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Singular Bundles with Bounded L?-Curvatures

THIEMO KESSEL - TRISTAN RIVIERE

Dedicated to the memory of Guido Stampacchia

Abstract. — We consider calculus of variations of the Yang-Mills functional in dimen-
stons larger than the critical dimension 4. We explain how this naturally leads to a
class of — a priori not well-defined — singular bundles including possibly “almost
everywhere singular bundles”. In order to overcome this difficulty, we suggest a
suitable new framework, namely the notion of singular bundles with bounded L2-
curvatures.

1. — Introduction.

1.1 — Yang-Mills functional and the Uhlenbeck Coulomb gauge extraction result
mn dimensions n < 4.

Let n: P—M be a principal G-bundle over a compact n-dimensional
Riemannian manifold M. The structure group G of P is assumed to be a compact
Lie group with Lie algebra g. We denote by D(P) the space of connections on P.
For any connection D let Fp € QP ,ad(P)) denote the curvature of D. The
Yang-Mills functional is then defined as

(1.1) YMD) = [ |F dvol,,
M

where dvol, denotes the volume form on M induced by the metric g. The norm of
Fp is induced by the Killing form on g and the Riemannian metric on M.

In order to proceed to calculus of variations (such as finding critical points,
minimizers and saddle points) of the Yang-Mills functional, a first approach
consists in enlarging the class of smooth connections to the class of Sobolev W'?2-
connections. The space of these Sobolev W'2-connections is defined to be —
modulo the addition of an arbitrary smooth reference connection D — the space
WY2(I(T*M ® ad(P))). The latter consists of W!2-sections of the bundle
T*M © ad(P) which are in the closure of smooth sections for the Wl2-norm (see
for instance [Uhl], [FrU] for details). For smooth local trivializations P =
U 7~ 1(U;), where the U; form a covering of M by open sets over which the bundle

el
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P is trivial and transition functions of P by g;; € C*>°(U; N U}, @), the previously
defined W'2-connections are families of W'2-1-forms A4; on U; taking values into
the Lie algebra g. Moreover, they are related by the formulae

Aj = g5 Aigij + 955 g in WA U;NU) @ g).

This framework of Sobolev connections and Sobolev gauge transforma-
tions over smooth bundles was successful for pursuing calculus of variation
questions for the Yang-Mills functional up to the critical dimension n = 4.
Note that the dimension 4 is critical in the sense that in this dimension the
functional is conformally invariant which is related to the fact that the Yang-
Mills equation (1.5) is critical precisely in dimension 4. The success of this
framework is due to the fundamental Coulomb gauge extraction theorem by
K. Uhlenbeck.

THEOREM 1.1 [Uhl]. — Let n < 4, then there exists e(n) > 0 such that the fol-
lowing holds: Let A be a W2-1-form over the unit ball B" taking values into the
Lie algebra g, i.e. A € WY2( AL (B") ® g). Assuming

(1.2) YM@A) = [ |dA+A N AP da" < en),
Bn

there exists a W>2-map g from B" into G, i.e. a gauge transformation, such that
the 1-form Acou given by Acpy = g "Ag + g~ 'dg satisfies the W'2-norm control

(13) Ao B2y < C) f dA + A NAP da,
B?Z

where C(n) is independent of A, and the Coulomb gauge condition

(1.4) d* Ay =0 in B o

This result is the main tool in doing calculus of variations with the Yang-Mills
functional in dimensions less or equal to 4. For instance, it gives the required
coercivity of the Yang-Mills functional in order to get the existence of minimizers
under the small energy assumption (1.2) for some boundary data. Indeed, under
this assumption, the Coulomb gauge representatives of a minimizing sequence of
connections satisfy the W2-norm control (1.3). One can then extract converging
subsequences in W2 and — using the lower semi continuity of the L?-norm — one
gets the existence of a minimizer. The global existence of minimizers for a given
bundle P over a 4-dimensional Riemannian manifold M requires a covering
procedure by balls where the condition (1.2) is satisfied (see [Se]). However, this
could sometimes fail due to the possibility of pointwise concentration of the
Yang-Mills energy which is the famous concentration-compactness phenomenon
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first discovered in [SaU] for the harmonic map setting and extended to Yang-
Mills in [Uh1], [Uh2], [Uh3], [DK] (see also [FrU]J).

A further important contribution of Theorem 1.1 to the calculus of variations
of the Yang-Mills functional in dimensions less or equal to 4 is the following fact:
The existence of the Coulomb gauge A.,,; is fundamental for looking at critical
points of YM since it “gives” it’s elliptic nature to the Yang-Mills equation. More
precisely, the intrinsic Yang-Mills equation suffers from a too large symmetry
group whereas — once the Coulomb gauge is fixed — it reads

% 1
(15) AAcoul =d [AcoulaAcoul] — {Acoul: * (dAcoul + é [AcoulvAcoul]>:| 3

which clearly is a non-linear elliptic equation critical in dimension 4 for the W12-
norm of A.

In recent years, there has been an increasing interest for pursuing calculus of
variations of the Yang-Mills functional in dimensions larger than the critical
dimension 4. Geometric motivations for looking at the analysis of Yang-Mills
fields and, more generally, at the analysis of gauge theories in higher dimensions
can be found for instance in [DT] and [Ti]. However, Theorem 1.1 does not hold
for the Yang-Mills energy in dimensions larger than 4, it is easy to construct
counter examples to it. There have been several attempts for finding higher
dimensional versions of the Uhlenbeck result (for instance in [MR], [TT]). These
attempts could only be successful through requiring the curvature to be small in
an ad-hoc Morrey space. Although such assumptions “naturally” extend hy-
pothesis (1.2) from a “functional analysis” point of view, they are far too strong
for looking at critical points of the Yang-Mills Lagrangian with bounded energy
in its full generality.

Another difficulty for doing caleulus of variations of the Yang-Mills functional
in dimensions larger than 4 comes from the fact that there is a need of enlar-
ging the class of connections and bundles beyond the W'2-connections on
smooth bundles. In order to motivate this, we shall make a digression to the
framework of harmonic maps.

1.2 — The topological singular set of W'2-Sobolev maps into S2.

Since the middle of the 20th century, for doing calculus of variations of the
Dirichlet energy

Eu) :f|Vu|2 dx"
Bﬂ

for maps « from the unit ball B ¢ R” into the unit 2-sphere S2, it has become
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natural to extend the class of smooth maps to the class of W'2-Sobolev maps
defined by

W2(B", §2) .= {u e W2(B", R%) st. |ul@)=1 for ae. x ¢ B”}.

This class of maps is suitable due to the coercivity and the lower semicontinuity
of E on W12(B", §2). Critical points of £ are called harmonic maps and satisfy the
equation

(1.6) Mu+u|Vul> =0  in  D(B").

The dimension 2 for £ corresponds to the dimension 4 for YM. It is indeed this
critical dimension for which £ is conformally invariant and for which the cor-
responding Euler-Lagrange equation (1.6) is critical for the W2-norm (in the
non-linear elliptic PDE terminology). On the other hand, the dimension 2is also a
critical dimension for W'2(B",S?) due to the following result:

THEOREM 1.2 [Wh], [ScU2]. — Smooth maps are dense in W-2(B", S?) if and
only ifn < 2. O

The map v(x) = x/|x| is an example of a map which cannot be approximated
strongly by smooth maps in W'2(B3%,S?). It has a singularity at the origin of
“topological nature”. More precisely, the restriction of v to any 2-sphere con-
taining the origin is a map between 2-spheres which is not homotopic to a con-
stant and has topological degree equal to +1. Using the integral representation
of the degree this reads

(1.7) fv*co:—}—l,
oB

where B is any ball containing the origin 0 and w is an arbitrary two-form on S
whose integral is equal to one. The last equation can also be written in the form

(1.8) dw'ew)=3d, 1in D(B).

The realization of non-zero homotopic maps on a “full measure” of 2-spheres in B>
is in fact the obstruction for a map in W'2(B3, S?) to be strongly approximable by
smooth maps in the W'2-norm. Precisely, the following theorem holds:

THEOREM 1.3 [Be2], [BCDH]. — A map u in W-A(B?, S?) is in the closure of
C>(B3,8?) for the strong W'2-topology if and only if
(1.9) dw'w) =0 in DB,

where w is an arbitrary two-form on S* satisfying [ w # 0. O
SZ
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In the attempt to approximate an arbitrary map in W'2(B?, S?) by maps being
“as regular as possible” F. Bethuel introduced the following space:

we WYB?, 8% st. Jaq, ..., ay € B? with }

) 3 Q2y _
Rix(B%59 = {u & Cx(B\ {ay, .., ay}, 5 and degu, ) = + 1

where deg(u, a;) is the topological degree of small spheres in B? bounding balls
containing the point a; and no other a;. In other words R‘I’?Z(B3, S?) is the sub-
space of maps in W'2(B3,S2) smooth away from finitely many singular points
around which the map has topological degree + 1. The next result motivates the
definition of this space.

THEOREM 1.4 [Bell. — The space Ry%(B3,S?) is dense in W'2(B3,S?) for the
strong W'2-topology. O

Now we consider the regularity theory of the critical points to the Dirichlet
energy E in the Sobolev space W2(B", S?). In dimension 2, for which E is con-
formally invariant and for which the harmonic map equation (1.6) is critical, it was
proved by F. Hélein that W'2-solutions of (1.6) are smooth and even analytic (see
[He]). In contrast to this, it was proved by the second author in [Ril] that — in
dimension 3 — there exist solutions to (1.6) which are everywhere discontinuous.
The counter examples constructed in this work used the possibility for solutions
of (1.6) to realize non-trivial homotopy groups in a dense class of 2-spheres in B5.
Precisely, the support of d(u*w) is the whole ball B3.

When restricting ourselves to solutions of (1.6) which are minimizing ¥ for
some given smooth boundary data ¢, the singular set of « is made of isolated
points with degree £ 1. This is the content of the next theorem.

THEOREM 1.5 [ScU]. — Let ¢ be in C>(0B?,8?). The minimizers of E among
the maps in W'*(B?,S?) equal to ¢ on B® are in R{%(B?,S?). O

The result is optimal in the following sense: For any N € IN there exists
boundary data ¢, of degree zero and a minimizer of E among the maps in
W'2(B3,S?) equal to ¢, on OB which has at least N distinet singular points of
degree +1 (see [HL]).

1.3 — Beyond W2-connections on smooth bundles.

It is now time to make the link between our digression on S?-valued maps
and connections. For smooth connections this link is given by a theorem of
M. S. Narasimhan and S. Ramanan [NR1] and [NR2]. This theorem states that
given a connection on a principal U(k)-bundle P over a manifold M there exists
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a smooth map » from M into the complex Grassmannian manifold G(m, k) (for
some m depending of k and the dimension of M) such that the given connection
is the pull-back under u of the universal canonical connection of the Stiefel
bundle V(m, k). (To the knowledge of the authors, no weak version of the
Narasimhan-Ramanan theorem is known in the framework of Sobolev con-
nections on smooth bundles which is certainly an interesting open problem).
Motivated by the situation in the Narasimhan-Ramanan theorem, we consider
first the case k = 1 of Abelian principal U(1)-bundles over B3. In this setting,
the corresponding complex Grassmannian manifold becomes CP! and the
Stiefel bundle is given by the so-called tautological Hopf fibration S? — CP!
with universal canonical curvature form given by the volume form g of S2.
Without appealing to Narasimhan-Ramanan result itself but getting inspired
by it, we can follow our intuition guided by the examples given by the pull-back
curvatures of the form F := 2u*wg where u is a map from B? into S?. Note
that if u is smooth F is an exact form on B3.
In trying to minimize

YM\(F) = ] IF| do®
BS

among smooth curvatures F = dA of the Abelian trivial bundle over B? for a
fixed boundary condition 7, F' = ¢ on OB? (15 denotes the inclusion map of B3
into R®) one encounters the following difficulties:

i) It is not clear whether this infimum is achieved by a smooth curvature.
ii) For some boundary data & there is an energy gap between this infimum
and the infimum of YM; among curvatures of singular bundles over BS.

The first remark i) is clear from a PDE point of view. Minima of YM; satisfy
the equation d*(dA/|dA|) = 0 possibly coupled with the Coulomb gauge condition
d*A = 0. It is well known that solutions to such PDE can have singularities.

The second remark ii) is motivated by our previous digression on maps. It
could be energetically more favorable to include point singularities in the bundle.
In order to see this, we consider the pull-back of 2wg: by a map u in R%(B?, S?)
with singular set {a1,...,ax}. Then 2u*wg: is a smooth curvature of the smooth
U(1)-bundle P, over B?\ {ay,...,ay} with first Chern class given by the degree
of the map u on small spheres surrounding the a;

c(Py) = [iu*wsz} in  H*B?\ {ay,...,ax},R)
(1.10) . N
and d<Eu*wsz) = ;deg(u, a;) o, in D'(B3).

(3

Now take &, to be a sequence of smooth 2-forms converging in measure to
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(On — J5) wg: where oy (resp. ds) denotes the Dirac masses at the north (resp.
south) pole of OB® = S2. It is not difficult to see that

f|F| da? ; F € C( N2 (B)
(1.11) lim inf{ — N -S].

n——+00
dF =0in D'(B?) and i, F = ¢,

However, by allowing the bundle to have point singularities around which some
Chern class is realized, without too much effort one can prove that

f\F|dac3; Jan, - ay € B, dy,... dy € {~1,+1}
B3

(1.12) liril inf with F € C°(A% (B3 \ {a4,...,ax})), =0.
N——+00
N
«dF =4ny " d; ,, in D'(B®) and iy F = &,
i—1
Comparing (1.11) with (1.12) we obtain the desired energy gap and conclude
remark ii).

The corresponding problem for the Yang-Mills 2-energy (1.1) and a non-
Abelian structure group G is even more severe. It arises first in dimension n = 5.
To simplify the presentation we take the simplest non-Abelian setting with
G = SU(2). In trying to minimize

YMy(F) — f PP da®
B

among smooth curvatures F' = dA + A A A of the trivial SU(2)-bundle over B®
— ie. A is a 1-form with values in su(2) — for a fixed boundary condition
Ul = Z on OB® (155 denotes the inclusion map of dB® into R®) one again
encounters the following two difficulties:

i) It is not clear whether this infimum is achieved by a smooth curvature.
ii) For some boundary data = there is an energy gap between this infimum
and the infimum of YM; among curvatures of singular bundles over B°.

The first remark i) is far more problematic in this non-Abelian setting than in
the previously described Abelian case. Indeed, in the Abelian situation the
Lagrangians YM, are coercive for all p > 1. This is because of an “Abelian”
Coulomb gauge extraction which is a simple linear problem that can be solved for
any amount of YM-energy and in arbitrary dimension. However, in the present
non-Abelian case — as we already saw in Section 1.1 — due to the fact that even for
small YM;-energy Uhlenbeck’s Coulomb gauge extraction result fails in di-
mensions larger than 4, coercivity is missing. Therefore we cannot immediately
conclude the existence of a minimizer — regular or not — of Y M.
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The second remark ii) can be illustrated by an example similar to the one we
saw in the Abelian case above. Taking a sequence of smooth boundary data
En € C®( A2 (0B%) ® su(2)) converging in Radon measure on OB® and in
Cr (0B®\ {N,S}) to

Foo 1= 2[(d9€1 dxs + dxs drg)or + (daqg des — das dieg)os
+ (daey doeq + dacz dies)os)
where o1, o2 and o3 are the Pauli matrices forming an orthonormal basis of su(2)
and N and S respectively denote the north and the south pole of the 4-sphere

OBP®. Restricting to the smooth trivial bundle over B® and W'2-connections, it is
then not difficult to see that

f|dA FANAR

(1.13) lim inf{ _ =IN-§].
n—-oo A e WAL (BD) @ su(2)),

U dA+ANA) =3,

On the other hand by allowing the bundle to be singular one can save energy in
such a way that

f|FD\2dx5;3a1,...,aNeB5, dy,....dye{-1,+1}
B5

and D is a C*°-connection

(1.14) nl—lrrfoo inf on the SU(2)-bundle over B? \ {ay,...,ay} given by

N
«d(tr(Fp AFp)) =8> d; ds, in DB

i=1

At this stage it is important to observe that a connection D on a smooth bundle
over B\ {0} with some non-zero second Chern class around the origin does not
admit a gauge A in W2( Al B, su(2)). Indeed, if such a gauge would exist, one
would have

*d[t?"(FA /\FA)] =0,

where Fy = dA + A N A, contradicting the assumption on the topology of the
SU(2)-bundle. This last fact is a consequence of a density result of smooth
connections over S* for which we refer to Proposition 3.1.

Conclusion to the Introduction: The calculus of variations of the Dirichlet
energy naturally leads to the class of Sobolev maps W'2(B", S$?). In dimensions
larger than the critical dimension 2, maps in this class can have “topological-
type” singularities even when considering the minimizers to £ which are ex-
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pected to have the highest regularity. The parallel between smooth maps and
smooth connections on smooth bundles given by the Narasimhan-Ramanan re-
sult — which possibly also works in a non-smooth framework — suggests to extend
the class of smooth (or even Sobolev) connections on smooth bundles to an en-
larged class of connections on singular bundles. Up to now we introduced sin-
gular bundles in critical+1 dimensions — 2 + 1 for U(1)-bundles and YM; and
4 + 1 for SU(2)-bundles and YMy — which are smooth apart from finitely many
points in the base. When doing caleulus of variations of YM; or YM3, the position
and the number of these points have to be arbitrary. Therefore the question of
describing the “boundary” of this space of singular bundles, meaning that the
number of singular points tends to infinity, arises naturally. Furthermore, one
needs to formulate the corresponding Yang-Mills YM; and YM, variational
problems for singular connections on singular bundles and the Euler-
Lagrange equations corresponding to their critical points. (*)

2. — Singular Abelian bundles with bounded L!-curvatures.
2.1 — L'-curvatures of singular U(1)-bundles and an approximation result.

In this section we introduce a “closure” for the L!-norm of the space of smooth
curvatures of U(1)-bundles over B3\ {isolated points}.

DEFINITION 2.1 [L!-curvatures of singular U(1)-bundles]. — An L'-curvature
of a singular UQ1)-bundle over B is a measurable real-valued 2-form F sa-

tisfying
i)

2.1) f|F|dac3 <to00.
B3

i) For all x € B? and for almost every 0 < v < dist(x, 0B®) we have

1o
22) = [ tswFe?,

where 15p, ) 1s the inclusion map of the boundary of B,(x) into B®.

(*) An interesting parallel between smooth harmonic maps and smooth Yang-Mills
fields, also inspired by the Narasimhan-Ramanan result, can be found in [DV].
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Observe that a real-valued 2-form F in L! satisfying

[ i =0
OB,.(x)

for every x in B? and almost every 0 < » < dist(x, 0B?) is exact, since there exists
an L1-1-form A such that F' = dA in distributional sense. This then implies that F
can be interpreted as an L!-curvature of a smooth trivial U(1)-bundle over B3. Also
note that L!-curvatures of smooth U(1)-bundles over B3 \ I, where [ is a discrete
subset of B?, are examples of L!-curvatures of singular U(1)-bundles over B>.

In analogy with the situation of R{%(B?,8?%) in W'*(B?, §?), one can prove the
following density result (see [KR]) which also motivates Definition 2.1.

THEOREM 2.1. — Let F be an L'-curvature of a singular U(1)-bundle over B,
Then there exists a sequence of finite families of points, I* = {da%,...,da%,}, @
sequence of finite families of +1, DF = {dk, ... ,dé”vk} and o sequence of smooth
curvatures F* of the smooth U(1)-bundles over B> \ I* given by

Nk
(2.3) «dF" =4 " dy It in D'(B%),
i=1

such that
(2.4) F¥*—F  strongly in L'(B%).
O

Sketch of the proof of Theorem 2.1. Its structure is modelled after the
proofs of approximation results for maps between manifolds similar to Theorem
1.4 given by F. Bethuel in [Bel]. Precisely, we proceed as follows:

i) Choice of an e—ball covering : We choose a covering of B3 by Ny regular
famillies of disjoint balls of radius ¢, where N is an universal number. This cov-
ering is chosen by the mean of the mean value and Fubini theorems in such a way
that the L!-difference between F and the two form F on B3, which on each &-ball is
equal to the average of F, tends to zero on the boundary of the corresponding &-
balls as ¢ goes to zero.

ii) Good and bad balls: For each of the N, famillies the good &-balls are the
ones for which the L!-norm of the restriction of F to the boundary is below a
certain universal quantity. In particular, this quantity is small enough to ensure
the triviality of the bundle over the boundary of the good cubes for which the
restriction of F to this boundary is a weak curvature (due to condition (2.2)). The
bad balls are the remaining balls and for energy reasons the total volume of their
union tends to zero as ¢ tends to zero.
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iii) Smoothing on the boundary: On the two-dimensional submanifold given
by the union of the boundaries of the ¢-balls the L!-norm of F is critical and we can
hence approximate F by smooth curvatures F applying a density result corre-
sponding to Theorem 1.2 for maps.

iv) Gauge fixing: On the boundary of each good e-ball of the first family we
consider the “linear Coulomb gauge” for the approximation ¥ of .k given by
the previous step, i.e. F = dA.py and d*A.y,; = 0 on dcube. At this stage it is
important to observe that in the present Abelian situation, changing the gauge
does not change the 2-form defining the curvature. This will no longer be the case
in the next section and hence will be the main source of new difficulties in the
approximation procedure of non-Abelian-type singular curvatures.

v) Euxtensions: On the good ball in the first family we replace F' by the
exterior derivative of the harmonic extension of the linear Coulomb gauge of the
approximation F. On the bad balls we take a radial extension of F' which gives rise
to a topological point singularity in the bundle.

vi) Iteration we repeat the procedure for the further families one after the
other.

vii) Smoothing: We have obtained in this way a family of curvatures of
smooth bundles over B3 minus finitely many points (the centers of the bad balls).
We take locally, away from this finite familly of centers of bad balls, a gauge for
these curvatures that we smooth by taking convolutions with a smooth approx-
imation of the Dirac mass.

viii) Passing to the limit as & tends to zero: The last step is the checking-test
step where we collect the estimates in the previous steps and prove that the
constructed sequence strongly converges to F in L! as ¢ tends to zero.

2.2 — Connecting the topological singularities of L*-curvatures of singular U(1)-
bundles.

The purpose of this subsection is to give a better description of the numbers
of topological singularities that a singular U(1)-bundle with bounded L'-cur-
vature could have. To that aim we should again mimic the situation for maps in
W2(B3, §?).

First recall that a finite mass integer rectifiable 1-dimensional current [, in
R" is a linear form on smooth compactly supported 1-forms of R" satisfying the
following two conditions:

i)

+00

Ve QYR (L) = f 0y,

k=1,



892 THIEMO KESSEL - TRISTAN RIVIERE

where I';, are disjoint measurable subsets of oriented C'-curves in R” with re-
spect to the 1-dimensional Hausdorff measure ' and 0 is a measurable map on
the union of the I'j, taking values into 7.
ii)
+00
ML) = Zf 0] dH! < + oo,

k=1,

where M(IL) is called the mass of L.

For any 1-dimensional current T in R”, the boundary of T is the distribution
in D'(R") defined by

Vo € C'(R") (9T, ¢) := (T, dp).

Moreover, we shall use the following notation. For any 2-form F in L'( A? (B?))
we denote by [F'] the 1-dimensional current given by

Yy € QNRY)  ([F]y) ::fF Ay
R™

In trying to control the number of possible topological singularities for maps
in WH2(B3, 82), M. Giaquinta, G. Modica and G. Souéek obtained the following
result:

THEOREM 2.2 [GMS]. — Let u be a map in WH2(B3, S%) and let o be a. 2-form on
S? satisfying f w = 1. Then there exists a finite mass integer rectifiable current L,

in B3 such that

(2.5) dlu'w]l = 9L in D'(B?).
O

The minimal mass L(u) among all rectifiable currents L satisfying (2.5) was
first introduced under the name of minimal connections for maps in Ry% in
[BCL] and, for arbitrary « in W'2(B3,S?), is given by the following formula:

Liu) —sup{fdeu w— féu w i &eLip®) , |d¢|, < 1} .
OB

This quantity is the “energy defect” for strongly approximating » in W2 by

smooth maps in the sense described below. For any smooth map ¢ from 0B3

into S? with degree 0, we denote by Cé(B3 S?) (resp. W1 2(B3, 8%)) the maps in

CY(B3,8?%) (resp. in W'2(B3, S?)) equal to ¢ on the boundary Then it is shown
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in [BBC] that

2.6) inf f \Vulfda® = inf f IVl da® + 2L(u) .
ueCyB*$) 2, ueW, (B2.5%) &

Going back to the framework of singular U(1)-bundles with bounded L!-
curvature, we have the subsequent result (see the proof in [KR]):

THEOREM 2.3. — Let F be an L'-curvature of a singular UQ1)-bundle over B,
Then there exists a finite mass integer vectifiable current L in B® such that

(2.7) i O[F1=01L inD(B.
O

Let @ be a smooth 2-form on S? such that [ @ € 7. Denote by F>(B?) the

space of smooth L!-bounded curvatures on smgi)th bundles over B? \ I, where [
is a discrete subset of B3, and by F3(B?) the subspace of 2-forms F in F>(B?)
whose restriction to 9B? equals @. Finally, denote by ﬁ(B?’) the closure of
Fa (B?) for the L!-norm. Because of Theorem 2.1 this closure coincides with the
space of L!-curvatures of singular U(1)-bundles on any open subset U cc B3.
Similarly to the case of maps, for an L!-curvature F in F7;, the minimal mass
among the 1-dimensional integer rectifiable currents satisfying (2.7) is given by

1 o
(2.8) L&) ZEsup{é[deF—E;é @ ; EelipB®), ||d., < 1} )

Moreover, assuming [ @ = 0 and denoting by C3%,( A? B%) the space of smooth
/ ,

— 5
closed 2-forms in B3 whose restriction to 9B equals to @, we have the next result
proved in [KR]:

THEOREM 2.4. — In the above setting we have
2.9) inf f IF|de® = inf_ f \F| do® + 4nL(F).
FeCx (2B J o=
B > B
3. — Singular SU(2)-bundles with bounded L2-curvatures.
3.1 — Definition and approximation problems.

In trying to extend the previous section to the situation of non-Abelian SU(2)-
bundles over B® one again meets similar difficulties. In the Abelian case of sin-
gular U(1)-bundles over B? there was no global representation of a connection by
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a 1-form A such that dA = F. Likewise, in the non-Abelian case, the presence of
topological-type singularities in the base B® for the SU(2)-bundles, i.e.
d(tr(Fp N Fp)) #0, prevents the existence of a global representative A €
.QI(B5, su(2)) for a connection D such that F, = dA + A A A. However, the main
difficulty in the non-Abelian case comes from the fact that the adjoint action of
the Lie group SU(2) on the 2-forms representing the curvature, given by

ady(Fp) =g ' Fpg,

is non-trivial.

DEFINITION 8.2 [LZ-curvatures of singular SU(2)-bundles]. — A represen-
tative of an L2-curvature of a singular SU(2)-bundle over B® is a measurable 2-
Sform F with values in su(2) satisfying

i)
(3.1) f|F\2dx5 < too.
BS

ii) Forall x € B? and for almost every 0 < r < dist(x, OB®) the restriction
of F to 0B, (x) ~ S* coincides — modulo the adjoint action of measurable maps
into SU2) — with the curvature of a W'2-connection on a smooth SU(2)-bundle
over OB, (x).

An L2-curvature of a singular SU(2)-bundle over B® is an equivalence class
[F] in the space of 2-forms F' € L2( A2 (B®) ® su(2)) satisfying i) and i) for the
equivalence relation given by the adjoint action of measurable maps g in
L>(B%, SU2)). O

The second condition ii) can also be stated as follows: For all x € B® and for
almost every 0 < r» < dist(x, OB®) there exists a smooth bundle over 9B,.(x) and a
W12_connection D on this bundle such that for any smooth local trivialisation of
the bundle over some contractible open set I/ of 9B, (x) there exists a measurable
map g from U into SU(2) such that

g'Fg=dA+ANA inlU,

where A is the 1-form in W“2( Al (/) ® su(2)) representing D in this trivializa-
tion.

Observe that our assumption ii) corresponds to condition (2.2) in the defini-
tion of L!-curvatures of UU(1)-bundles, since it implies that for all x € B? and for
almost every 0 < r < dist(x, 0B®) we have

1

(32) o5 | tmwtr@ AP €7,

OB,.(x)
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Because of the non-trivial adjoint action of the gauge group on forms re-
presenting singular L2-curvatures, we have to adjust the topology on the space of
these curvatures. One possibility would be to consider the topology induced by
the metric for L2-curvatures of singular SU(2)-bundles defined by

1

o . | 2 35
(3.3) d(LFy ), [F)) "gemﬁélfsm»{ Bf [Fy— g7 Fag] dx] :

An alternative is to construct a distance function based on intrinsic quantities.
At a point x the norm of the curvature |F|2(9c) € R™ and the Chern form
tr(F A F)(x) € A*R® are the most commonly used gauge invariant quantities.
However, these two objects do not uniquely characterize F(x) — modulo the
adjoint action of SU(2). A more complete gauge invariant object is given by

(3.4) tr(F @ F)(x) € A2(R%) @ AX(R?).

This tensor product does characterize F(x) — modulo the adjoint action of SU(2) —
in a unique way. Moreover, it encodes the full information about the curvature at
x which is a consequence of the next elementary lemma (see [KR]).

LEMMA 3.1. — Let F and G be two elements of L2( A% (S*) ® su(2)) and assume
that

(3.5) forae xeSt  tr(FeF)x)=trG e G)().
Then there exists g € L>(S*,SU(2)) such that
(3.6) forae xeSt gl x) Fx) glx) = Gx).

|

From this result we obtain that an L?-curvature of a weak SU(2)-bundle is
uniquely determined by the tensor field ¢»(F ® F'). Then, instead of the metric
topology given by (3.3), we could also consider the metric defined by

(3.7) P IF5) = [ 1Py @ Fy) — Py @ Fy)| da.
BS

One can show that the two metrics d and § generate equivalent topologies (see
[KR]), yet 6 is more explicit and thus more convenient to handle.

Because of the above considerations, an element in L1( A2 (R?) @ AZ(R?)) for a
given 2-form F in L2( A2 (R®) @ su(2)) satisfying condition ii) of Definition 3.2 can
also be called an L2-curvature of a singular SU2)-bundle over BP.

The following question is still open and represents the approximation prop-
erty in Theorem 2.1 for the non-Abelian case.
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Open problem 1. Let tr(F @ F) € L1( A2 (B%) @ A2(B)) be an L?-curvature of
a singular SU(2)-bundle over B°. Does there exist a sequence of finite families of
points, I = {daf, ..., dk,}, a sequence of finite families of £ 1, DF = {d¥, ... d%,},
and a sequence of smooth connections D¥ over the smooth SU(2)-bundles over
B\ I* given by

N/r

(3.8) sd[tr(Fpe NFpo)] = 87~ df O in D'(B°),
i—1

such that

(3.9) tr(Fpe @ Fpi) — tr(F @ F)  strongly in L*(B%)?

A proof of this open problem should follow steps i) to vi) of our proof of Theorem 2.1.
For instance, step iii) is a consequence of a proposition proved in [KR].

PRrOPOSITION 3.1. — Let P be a principal SU2)-bundle over a compact
4-dimensional Riemannian manifold M. Let D be a W'2-connection on
P. Then there exists a sequence of smooth connections D* on P such that

(3.10) DF—D  strongly in W2 (I'(T"M ® ad(P))) .
O

Let & be a positive constant smaller than &(4) in Theorem 1.1 so that for any
connection satisfying the small Yang-Mills energy condition YM(Fp) < &, there
exists a unique Coulomb gauge with estimate (1.3) - see a proof of this fact in [KR].
The next question is strongly related to the complete solution of Open problem 1
and it is related to the fact that on the space of curvature of W2 connections over
S* x SU(2) satisfying the small energy assumption YM(Fp) < & the topology
given by the W12 —distance between the Coulomb gauges is not equivalent to
the topology generated by ¢. Understanding the difference between these two
topologies is, in itself, an interesting analysis problem that should have interesting
consequences. Precisely we raise the following question:

Open problem 2. Identify those W 2-1-forms A on S* with values in su(2)
which on the one hand satisfy the small energy condition

(3.11) IF4* < e,
/

where Fy = dA + A N A, and on the other hand have the property that for any
sequence A* in W2( Al (S%) @ su(2)) the convergence

(3.12) tr[Fae @ Fae] — tr{Fa @ Fa] i L\SY)
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also implies

(3.13) Ak

. 1,2
coul > Acoul m W )

where AE - and Ay are the Coulomb gauges of the connections given by A* and
A respectively. Does there exist a dense family of such A for the WY2-norm in the
space of 1-forms merely satisfying the small energy condition (3.11)7 O

Next denote by F SU@ (B®) the space of curvatures of smooth connections with
finite Yang-Mills energy on smooth bundles over B® \ I, where [ is a discrete
subset of B°. Let 5 be a smooth 1-form on S* with values in su(2). Denote by
F SU(Z);y(B ) the space of curvatures in F SU(Z)(B ) whose restriction to 9B° is
gauge equivalent to dn + # A . Finally, denote by F SU(Z)”(B ) the closure of
F3ue. ”(B ) for the topology induced by the metric d or equivalently by ¢. It is not
difficult to show that an element F in Fg; U®). ,I(B )is an L2-bounded curvature of a
singular SU@2)-bundle. In this setting, it is natural to study the following
question:

Open problem 3. Is the infimum given by

(3.14) _inf \F? da®
FeF gy, (B7) B

attained? If so, does the singular set of any minimum consist of isolated points,
i.e. are the minima in F 3y e, ,(B*)?

3.2 — The topological singular set of singular SU2)-bundles with bounded L*-
curvatures.

The topological singular set of a singular SU(2)-bundle over B® with a
bounded L?-curvature F is the distribution given by

(3.15) «d(tr(F AF)) € D'(B%).

Though the strong approximation property for L?-bounded curvatures of sin-
gular bundles is still an open problem, we can prove the approximability of the
topological singular set of L?-bounded curvatures by the topological singular set
of smooth SU(2)-bundles over B®\ {singular points}. Precisely, the following
result is proved in [KR].

THEOREM 3.1. — Let tr(F @ F) € L} A% (B®) ® N2(B?)) be an L2-curvature of a
singular SUQ2)-bundle over B°. Then there exists a sequence of finite families of
points, I* = {d¥, ... ak,}, a sequence of finite families of £ 1, D" = {d, ..., dk,},
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and a sequence of smooth connections D* over the smooth SU(2)-bundles over
B\ I¥ given by

Nlr

(3.16) «d[tr(Fpe AFpo)] =81 " df T in D'(B°),
i=1

such that

(3.17) limsup [ |tr(Fpe @ Fpo)| di® < f tr(F © F)|di®

k—+o00 B i
and
(3.18) tr(Fpi A Fp)—tr(F AF)  in D'(AL (BY).

O

This approximation result allows us to describe the topological singular set of
singular SU(2)-bundles corresponding to Theorem 2.3 for the Abelian ones.

THEOREM 3.2. — Let F be an L2-curvature of a singular SU(2)-bundle over B.
Then there exists a finite mass integer vectifiable curvent L in B® such that
1

(3.19) =

Atr(FAF)]=0L in D(B%.
O

Similarly to the Abelian case and the L!-energy, for a given L2-bounded
curvature F' in ??U(ZM(B%, the minimal mass among all 1-dimensional integer
rectifiable currents L satisfying (3.19) is given by

) [acniwnr) — [ ¢ rw, A Fy
(320) L(F) = gsup Bb OB>
st. ¢eLip® , |l <1
Denote by W,}’z( AL (B?) ® su(2)) the space of W'2-1-forms in B? with values in
su(2) whose restriction to dB® is equal to the boundary data 7.

THEOREM 3.3. — In the above setting we have

(3.21) inf f dA +ANAPda® = inf f \F? da’ + 872 L(F).

AW N BIesu@) 5. FeFsven s

O

Note that in this result the condition A € W;‘z( A (B%) ® su(2)) can of course
be replaced by A € C;*(A! (B?) @ su(2)).
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The relaxed energy defined by

(3.22) (F) = f \F? da? + 872 L(F),
B

was already considered by T. Isobe in [Is1] and [Is2] for connections on smooth
SU(2)-bundles over B\ I, where I is a discrete subset of B°.

Open problem 4. Is the infimum given by

(3.23) inf f \F|? da® + 872 L(F)
FeFsya, B

attained?

More generally, one can ask about the existence of minima in ??U(Z),u of
functionals of the form

(3.24) Zo(F) = f FEda® + 822 L(F, G),
B

where G is a fixed arbitrary element in ?;OU(ZM and where we use the notation

fdé/\tT(F/\F) fdew(GAG)
(3.25) LF,G) = ¢5sup]

st. &eLip@B3), |dé, <1

A positive answer to Open problem 4 and the generalization following it, would
open the door to the possibility of constructing everywhere discontinuous
Yang-Mills fields on B® with a dense topological singular set in BP, i.e.
supp(d(tr(F A F))) = ﬁ, as it was done by the second author in [Ril] for har-
monic maps.
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