € RF x R¥ %,

e O(k) is the orthogonal group of R¥.

e By u(y,z) = u(|y|,z) we always mean u(y,z) = u(Ry,z) for all R € O(k)
and almost every (y,z) € RF x RN *,

e For any re R we set r. :=(Jr|+7)/2 and r_ := (Jr| — r)/2, so that
r=ry —r_with r,,r_ > 0.

e |A| and y4 respectively denote the d-dimensional Lebesgue measure and
the characteristic function of any measurable set A C R%, d > 1.
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e By — and — we respectively mean strong and weak convergence in a
Banach space E, whose dual space is denoted by E’. The open ball
B(ug) := {u € E : |u — ug||y < r} shall be simply denoted by B, when E = RY
and uy = 0.

e — denotes continuous embeddings.

e C(A) is the space of the infinitely differentiable (real or complex) func-
tions with compact support in the open set A C RY d > 1.

e If1 <p < ocothen LP(A)and LfOC(A) are the usual Lebesgue spaces (for any
measurable set A C Rd, d > 1). We recall in particular that ,, — 0in L‘,?O C(Rd) if
and only if u,, — 0 in LP(B,) for every r > 0.

e 2°:=2N/(N —2), N > 3, is the critical exponent for the Sobolev embed-
ding.

o H'(RY) = {u € LARY) : Vu € L2RM)} and DY2(RY) = {u e L¥ (RY):
Vu € LE(RY )} are the usual Sobolev spaces.

2. — Preliminaries.

In this section we study the functional framework in which problem (13) can
be cast into a variational formulation. In particular, Subsection 2.1 is devoted to a
brief description of some weighted Sobolev spaces naturally related to problem
(13), while in Subsection 2.2 we derive a variational principle for recovering weak
solutions of problem (13) as critical points of a suitable functional (Proposition 7),
of which we also give some relevant properties (Lemmas 8 and 9).

Throughout the section we assume N >k > 2, x> 0 and 1 > 0.

2.1 — Weighted Sobolev spaces.

In order to emphasize the role of A, for A > 0 we respectively denote by H;

and H s the Hilbert spaces H and H of (14) endowed with the norm defined by
2

(17 [ ::f|Vu|2dx +u Y de —|—f/1u2dx for all w € H;,

>N

yl?

RY RY R

which is induced by the inner product

(18) (u | v)l::fVu -Vodx +,ufu—v2dm +f)»uvdac for all u,v € H,.

RY RY v RY
Clearly H; «—H,—H 1(RN ) and, by well known embeddings of H 1(RN ), one has
that HAMLP(RN) for 2 < p < 2" and HA‘—>L7;)C(RN) for 1 < p < 2*. In particular,
the latter embedding is compact if p < 2* and thus it assures that weak convergence
in H, implies, up to a subsequence, almost everywhere convergence in RY.
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If /. = 0, the natural functional spaces associated to equation (13) are instead

2
Hy = {u € DY2(RN) ;f|u—2dac < oo}

RN
HO,S = {M €Hy: u(y,z) = u(|y|,z)}

equipped with the norm and inner product still given by (17)-(18). Clearly
H;, = HynLARM)—Hy—D"2(R") and H,s = HysNL*RY)—Hys—H, for
any 4> 0. Moreover, by well known embeddings of D2Z(RY), one has
Hy—L? (RY) and H0<—>L§’OC(RN ) with compact embedding if 1 < p < 2* (which
also assures that weak convergence in H implies, up to a subsequence, almost
everywhere convergence in RY).

REMARK 5. — If k£ > 2, from the Sobolev-Hardy inequalities [6] it follows that
Hy = D'2(RY) and the norms || - ||, and || - | pizgeYy are equivalent.

PROPOSITION 6. — C°((RF\ {0}) x RN %) and C=((RF\ {0}) x RN %) n Hy
are dense in Hy and H s respectively.

ProoF. — We divide the proof into two steps, using a standard truncation and
regularization argument. Set O := (R"\ {0}) x RN* for brevity and let
X :={u € Hy : suppu is compact in O} and X := X N Hy.

Step 1: X and X; are dense in Hy and H.

Fix £ € CP(R) and # € C*(R) such that () =1 and 5(¢) =0 on [0,1],
£t)=0 and #(t) =1 on [2,+00), 0<E<1 and 0<x#<1 on R. For all
e N\ {0} and x = (,2) € RY, set &,(w) = &(Jo|/n) and n, (x) := n(nly]) for
some 0 > (N — k)/k. Then let w € Hy \ {0} and define u,, := &,n,u, in such a way
that suppu, is compact in O. Clearly u,, — % almost everywhere on RY and
Iy (2t — )| r2rvy — 0 by dominated convergence. Now consider

Vuy, = En, Vu +un,VE, +ué,Vn, .
Again by dominated convergence one deduces that &5, Va — Vau in L2(RY). On
the other hand, setting C; := max &(t)?, we obtain

1o c
Jampvepaz<— [ &Qelmputan<y [ uide

RN B2y \By B2y \By,

2/2*
C1 ys .
<2 |Bou \ Bl 2/2< J dx)

B 2n \B n

2/2"
:Cl|B1|2/N(2N—1)2/N( f |u|2*dx>
BZ'YL\Bﬂ
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where the last integral goes to zero as n — oo because u € L* (RY). Finally,
setting A, := {x € RV : 1 < [n%| <2, |2| < 2n} and C; := ntl%xn’(t)z, we have

[w2&vn, e = [ 02|V, Pdw < n® [ of (uly))*u*de
RY Ay A,
' u? u?
<Con® [yP s < 405 [ e
A Yl Ay
where the last integral goes to zero as n — oo because |y| 2u2 € L'(RY) and
|4,| = CnN~F=% = 0(1),_,, for some constant C > 0. Therefore u, € X and
Uy, — u in Hy. Since u,, only depends on |y| if u € Hy, the claim is proved.

Step 2: C*(0) and C*(O) N X; are dense in X and X (with respect to || - |).

Fix any u € X, u#0, and let 0 <7y <7 be such that suppu C A :=
{x e RN : 7 < |y| <7, 2| < r}. Define

ue () ::fu(ac’)ps(ac —2)de'  forallze RY and ¢ € (0,%)

A
where {p,} C CgO(TRN ) is a family of radial mollifiers, that is, p, > 0, supp p, C B,
and [|p, |1y, = 1. By standard arguments, u. C(RY) and u, — uin D*2(RY)

and LZZOC(]RN ) as ¢ — 0. Moreover ¢ < 7(/2 implies that both supp « and supp u, lie

in K :={xeRY : /2 < |y| <2r, |2| <2r}, whence one deduces

2 2

fwdac =fwdac < % f(u — u,)?dac = o(1), -
o 1yl [yl 70

RN K K

Therefore u, € C°(O) and u, — u in Hy as ¢ — 0. Since one easily checks that
u € X, implies u.(Ry,z) =u.(y,z) for all R < O(k) and almost every
(y,2) € R" x RN the proof is complete. d

2.2 — Variational approach.
Let g € C(IR; R) satisfy the hypotheses of Theorem 4. Set y := y(o ) if (g2)
holds, y := (9 o) Otherwise. Then define

t

(19) f(t) = 7()g(t) and F(t) = f f(s)ds forallteR.
0

So, in any case, from (g,) one deduces that

(Fo) 3ty > 0 such that F(ty) > 2/2.
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Moreover, if 1 > 0, it is not restrictive to assume ¢ < 2* in (g;) and p > 2 in
(g3), and the hypotheses of Theorem 4 imply

(f,) 3m >0, Vt € R, |£(t)] < mmax{|t|'"",[t|7} (where p,q € (2,2*))

(F,)3IM >0, Vt e R, |F(t)| < Mmax{|t]",|t|"} (where p,q € (2,2%))
whereas, if 1 = 0, one deduces

() 3Im >0, Vte R, |f(t)| <mmin{[t, {7} (where 1 < p < 2* < q)
which yields in particular

F)If )] <mlt]* ' forallt e R

(F.) 3M > 0 such that |F(t)| < M|t|* forallt e R.

Thanks to (f,), (F\), (f.), (FF,) and the continuous embeddings H;—LP (RN n
Lq(RN ) for A > 0 and HOQLZ*(RN ), one checks (see for example [23]) that the
functional I, : H; — R defined (for any 1 > 0) by

(20) I)(u) = % ||u||§ —fF(u)dac for all uw € H;

is of class C! on H; and has Fréchet derivative I'(u) € H, at any u € H; given by

1) I(wh = (u| h),— f fuhdr forallheH,.
RY

We now show that the set of weak solutions to problem (13) equals the set of
critical points of the functional

J; ::Il\H,;s ‘H)s — R

defined as the restriction of I, to H,s, which is obviously such that
J, € C1(H, R) and J)(u)h = I',(u)h for all u,h € H, 5. Observe that weak so-

lutions belong to HX(RY) by definition, while Hy ¢ H'(RY) (cf. Remark 5).

PROPOSITION 7. — Every critical point of J; is a weak solution to problem (13)
and, if (gs) holds, it satisfies w < f almost everywhere in RY.

PrOOF. — Let u € H; ¢ be such that J)(u)h =0 for all h € H,. Then, by
virtue of the principle of symmetric criticality [25], » is a critical point of I, i.e.,
I'(u)h = 0forall h € H,. Now, using h = u_ € H, as test function in (21), one
obtains [ju_[[; =0, that is, u > 0. If /' = 7y | 9, this implies f(u) = g(u) and
thus (15) holds by (21). Otherwise, if f = yp9, we compute (21) for
h = (u—p), € H,s and, since f(u)(u — §), vanishes almost everywhere in RY,
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we get

0:fVu-V(u—ﬁ)+dx+ufwdx+fm(u—ﬁhdw
RY

RrRY RY [v]

2
szu.V(ufﬁhdx :f|V(u —p), Pda.
RY RN
This implies (u—f),=0, ie., u <p, which yields f(u)=g(u) and thus
proves (15) again. Finally, one deduces that u € H'(RY) also if 2 = 0 thanks
to [4, Proposition 6]. O

The next lemma assures that weak limits of criticizing sequences are actually
critical points for J).

LEMMA 8. — For any h € H, s the mapping J',(-)h : H)s — R is sequentially
weakly continuous.

Proor. — We assume 4 > 0 and follow the argument of [4, Proposition 14],
where the claim of the lemma has already been proved for 1 = 0. Of course we
need only consider the nonlinear term of the mapping, so fix 4 € H'(RY) and
show the sequential weak continuity on H L(RY) of the mapping u— [ f(u)h dz.

RY

Accordingly, assume u,, — u in H'(RY) and, with a view to arguing by density,
let ¢ € CgO(RN ) and let » >0 be such that suppe C B,. Since u, — % in
LP~Y(B,) N Li71(B,) and condition (f,) assures the continuity of the Nemytskﬁ
operator f:LP7Y(B,)NLI"Y(B,) — L'(B,), one readily has f|f ()

f()||plde =0(1) as » — oo. Then, by the boundedness of {u,} 1n HY(RY),
there exists a constant C > 0 (independent from ¢ and ) such that

f [f () = f )] |z

< [1f ) ~f@lh - plde + [1f () — @) old

RY RY

< J U@+ 1F DI = plde +0(1), .

RY

NnN—00

<o [ (fualP ™+ Pl e = glde + (1)
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(p-1) (-1
<m(JaualI® 07+ ll® PV e = e,

(g=1 (g-1)
([l X9+l ) = e, + 01,

<Cllh = ol vy +0(1), s

and the density of Cg"(RN Yin H 1(RN ) allows us to conclude. |

We conclude this subsection with a technical lemma which emphasize the role
of assumption (Fy) and will be useful in proving the mountain-pass geometry of
J; (Lemma 10 below).

LEMMA 9. — Let A := {x € RY : |y| > 1}. Then there exists uy € Cr(A)NH,

such that [ (F(uo) — Jug/2)dx > 0.
RY

Proor. — Denote Q,, , := {xeRN: 1 < |y| < 7o, 1 < 2] <19} for ra>11 >0
and, for any r > 3, let ¢, € C:°(R) be such that

e ¢.(t)=1on [3,7]

¢ ¢.(t)=00n (—o0,2]U[r+1,+00)

e0<¢. <lonR.

Let £y > 0 be given by (Fo) and set u,(x) := tod.([y))¢,(|z]) for all x € RY.
Clearly u, € COO(RN )N H; ¢ with supp, C Qz,41. Then we get

R{(F(m) Su )dac— [ <F(u7) )dx+con37y

Q2,1*+1\Q3.r
>(Co + C1)|@s.r| — C1|Q2ri1| = O + 0(r™)

as r — —+oo, where Cy := F(ty) — 13/2 > 0, C; :== max |F(t) — /t?/2| and C > 0
. . €[0,o]
is a suitable constant. O

3. — Existence of bounded Palais-Smale sequences.

Assume N >k >2, u>0 and 1 >0, and let g € C(R;R) satisfy the hy-
potheses of Theorem 4. The aim of this section is to prove that the functional
J, defined in Subsection 2.2 as the restriction of I, to H, s admits a bounded
Palais-Smale sequence at its mountain-pass level ¢ > 0 (see (27) below), that
is, a bounded sequence {w,} C H,s such that J;(w,) — ¢ and J(w,) — 0
in H .
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In order to emphasize the different behaviour of different terms of J; in front
of rescalings, we denote

1 A
F(u) = 3 ||u||% —J(u) :f(F(u) - §u2) de  forallue H,g

RN

and set u! := u(t! ) for every u € H, and t > 0. Notice that u' € H,  with

(22) o} = t_fOVu@ m|+’ﬁt;f>dw—ﬂ’ﬂmm
{]\

and

(23) Fu') = f <F (ut ) — éu(tle) dw = tN F(u).
RY

Similarly | — o'||5 = tV2||ju — v||5 + V|| A — v)||i2(RN), so that the mapping
w—u! is continuous from H, ¢ into itself.

The following lemma shows that J, has a mountain-pass geometry. Recall
from Lemma 9 that we denote A := {x € R : [y| > 1}.

LEMMA 10. — There exist p > 0 and u € C°(A) N H, s such that

(24) inf Ji(w) >0, |ul,>p and J,;(u)<0.
weH; s |lull,=p ’

PROOF. — Let g be the mapping of Lemma 9. Then u}, € C2*(A) N H, 5 for all
t > 1 and, as t — -+oo, one has

2 _ 2 2
(25) gl = N2 luollg + AN [[eto ][z vy — 00

(26) T3 () = glleflly — F (1) =t |uollf — ¢V F (o) — —oo.

On the other hand, if A =0, by (¥.) and the continuity of the embedding
Hos—L? (RY) there exists M > 0 such that

1 .
To(u) > Sl = Ml oy > 5l — Mollull for all € Hy,
while, if 4 > 0, the continuous embedding H A’S%LP(RN )N LA(RY) together with
(F',) assures the existence of M1, My > 0 such that

1
Tiw) = 5 |[ullf — Ml

L, 2
Lp(RN MHquq(RN - § ||u||A - Ml”“’”f - MZH/MHZ

for all w € H;5, where p,q > 2. This proves the first inequality of (24) for any
A > 0. By (25)-(26), we conclude by taking # := uf] for ¢ > 1 large enough. O
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Hereafter we let % be the mapping of Lemma 10.

LemmA 11. — Let {t,} C (0,+00) be a sequence such that t, — 1. Then
U — win Hg.

ProoF. — First observe that @ = u(t,! -) — % and Val =t V(') —
Vi almost everywhere in RY, with {#"} and {Va'»} uniformly bounded in RY.
Thenlet» > 0be such that suppu C AN B, andset B := {x € By, : |y| > 1/2},s0
that both % and %" belong to C>(B) for n large enough. By dominated con-
vergence we thus conclude [|#" — #]| %N) = |lu" — | 2z = 0(1),

(rutn — rﬂ)2 (utn —
[*— (mzf m<4f i — ) ’d = o1)
]RN |y| B
and |V (u" — )| opvy = V(@ = %)| 125 = 0(1) as n — oc. O

Henceforth we fix a &, > 0 such that J,(u) <0 for all v € B, (#) and, by
Lemma 11, a threshold ¢, € (0,1) such that #' € B, () for all ¢t € (¢,,1).

Let us now introduce the mountain-pass level
@7)  c:=inf max Ji(u), I':= = {7 € C([0,1];H;5) : 7(0) = 0,(1) = u},
which is positive by Lemma 10. The existence of a Palais-Smale sequence at level
¢ then follows from standard deformation arguments, but, as we do not assume
the already mentioned Ambrosetti-Rabinowitz condition, such a sequence is not
necessarily bounded. The existence of a bounded Palais-Smale sequence is ac-
tually not a trivial problem and the rest of the section is devoted to this issue. The
arguments we use derive from the ones of [2].

LEMMA 12. — For all t € (t.,1) one has ¢ = inf,cr max,e,o,1)) I (u").

PROOF. — Letting t € (t.,1) and ¢; := inf max J;(u'), we show that ¢ < ¢

vel” uey([0.1])
and ¢; < c. For any 6 > 0, fix y; € I" such that max,.c, (o1)) /(") < ¢; + d and set
() 71(2s)" ifo<s<1/2
s) =
2(1 —s)u! +2(s — 1/2)u if1/2<s<1.

Then?y, € C([0,1];H;5),7,(0) = 0and (1) = @,i.e.,7; € I'. Moreover ' € B, (u)
implies 7, (s) € B,, (4 )and thus J,(7;(s)) < 0 for all s € [1/2,1]. Hence we get

< - LY =
o<, max Jiw) = max Ji(n(s) = max, Ji((5))

= 25)) = = s (ut
961{(1)2:})(# S (28)h = maxJ;(yl( 9] ueﬁ?ﬁ%ﬁ])‘l‘(u)

<ci+6
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which yields ¢ < ¢; since J is arbitrary. Note that this also implies ¢; > 0.
Conversely, for any 6 > 0 we fix y, € I" such that max,,, jo,1)) /(%) < ¢ + d and set

(8) {y2(23)1/t if0<s<1/2
S) =
21 —s)utt +2(s —1/2u  if1/2<s<1.

Then 7 € C([0,1];H,s), 72(0)=0 and 7(1)=u, ie, 7, €I. Moreover,
if se[l/2,1], one has Jy(s)'= (2(1—s)ul! +2(s — 1/2)) = 2(1 — 5)i +

2(s — 1/2)at, sothat %! € B, (&) implies 7,(s)'e B, () and so J,(,(s)") < 0. Hence
we get

< = =
S iy ) = O = Iy 04D

_ 1/t\ty _ )
= mmax, Ji(72(28)77)) = ha, J3(72(2s)) max Ji(72(s))

= max J,(u)<c+9
uepp([0.1))

and the conclusion ensues from the arbitrariness of 6. O
Hereafter, by Lemma 12, we assume that to any ¢ € (., 1) there corresponds
a path y; € I" such that

28 J(u) <c+1-—tV,
(28) weno) () et

by which we define the set
A; = {u € 7([0,1]) : J;(u) > ¢ — (1 —tN)}.
Note that max J;(u) > ¢ implies 4; # ¢ (indeed, as 1 — ¥ >0 and J; is

uey([0.1])
continuous, 4; even contains a continuous piece of y,([0,1])).

LEMMA 13. — For every t € (t.,1) and u € A; one has ||[uls < (c+2)N /N2

Proor. — Fixanyt € (¢,,1) and u € 4;. By (28) and the definition of /4; one has
Ji(u) — J;(u) <2(1 —¢V). On the other hand, from (22) and (23) it follows that

i) = T ) = (Il =l = F () + Fw)

l\:)l'—l

—5 (101~ g la1E) - () + 55 7 )

—5 (1) 1l - (1- %) F )

NIP—‘

[\'JIP—‘
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1-—tN-2 1—V

== gz Il + = F ()
A L

1-tN /1
> 120 (—;m’fn%w(ut)),

where for the final inequality we have taken into account that the mapping
t— — (& —tV)/(1 —tV) is decreasing for ¢ > 0 and tends to —2/2* as t — 1. So
we obtain —(1/2%)||u!|5 + F(u') < 2tV, whence
oy Loz ooy L Lyne w1 pe o
Ti(w') =5 'lly = F (') = 5 ll'lly = 5 lee'llo — 267 = < 'l — 2¢

and therefore

1 N N N(c+2)
Il = g 1l < g () +26%) < g (e 4+ 14+ 8Y) < =357
where (28) has been used again in order to estimate J;(u!) < ¢+ 1 —tV. O

The aim of the section will be accomplished in Proposition 15 (and Corollary
16), where we take advantage of the following well known deformation lemma
(see [35, Lemma 2.3], here written for the space H,, our functional J; and its
mountain-pass level c).

LEMMA 14. — Let S C H; s and &,0 > 0 be such that ||J',(w)|; > 8¢/0 for all
u € Sy satisfying |J,(u) — c| < 2¢, where

Sas 1= {v € Hy :inf o —hl|, < 25}.
’ heS

Then there exists n € C([0,1] x H;s;H,) such that
o 5j(t,u) = u provided that Tt = 0 or |J,(u) — c| > 2¢ or u ¢ Sas

o J,(n(1,u)) < c — ¢ provided that J,(u) < c+eandu € S
e 7(1,-) is an homeomorphism of H; s for every t € [0,1]

o J,(n(-,u)) is nonincreasing for every w € H, 5.

PROPOSITION 15. — There exists a Palais-Smale sequence {w,} C H,s for J,
at level ¢ such that

( )

(29) suprnH0 <142 —5—5—
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PROOF. — Set ¢, := 2N (c + 2) /t¥ 2 for sake of brevity. First we observe that
tlir{{ supl|J;(u') — J;(u)| = 0. Indeed, for all ¢ € (¢.,1) and u € Ay, the definition of

UE Ay
A and (23) yield J; (u!) — J;(u) < 2(1 — V) = 0(1),_; and —tN F(u) = —F(ul) <
J;(u') < ¢+ 1 —tY by inequality (28), whence, by (22), (23) and Lemma 13, we get

oo 1=tVE N
Ji(u) —J;(u') - llullg — (1 —¢V)F(u)
on Ca c+1-—tN
<= T+ (=) = o(1) .

Now, for every m > 1, define
9 1 1
Upn:=uecHs:|ullg<co+—, [Ji(u) —c| <—
m m

and choose t,, € (t.,1) such that 1 — ¥ < 1/32m and J;(u) < J;(u™) +1/32m
for all w € 4;,. Then for every u € A;, the inequality of Lemma 13 holds and one
has (recall the definition of A4;,)

1
) Se—(1—-tY>e— —_
Jk(u) =2 C (1 tm) ey 32m
and (by (28), with t = t,,)

1
< _—
32m = lem

whence 4;, C U,, and U,, is not empty. For sake of contradiction, assume that

1
(30) J,l(%) SJ}(’M/t"')+%SC+ (lft%)‘i’

_ 8 1 , 1
_ . . ;> —
(31) I > max{C* ’80} vu € Uy, HJ/~(u)||H;,.s z 7
and apply Lemma 14 with S={he H;:||h|; <c./2}, ¢=1/16m and
J = 1/2v/m (so that 8/ = 1/+/m). Note that

. 1
Sos = Sy)ym = {?) €EH: i [v—~ll, < m}

because S is convex and closed in H, ¢, and observe that if u € S N satisfies

|J5(u) — ¢| <1/8m then u € Uy, (and thus the last inequality of (31) holds), be-
cause there exists & € S such that |u — k|, < ||u — k||, < 1/+/m and thus

Jully < ellp +— <\/a+ Lo fet?
0= 0 \/ﬁ_ 2 m— * mn’

where the assumption m > 8/c, has been used to derive the last inequality. So
there exists an homeomorphism @ : H, s — H, s (namely @ := 5(1,-) of Lemma
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14) such that
i) @(u) =wuif |J,(u) — c| > c (recall that ¢ > 1/8m = 2¢)
() J(P(u)) <c—1/16m if Hu||g <c,/2and J,(u) <c+1/16m
(i) J;(®(u)) < J;(u) for every u € H, 5,
by which we define the path y:=®oy, €C ([O, 1;H A.,S)- By (i) one has
7(0) = &(y,(0)) = @(0) = 0 and y(1) = &(y, (1)) = D(u) = u, since |J, (%) — c| =
|J5(@)| + ¢ > ¢ (recall that J,(u) < 0). Hence y € I'. We finally deduce the

contradiction which assures that the hypothesis (31) is false and thus concludes

the proof. Let u. €y, ([0,1]) be such that J(®(u.)) :uema(l[)o(l])h( (u)) =

max J,(v). On one hand, if w. € 3, (0.1)\ 4, then J,(@(u.)) < J,(u.) <
vey([V,

¢ — (1 — &) (by (iii) and the definition of /;,). On the other hand, if u, € A, then
(30) holds (with m =) and Lemma 13 gives ||u*||(2) <c¢./2 (recall that
tm € (t+,1)), whence J,(P(u.)) < ¢ — 1/16m by (ii). Therefore, in any case one
obtains max,c,(o.1)) J1(v) < ¢, which contradicts the definition (27) of c. O

COROLLARY 16. — The sequence {w,} of Proposition 15 is bounded in H .

ProoF. — If A = 0 the assertion is already proved by (29); so assume 4 > 0.
Sinee J;(w,) — ¢ and (F\) implies F(w,) < M(|wy|"+|w,|?) almost everywhere,
there exists a constant C; > 0 such that

C1 > J,(w,) > % f wide — M f o, Pdee — M f o |%dec for all .
RY RY RY

Setting p:=(2*-2)/(2*—p) and p :=p/(p—1)=(2*-2)/(p—2), from
Hoélder and Sobolev inequalities one infers that there exists a second constant
Cs > 0 such that

f o, [Pdae = f 0 [l [ e < ( f w doc) m( f |wn|2‘dx> v

RY RY RY

2/p 2*
<Collwa Py Jownl277.

L2(RY)
whence, by (29), there exists Cs >0 such that ||w"||LP(]RN Cg||wn||i/2’(0“
Similarly, there exists Cy >0 such that ”w””m vy < C4||wn||L2(Rv) Where
q = (2* —2)/(2" — q). Therefore we get
C >ﬂ\|w 112, v, — MCs|w,| 7P . — MCylw,|/?? . for all n
1= o 1% L2(RY) 3| %Wn LARY) 4|[%n LZ(\RN) )

where 2/p,2/q < 2 since p, ¢ > 2. Hence no diverging subsequence is allowed for
{llwnl 2gx } and the proof is thus complete. a
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4. — Proof of Theorem 4.

This section is devoted to the proof of Theorem 4, which relies on the appli-
cation of a version of the concentration-compactness principle due to Solimini
[28]. Accordingly, in order to state his result, we preliminarly introduce a group
of rescaling operators, of which we also remark some basic properties.

As usual, we assume N >k > 2 and let ©u >0, 1 > 0.

DEFINITION 17. — Let t > 0andx € RY. Foranyu € LP(RN)with1 < p < oo
we define

Ty = t*(N*Z)/zu(t*1 ).

Clearly T ,u € LP(RY) for allu € LP(RY) and in particular T} ,u € D'2(R")if
u € DY2(RY). Moreover, by direct computations, it is easy to see that the linear
operator u+— T} u is an isometry of both L? (RY) and DY2(RY). Notice that

(32) T);l = Tl/t‘—tx and Ttl,%‘l th.,xz - Ttltz.ﬁ?l/trh%‘z .

2

REMARK 18. — Forany z = (0,z) € RF x R¥ " and ¢ > 0, direct computations
easily show that the linear operators w—T;;u and w—T;;u are isometries of
Hy and H; respectively. Moreover T;;u € Hos if w € Hos and Ty;u € H; ¢ if
u e Hi.s-

The next proposition is proved in [4].

PROPOSITION 19. — Let 1 <p < oo and assume that {t,} C (0,+0c0) and
{x,} C RN are such that t, — t #0 and x, — x. Then Ty o un — Tipu in
LP(RNY if wy, — w in LP(RYN).

COROLLARY 20. — Let {t,} C (0,400) and {2,} C {0} x RN "*c RY be such
that t, —t# 0 and 2, — 2. Then Ty, 3 u, — Ty zu tn Hos (up to a subsequence)
W, —uin Hyg

Proor. — From the boundedness of {u, }, by Remark 18 we deduce that also
{T},3,un} is bounded in Hys. Hence (up to a subsequence) it weakly converges in
Hps and L¥ (RY). On the other hand Ty :u, — Tyzuin L* (RY), because
Uy — U in LZ*(RN ) and Proposition 19 applies. O

We are here in position to recall the above mentioned result of Solimini [28],
which is the following.

THEOREM 21. — If {v,} C D*2(RYN) is bounded, then, up to a subsequence,
etther v, — 01in L2 (RN) or there exist {tn} C (0, +00) and {x,} C RY such that
Ty, 00 — v in L2 (RY) and v # 0.
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Let us now turn to the proof of Theorem 4, which will be divided in several
lemmas. Accordingly, we hereafter assume that all the hypotheses of the theo-
rem are satisfied.

The starting point is the Palais-Smale sequence {w,} C H,¢ provided by
Proposition 15, which, we recall, is bounded in H; ¢ (see Corollary 16) and sa-
tisties J;(wy) — ¢ > 0 and J(w,) — 0in H) ..

As {w,} is bounded in D*2(RY), it must satisfy one of the alternatives allowed
by Theorem 21. The following lemma shows that the first one cannot occur.

LEMMA 22. — The sequence {w,} does not converge to 0 in L2 (R").

Proor. — Note that J' (w,,)w, — 0 since {w, } is bounded in H; ¢ and, for sake
of contradiction, assume that w,, — 0in L? (RM).If 2 = 0 one can use (£.) and (F.)
to readily deduce

(33) [\royde + [1Pav)ldz — 0 as 0 — o,
RY RY

which, by (20)-(21), yields the contradiction

Towa) =2 w2 — [ Fuw,)de
2 T
RY

1 1
:éJj'(wn)wn + 3 ff(wn)w%dx —fF(wn)dac =0(1), -
RY RY

If A > 0, then {w,} is bounded in L2(RY) so that w,, — 0 in L?(RY) n LY(RY) by
interpolation (recall that p, q € (2,2%)). Hence (f,) and (F\) imply (33) again and
the same contradiction as before ensues. O

COROLLARY 23. — There exist {t,} C (0,+00), {x,} ¢ RY and w e L* (RY),
w # 0, such that (up to a subsequence) Ty, ., wy, — w in L2 (RM).

ProOF. — Apply Theorem 21 and use Lemma 22. O

Now we can easily exploit the z-translation invariance of J; to improve the
result of Corollary 23. To this end, we set x, =: (Yn,2x), ¥n := (¥n,0) and
Zy := (0,2,), so that x, = ¥, + Z,, and define

Uy, = Tl,gnwn.

LEMMA 24. — The sequence {u, } is bounded in H, s and satisfies J,(u,) — 0
in H',  and Ty, 5,1, — w in L¥ (RY).
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ProoF. — The boundedness of {u,} follows from the one of {w,}, since the
operators T ;, are isometries of [, ;. Moreover, by (21) and easy computations,
one gets J)(uy)h =J,(w,)T1_sh for all heH,s so that |J) (un)||H, =
|5 () | . because also T}, _;, are isometries of H; ;. Finally, recalling (32), we

2¢ >N
conclude Ttmy“un Tt, 5,11 5,wn = Tt, o, wn — win L= (R™). O

By Lemmas 8 and 24, the sequence {u, } weakly converges in H, to some
critical point u € H, ¢ of J,. The proof of Theorem 4 is thus accomplished if we
show that % # 0, which is the aim of the next lemmas. The removal of translations
from the rescalings T, ;, is the first step in that direction and it is the topic of the
following lemma.

Hereafter we denote T} := Ty for any ¢ > 0.

LEMMA 25. — There exists v € Hos, v # 0, such that (up to a subsequence)
Ty, un — v in Hos.

Proor. — Set v, := T},u, for brevity and recall from Lemma 24 that
Ty 5,00 —w#0 in L¥(RY). From Remark 18 we get v, € Hos and
lvnllo = lleenllg, SO that (up to a subsequence) we can assume v, — v in Hog. If
v # 0 the proof is complete. So, for sake of contradiction, assume v, — 0in Hyg
(and thus in L* (RY)). First, we deduce that

(34) lim [t 7| = +oc.
Nn—00

Otherwise, up to a subsequence, ¥, — Yo € R x {0} and Ty 4,5, T4, 5,Un —
Ty_;,w in L2 (RY) by Proposition 19. But, since Ty _;,;, T4, ;, = T4, this means
vy — T1_5,w # 0in L¥ (RN ), which is a contradiction. Now we observe that w # 0
implies that there exist & > 0 and A C R with | 4| # 0 such that either w > J or
w < —0 almost everywhere in A. Then, fixing » > 0 such that |B, N A| > 0, by
weak convergence we obtain

(35)

—

> 0|B, NA| > 0.

f Wy g,nade
RY

f Ty, 3, unxp,nadw
RY

- “1,
On the other hand, T, 5, uy = T}, 3,T; "0 = T1,5,0n and hence

<f|Ttn Z/nu”|dx - f ‘/U"l|dx
B <t/t?/u)

1/2°
§C< f |vn|2*dx>
Bi(

r tﬂ gﬂ)

f Ttn ~,Z~/n ?/LW,XB’, nA dx
RY

(36)

for some constant C' > 0 which only depends on 7. From (35) and (36) it follows
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that

lim inf f a2 dee > 0
Nn—00 N
B"' (tn,yn )

and hence, up to a subsequence, we can assume
(87 inf f v, de > &y for some &y > 0.
n
Br(t'ngﬂ)

This will yield a contradiction. Indeed, using (34), it is easy to see that for every
leN, [ >2, there exists n; € N such that for any » >mn; one can find
Ry, ...,R; € O(k) satisfying the condition

@7&] = Br(tn(RiymO)) mB?’(tﬂ(Rjy”’O)) = Q

(see [4, Proposition 22] for a detailed proof). As a consequence, using (37) and the
fact that v, € Hys, we get

! !
f DY f a2 d = f o2 dae > leo
RY =1 By(tu(Riya 0)) =1 Bi(tin)
for every natural numbers [ > 2 and n > n;. This finally implies

f o, dae — 400
RY

which is a contradiction, since |[vn|p2wvy = [|T4,Unll 2 2y = 14|z v, and
{u,} is bounded in L% (RY). O

According to Lemma 25 and in order to apply Corollary 20 with a view to
concluding that {«, } has a nonzero weak limit in Hy ¢ (and thus in H, ), we need
to check that the dilation parameters {¢,} are bounded and bounded away from
zero. This is the content of the remaining lemmas.

LEMMA 26. — If 2 > 0 then inf,, ¢, > 0.

PrOOF. — Recall from Lemma 25 that Ty, u, — v # 0in Hos—L3 (RY) and fix
pe CSO(RN )and » > 0 such that supp ¢ C B, and [v¢dx # 0. Then T4 u,, — v in

L2(B,) and RY

f(Ttnun)qux :f(Ttnun)¢dx —>fv¢dx :fv¢dx £0.
B

RY B, r RY
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On the other hand, {u,} is bounded in L2(RY) and we get

1/2
2
<18l 2 ( [1r dx)

RY

[ m)pds

RY

1/2
S E ( f|t;(N*2>/2un (t:12) |2dx>

RY
1/2
2 2
=8Il 2wy (tn fundac>
RN

< tn||¢||L2(JRN)(Sup Hun”LZ(]RN)) —0.
n

As a conclusion, no vanishing subsequence is allowed for {¢,} and the claim
follows. O

LEMMA 27. — If 4 > 0 then sup,, t, < +oo.

Proor. — Recall from Lemma 25 that T u,, — vin Ho s and ||v||, > 0. Then, by
Proposition 6, there exists ¥ € H, ¢ such that (v | 9),> 0, so that

(39) (s | P15, 8)g= (10 | T12) = (Tt | 9)g— (0] D)y 0

by (32) and Remark 18. For sake of contradiction, up to a subsequence we now
assume t,, — +oo . Then T, = T, ¥ € Hos with || Ty, 7|y = |9, and

meﬁﬁmzjﬁﬂﬂwawmﬁm:gﬁﬂamxﬁo,
RY RN RY

which implies that { T, 9} is bounded in H, s and L* (RY), and thus it converges
to zero in LP(RY) N LI(RN) by interpolation (recall that p,q € (2,2%)). Hence
(recall Lemma 24) J', (u,)T1/;,v — 0 and

fmﬁmﬁ
nN

R

dx SnunHLZ(RN)”Tl/tﬂ)HLZ(RN)

< (sup ”unHLz(]RN)) HTl/tw@”LZ(RN) —0.
n

Moreover, by (f,) and the boundedness of {u,,} in LP(RM) N La(RY ), there exists
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a constant C > 0 such that

f | £ () T 1, B e <m f (0P a7 T3 1, 8]

RY RY

(r-1)/p 1/p
gm( fu,ﬂ’dx) <f|T1/tnf)|pdac>
RN

RY
1/q
qdac)

(¢-1)/q
+m<f|un|qu> <f|T1/tni)
RY RY

< C(”Tl/tnf)HLp(RN) + ||T1/tnq~)||Lq(RN)) —0.

Therefore by (21) we obtain

(| T1ys,0)g= I () Ty, 0 — /lfunTl/tnf) dx +ff(un)T1/t“?7dac -0
RY RY

which contradicts (38). O

LeEmwMA 28. — If 1 = 0 then 0 < inf, t, < sup, t, < +oo.

Proor. — Recall from Lemma 25 that Ty u, —v#0 in Hos. Then, by
Proposition 6, there exists v € Hyg NLP(RY) N LI(RYN) such that (v ]9)y> 0,
whence

39 (| Tun8)g= (w0 | 7,15) = (T | D)y (0] 8)> 0

by (32) and Remark 18. Now observe that, setting p’:=p/(p —1) and
q :=q/(@—1), p <2 <qimplies (p —1)¢ < 2" < (¢ —1)p/, so that condition
(fy) gives

max{| (), |f® } < (m” +m? ) forallteR.

Hence, as {u,} is bounded in L (RN ), {f ()} is bounded in L”/(RN )N Lq/(RN )
and thus there exist C1, Cy > 0 such that

/ l/p/ l/p
17 )T, 5lde 5( [iraar dac) ( [Iryal” dx)
RY :

RN RY
N 1/p
<y (t,?’“‘N / Wdac)
RY
NEp-2), -
:CltnzP HUHLP(RN)
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and, similarly,

N NAq-2), -
f’f(un)Tl/t"v|dx < Caty, 191l Ly
RY

Since p < 2* < g, this implies [ | flun)T /t”i}|dx — 0 (up to a subsequence) either
RN
ift, — 0 or if t, — +oo (up to a subsequence) and therefore one deduces

(w0 | Tyj08)g= Tofaen) Ty, -+ [ £l Ty = 0

RY

since Jj(u,) — 0 in Hj, (Lemma 24, with A = 0) and T';,v is bounded in Hog
because ||T/;, 0|y = [|?]ly- So a contradiction ensues with (39) if the assertion of
the lemma is false. O

We are now able to easily conclude the proof of Theorem 4.

ProOF OF THEOREM 4. — By the last Lemmas 26-28, up to a subsequence we
can assume t,, — ¢ # 0. Thus, from T u,, — v # 01in Hys (Lemma 25) we deduce
uy, — T7v # 0 in Hys (up to a subsequence) by Corollary 20. Therefore, recal-
ling from Lemma 24 that {«,} is bounded in H, s~—Hj for every 1, one infers
that u, — T;'v in H; also for 2> 0. Finally, since J)(u,) — 0 in H) (see
Lemma 24 again), Lemma 8 assures that 7', e H J.s 18 a (nonzero) critical point
for J;. The conclusion then follows from Proposition 7. O

5. — Proof of Theorem 1.

In this section we give the proof of Theorem 1, which follows from Theorem 4
together with an extendibility argument aimed at removing of the singularity of
V0 on the plane y = 0, where 0 is the angular coordinate given by (8).

Let W : C — R satisfy (2) and assume all the hypotheses of Theorem 1. Let
ko # 0 and wy € (Qo, Q], with wy € (2, 2) if 2 < ¢ < 6 in hypothesis (ii). Set

G(s) = %stz —V(s) forallseR.

In order to apply Theorem 4 with N =3,k =2, u = k2, . = @* — o} and g = G,
one readily checks that (g,) and (g,) are satisfied. We just observe that, if 1 > 0,
definition (6) implies the existence of w € (Qy, wy) and sy > 0 such that

159 92

1 1
G(s0) — éisg = 50080 ~ V(so) > 5@ So — Vi(so) >0.
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Moreover, V > 0 implies

(40) lim sup@ < 400 for every p > 2.

s—+o0 SP
So, if g(s) > 0 for s > 0 large, then (40) assures that (g3) holds. Otherwise, if
there exists a sequence {s,} such that s, — +o0o0 and g(s,,) < 0, it is not difficult
to deduce (g,) from (g,) and (g;). Therefore Theorem 4 provides equation (9)

with a nonzero nonnegative solution u € Hy in the following weak sense:

h

(41) fw Vhdx + k%fu—zdoc +fV’(u)hdx - wgfuhdx for all h e H .

R? R? | R? R?
Note that, either if (g,) holds or if (g3) holds, one has that
(42) V'(u) = Qu — g(u) € L, (R?).
Moreover, according to definitions 20 and 19, we have

I o(u) = L f[|Vu|2+k—(2)2u2 + (& - w%)uzl dx —fG(u)dx,
' 2 R3 [v] R?

so that (10) becomes

£(u(x)ei<k”9(”)‘w°t)) = IQz_w% (u) + co%fuzdx < 00.
R?

Now we set
wo(x) == u(@)e™?@  for all @ = (y,2) € O := (R2 \ {0}) x R.
Notice that Vg = e®?(Vu + ikouVe) implies |Vyol'= [Vul'+k3|y| *u?
Ll(Rg), so that y, € HY(R?). In order to conclude the proof of Theorem 1, we

need the following two lemmas.

LEMMA 29. — The mapping y, satisfies
(43) =Ly + W' () = whwg

n the distributional sense on O.

Proor. — Since 0 € C*(0; R/2r7Z), the claim of the lemma is equivalent to
(44) f Vi - V(e ™ p)dz + f W (y)e ™ pdx = o f yoe "o du
1%) 0 1%)

for all p € C°(O; C), where W' () = V' (u)e 0 by (2). Writing ¢ = ¢, + ip, with
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01,02 € C(0; R), we readily get
[wwoye ™pde = [Viypde = [V@pde +i [ Vwygyda
o o R3 R3

and

fy/ ~Hho0 0y e = fu(odoc :fugoldx+ifu(p2dac.

o o R3 R?

On the other hand, denoting & - 7 = &y + Eanpp + &3y for any &7 € C3, one has

f Vy, -V *lk‘)ﬁ ¢)d

(Vau + ikguV0) - (Vo — ikopV0)da

6\

f (V- Vo + kgug| VO ) das + ik f uveo - Vods
(@] (@]

:f<Vu Vo +k2 )dm Zkofdlv (uV0)pdx
5 yl?
=f<Vu Vo —i—kz )dac

5 lyl®

<Vu + k2 (p1>dw+zf<Vu~V¢2 +k(2)%(0§>d90
"Iyl [yl

R3

where we have taken into account that Vu-VO=0 and div(uVe)=
Vu - VO +u0 = 0. Hence, observing that C;°(O; R) C H, one concludes that
(44) holds thanks to (41). O

LeEmMA 30. — The mapping v, satisfies (43) in the distributional sense on IR3.
ProoF. — Let ¢ € C§°(R3; C) and take {,} C C"C(RS; R) such that 5, — 1

almost everywhere in R® and

e 0<7,<1n,(y.2) =0for |yl <1/nand n,(y,z) =1for [y| >2/n
e |V7,| < (const.)n on R®.

Clearly 7,9 € C*(O;C) and |V, (y,2)| = 0 for |y| < 1/n or |y| > 2/n. Then
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Lemma 29 gives

(45) f v Vg - Vi, de + f Vo - Vo da + f W (wo) g, dew = f Vot
R? R3 R? R?

Setting A, := {(y,2) € suppe : 1/n < |y| < 2/n}, we have |A,| < (const.)/n?
and

<(const.) gl ey [ IVwolda
A?I

1/2
<(const.)< f |Vy/0|2dx> —0.

A n

f(” vl//O ! V'?n dw
R?

Passing to the limit in (45) and using the Lebesgue’s dominated convergence
theorem for the other terms (recall that [W'(y,)| = |V’ (u)| € LL_(R?) by (2) and

loc

(42)), the claim follows. |

PROOF OF THEOREM 1. — Set y(t,x) := yq(x)e ™! for all x € O and ¢t € R.
Since Lemma 30, together with standard elliptic regularity arguments (see for
example [20]), yields that y, defines a classical solution to (43) on R3 a
straig}étforward substitution proves that y is actually a classical solution of (1) on
R x R°. O
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