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Diagonal Numerical Methods for Solving Lipschitz Global
Optimization Problems (*)

DMITRI KvaAsov

Abstract. — This paper briefly describes some results of the author’s PhD thesis®, which
has been specially mentioned by the Italian INDJAM-SIMAI Committee for the
Competition “The Best PhD Thesis in Applied Mathematics defended in 2004-2006".
In this work, a global optimization problem is considered where the objective function
is a multidimensional black-box function satisfying the Lipschitz condition over a
hyperinterval and hard to evaluate. Such functions are frequently encountered in
practice that explains a great intevest of researchers to the stated problem. A new
diagonal scheme which is aimed for developing fast global optimization algorithms is
presented, and several such algorithms are introduced and examined. Theoretical
and experimental studies performed confirm the benefit of the new approach over
traditionally used diagonal global optimization methods.

1. — Introduction and problem statement.

The PhD thesis research, briefly described in this paper, is dedicated to
global optimization—a field studying theory, numerical methods, and im-
plementation of models and strategies for solving multiextremal optimization
problems. The rapidly growing interest in this field is explained by both the
raising number of applied decision-making problems, that are modelled by
multiextremal objective functions and constraints, and the significant develop-
ment of the advanced computer facilities during the last decades.

The attention to the field of global optimization is due to advantages that can be
obtained in practice by applying globally optimal solutions instead of local ones
provided by local optimization techniques. In fact, very often in real-life applica-
tions both the objective function and constraints can be black-box, multiextremal,
non-differentiable, and hard to evaluate (see, e.g., [5, 8, 18-20, 33, 34]. An example

(*) Comunicazione tenuta a Bari il 26 settembre 2007 in occasione del XVIII Congresso
dell'Unione Matematica Italiana.

(") The thesis “Multidimensional Lipschitz Global Optimization Based on Efficient
Diagonal Partitions”, supervised by Prof. Ya.D. Sergeyev, has been defended by the
author on May 5, 2006, at the University of Rome “La Sapienza”.
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Fig. 1. — A multiextremal two-dimensional objective function.

of a two-dimensional multiextremal objective function (from the class of functions
considered in [33]) is given in Fig. 1; this type of objective functions is en-
countered, for instance, when the maximal working stress over the thin elastic
plate under some lumped transverse loads are estimated (see [33]). Nonlinear
local optimization methods and theory (described in a vast literature, see,
e.g., [1, 2, 17, 21] and the references given therein) are not very successful in
solving these problems.

It should be stressed that the possibility to outperform the item-by-item
examination techniques in solving multiextremal problems is fundamentally
based on the availability of some realistic a priori assumptions characterizing the
objective function and constraints (see, e.g., [8, 18, 19, 33]). They serve as
mathematical tools for obtaining estimates of the global solution related to a
finite number of function evaluations and, therefore, play a crucial role in the
construction of any efficient global search algorithm.

One of the natural and powerful (from both the theoretical and the applied
points of view) assumptions on the global optimization problem is that the ob-
jective function and constraints have bounded slopes. In other words, any limited
change in the object parameters yields some limited changes in the character-
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istics of the objective performance. This assumption can be justified by the fact
that in technical systems the energy of change is always limited (see the related
discussion in [32, 33]). One of the most popular mathematical formulations of this
property is the Lipschitz continuity condition, which assumes that the difference
(in the sense of a chosen norm) of any two function values is majorized by the
difference of the corresponding function arguments, multiplied by a positive
factor L. In this case, the function is said to be Lipschitz and the corresponding
factor L is said to be Lipschitz constant. The problem involving Lipschitz
functions (the objective function and constraints) is said to be Lipschitz global
optimization problem.

The Lipschitz continuity assumption, being quite realistic for many practical
problems (see, e.g., [8, 9, 19, 33] and the references given therein), is also an
effective tool for constructing global optimum estimates with a finite number of
function evaluations, which allows one to construct numerical global optimization
algorithms and to prove their convergence and stability.

The PhD thesis deals (see [11, 12] for the abstracts of the thesis) with ap-
proaches to solving numerically multidimensional Lipschitz global optimization
problems, in which the objective function is defined over a hyperinterval D of the
multidimensional Euclidean space RY (the so-called box-constrained optimiza-
tion). This particular case of the general global optimization problem can be
formulated as follows

(1) f*=f@)=minf(x), weD,
where

2) D=[a,b]l={xecRY: a() <a() <b(),1<j<N}, a,beRY,
the objective function f(x) satisfies the Lipschitz condition

€)) ) — f@")| < Ll —2"||, «,2" €D, 0<L< oo,

and || - || denotes the Euclidean norm.

The function f(x) is supposed to be multiextremal, black-box, and it can be
also non-differentiable. Thus, global optimization methods using derivatives
cannot be taken for solving the problem (1)-(3). It is also assumed that evaluation
of the objective function at a point (hereafter, this operation will be referred to as
a trial) is a time-consuming operation.

This kind of problem is very frequent in practice. Let us refer only to the
following examples: general (Lipschitz) nonlinear approximation; solution of
nonlinear equations and inequalities; calibration of complex nonlinear system
models; black-box systems optimization; optimization of complex hierarchical
systems (related, for example, to facility location, mass-service systems); ete.
(see, e.g., [4, 8, 19, 20, 33] and the references given therein).

In the next two sections, some known approaches to solving the stated pro-
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blem are briefly described. The diagonal approach from [19] is particularly
studied, especially from the viewpoint of the strategies for partitioning the
search hyperinterval (see section 3). It is shown that traditionally used diagonal
partition strategies execute many redundant evaluations of the objective func-
tion, independently of the rule for selecting hyperintervals for subdivision. This
slows down the algorithm because of the time needed for the function evalua-
tions. A new diagonal partition strategy, proposed in [26], is described in sec-
tion 4. It allows one to avoid the computational redundancy of traditional diag-
onal strategies and to considerably speed up the search. By using this efficient
partition strategy, a new diagonal scheme for creating fast Lipschitz global op-
timization algorithms is introduced (see [15, 30, 31]). In the framework of this
new scheme, several powerful global optimization methods are presented (see
section 5). The problem of testing global optimization algorithms systematically
(see [7, 30]) is also considered in section 5.

2. — State of the art.

A great number of algorithms for solving the problem (1)-(3) have been
proposed in the literature (see, e.g., [3, 4, 8,9, 19, 32, 33] and the references given
therein). These algorithms can be distinguished, for example, by the mode in
which information about the Lipschitz constant from (3) is obtained and by the
strategy of exploration of the search domain D from (2).

There are at least four approaches to specifying the Lipschitz constant L.
First of all, it can be given a priori (see the references in [8, 9]). This case is very
important from the theoretical viewpoint but is not very frequent in applications.
The most practical approaches are based on an adaptive estimation of L in the
course of the search for the global optimum. In such a way, algorithms can use
either a global estimate of the Lipschitz constant (see, e.g., [9, 15, 19, 32, 33])
valid for the whole search region, or local estimates valid only for some sub-
regions of the search domain (see, e.g., [14, 16, 23, 24, 33]). Finally, estimates of
the Lipschitz constant can be chosen from a certain set of possible values (see,
e.g., [6, 10, 30]).

It is important to note that global optimization algorithms using in their work
a global estimate of the Lipschitz constant L (or some value of L given a priori) do
not take into account local information about behavior of f(x) over every small
subregion of the search domain D. As has been shown in [23, 24, 33], estimating
local Lipschitz constants allows one to accelerate significantly the global search.

In exploring the multidimensional search domain D, various adaptive
partition strategies have been proposed in the literature. For example, par-
titions of D into hyperintervals based on evaluating the objective function at
central points of hyperintervals (the so-called center-sampling partition
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strategies—see, e.g., [4, 6, 10]) or at two vertices corresponding to the main
diagonal of hyperintervals (the so-called diagonal partition strategies—see,
e.g., [9, 16, 19, 26]) have been used in Lipschitz global optimization. Various
multisection techniques for partitions of hyperintervals have been studied in
the framework of interval analysis (see the references in [4, 8, 19]). More
complex partitions based on simplices (see, e.g., the references in [9]) and aux-
iliary functions of various nature have also been introduced (see, e.g., the re-
ferences in [19, 33]). Moreover, several attempts to generalize various partition
schemes in a unique theoretical framework have been made (see, e.g., [9, 19, 25]).

Another possible approach to solving multidimensional Lipschitz global op-
timization problems consists of extending some efficient one-dimensional algo-
rithms to the multidimensional case. There exist at least three extensions of
these algorithms to the multidimensional case: diagonal approach (see [19]),
which is a special case of the scheme of adaptive partition algorithms (or a more
general scheme of the ‘divide-the-best’ algorithms [25]), reduction of the di-
mension by using Peano curves (see [32, 33]), and nested global optimization
scheme (see [8, 28, 32, 33]).

In the diagonal approach to solving Lipschitz global optimization problems,
the initial hyperinterval D from (2) is partitioned into a set of smaller
hyperintervals D;, the objective function is evaluated only at two vertices cor-
responding to the main diagonal of hyperintervals of the current partition of D,
and the results of these evaluations are used to select a hyperinterval for the
further subdivision. In the approach of the dimension reduction, a certain space-
filling curve is used in numerical algorithms to approximate the Peano curve with
a prescribed partition order (which depends on the desired search accuracy),
which is then used to reduce the original multidimensional problem to a one-
dimensional one by considering the objective function along this one-dimensional
curve. Finally, in the nested optimization scheme, the multidimensional problem
is reduced to the nested family of one-dimensional subproblems.

3. — Diagonal approach.

Our main attention is focused on the diagonal approach (see [19]). First,
because the extension of one-dimensional global optimization algorithms to the
multidimensional case can be performed naturally by means of the diagonal
scheme (see, e.g., [16, 19, 26]). Second, because the diagonal approach is close
from the computational point of view to one of the simplest strategies—center-
sampling technique—but at the same time, the objective function is evaluated at
two points of each hyperinterval of the current partition of the search domain,
providing in this way more information about the function than center-sampling
methods.
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Fig. 2. — Estimation of the lower bound of a Lipschitz function over a hyperinterval D;
in diagonal algorithms.

In a sense, the diagonal approach can be viewed as an approach unifying ideas
of adaptive partition algorithms and techniques of the problem dimension re-
duction. In order to decrease the computational efforts needed to describe the
objective function f(x) at every small hyperinterval D; C D, f(x) is evaluated only
at the vertices a; and b; corresponding to the main diagonal of D; (see Fig. 2). At
every iteration the ‘merit’ of each hyperinterval so far generated is estimated.
The higher ‘merit’ of a hyperinterval D; corresponds to the higher possibility
that the global minimizer x* of f(x) belongs to D;. The ‘merit’ is measured by a
real-valued function R; called characteristic (see [33]). In order to calculate the
characteristic R; of a multidimensional hyperinterval D;, some one-dimensional
characteristics can be used as prototypes. After an appropriate transformation
they can be applied to the one-dimensional segment being the main diagonal
[a;, b;] of the hyperinterval D;. For example, in Fig. 2 the characteristic R; is
represented by the lower bound of f(x) over the main diagonal of D;, which can be
(under some sufficiently general conditions) the lower bound of f(x) over the
whole hyperinterval D;. It is found at the intersection of the lines K; and Ko,
which are minorant linear (with the slopes j:ﬁ, L > L where L is from (3))
functions for f(x) over this main diagonal.

A hyperinterval having the ‘best’ characteristic (e.g., the biggest one, as in the
information approach (see, e.g., [32]), or the smallest one, as in the geometric
approach, see, e.g., [24, 33]) is partitioned by means of a partition operator (di-
agonal partition strategy), and new trials are performed at two vertices corre-
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sponding to the main diagonal of each generated hyperinterval. The concrete
choice of the characteristic R; and the partition strategy determines the parti-
cular diagonal method.

The diagonal approach is mainly analyzed from the viewpoint of the
partition strategy. Traditionally, two diagonal strategies for hyperinterval
partitioning are used in adaptive partition algorithms: 2N-Partition (see,
e.g., [9, 10, 14, 16, 19) and Bisection (see, e.g., [9, 14, 19]). In the former, a
hyperinterval D; to be partitioned is divided into 2V new hyperintervals by N
mutually orthogonal hyperplanes (where N is the problem dimension from (2)).
In the latter, it is divided into two hyperintervals by only one hyperplane that is
perpendicular to the edge of D; having the largest length. After partitioning Dy,
the function is evaluated only at the vertices of the main diagonals of the hy-
perintervals obtained.

In this connection, two new diagonal algorithms are proposed (see [14]).
They extend the one-dimensional geometric method [24], which uses the local
tuning on the behavior of the objective function, to the multidimensional case
by means of the diagonal approach. The two proposed methods differ in the
usage of the partition strategies they apply to subdivide the search
hyperinterval D c RY: the first method uses the 2V-Partition strategy, while
the second one uses the Bisection strategy. Convergence analysis of both
methods is performed and the results of numerical experiments with the new
methods are reported in [14]. The goal of these numerical experiments is dual:
first, to compare the local tuning technique with the traditional approach using
adaptive estimates of the global Lipschitz constant in the case of diagonal
methods; second, to establish which of two traditionally used diagonal parti-
tion strategies, i.e., 2¥-Partition or Bisection, works better. As shown, the new
diagonal methods with local tuning outperform the methods using adaptive
estimates of the global Lipschitz constant on the considered set of test pro-
blems from the literature. In its turn, the Bisection strategy seems to work
better than the 2V-Partition strategy.

Both the 2V-Partition and Bisection appear to be quite efficient when applied
at a separate iteration of a diagonal algorithm. However, as shown in [14, 26],
both strategies generate too many trial points in the course of the algorithm
execution, independently of the form of the characteristic that determines which
hyperinterval is to be divided at each particular iteration. In fact, high perfor-
mance is ensured in both strategies by evaluating the function only at two ver-
tices corresponding to the main diagonal of each newly generated hyperinterval.
Unfortunately, it turns out that each hyperinterval contains more than two trial
points in both strategies. Another, more serious, difficulty arising when these
strategies are used is the loss of information about proximity of the vertices of
hyperintervals generated at different iterations, which leads to unnecessary
evaluation of f(x) at close points. In the worst case, the vertices of different
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hyperintervals coincide, in which case f(x) is evaluated twice at the same point
(see [15, 26]).

Thus, it is demonstrated that the traditional diagonal partition strategies do
not fulfill the requirements of computational efficiency because of the execution
of many redundant evaluations of the objective function.

4. — New diagonal partition strategy.

A new diagonal adaptive partition strategy, originally proposed in [26] (see
also [27]), that allows one to avoid the computational redundancy in diagonal
algorithms is described. The properties of the introduced diagonal partition
strategy are examined and its advantages with respect to traditional diagonal
partition schemes are discussed (see [15, 26]). In contrast to the traditional di-
agonal partition strategies which execute a great number of redundant function
evaluations and, thus, can slow down the global search, the proposed partition
strategy produces regular meshes of the function evaluation points and sig-
nificantly outperforms the traditional strategies in terms of the number of
function evaluations. It is also demonstrated that the advantages of the new
partition strategy become more pronounced when the problem dimension in-
creases (see, e.g., [15, 30]).

Let us illustrate the new diagonal strategy by an example without going into
describing its computational scheme formally. This example (see Fig. 3) re-
presents partitions of the admissible hyperinterval D = [a,b] from (2) after
twelve iterations of a diagonal algorithm using the new strategy. Trial points of
f(x) are represented by black dots. The numbers around these dots indicate
iterations at which the objective function is evaluated at the corresponding
points. Hyperintervals to be subdivided at each iteration are shown in grey. In
Fig. 3(a), the situation after the first two iterations is presented. At the first,
initial, iteration, the objective function f(x) is evaluated at the vertices a and b of
the search hyperinterval D = [a, b]. At the next iteration, the hyperinterval D is
subdivided into three equal hyperintervals. This subdivision is performed by two
hyperplanes orthogonal to the longest edge (in this case, orthogonally to the
vertical axis) of D and passing through points ¢ and {, selected in such a way that
the longest edge is subdivided into three equal segments (see Fig. 3(a)). Two
trials are performed at both the points ¢ and (.

At the third iteration, three smaller hyperintervals are generated (see
Fig. 3(b)). It seems that a trial point of the third iteration is redundant for the
hyperinterval (in grey) selected for the next subdivision since only two points
over it are used by a diagonal method. In reality, from Fig. 3(c) it can be seen
that one of the two points of the fourth iteration (the iteration number around it
is enclosed in brackets) coincides with the point 3 at which f(x) has already been
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Fig. 3. — Subdivisions of a two-dimensional search hyperinterval by using the new

diagonal partition strategy

evaluated. Thus, it is not necessary to evaluate the function at this point again:
the function value obtained at previous iteration can be re-used. This value can be
stored in a special vertex database (see [15, 29]) and is simply retrieved when
necessary without performing a new trial. Fig. 3(d) demonstrates the situation
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after 11 subdivisions. Among 24 points at which f(x) is to be evaluated, there are
5 repeated points (the iteration numbers around these points are enclosed in
brackets). That is, the objective function is evaluated 19 rather than 24 times. At
the same time, the number of generated hyperintervals (equal to 23), which
reflects the degree of a qualitative examination of the search domain D, is
greater than the number of trial points (equal to 19). Such a difference becomes
more significant in the course of further subdivisions, and the number of trial
points with reused (not re-evaluated) function values increases.

The new strategy produces regular meshes of the trial points in such a way
that one vertex where f(x) is evaluated can belong to several hyperintervals (up
to 2V). Thus, the time-consuming operation of performing a trial is replaced by a
significantly faster operation of reading (up to 2V times) the function values
obtained at the previous iterations and saved in a special database. Hence, the
new partition strategy considerably speeds up the search and also leads to saving
computer memory. It should be highlighted that the advantages of the new
strategy become more pronounced when the problem dimension N increases
(see, e.g., [15, 30]).

The regular structure of subdivisions performed by the proposed partition
strategy determines the existence (theoretically demonstrated in [26]) of a special
indexation of hyperintervals establishing links between hyperintervals generated
at different iterations. This indexation may avoid the necessity of storing the co-
ordinates of vertices of hyperintervals at which the objective function is evaluated,
since they can be calculated by knowing the indices of the corresponding hyper-
intervals. As it can be shown (see [15, 26, 29]), the indexation allows one to store
information about vertices and the corresponding values of the objective function in
a special database. In this case, the hyperintervals can have only pointers to the
vertices and do not duplicate the coordinates and the related description in-
formation, thus avoiding redundant function evaluations. The objective function
value at a vertex is calculated only once, stored in the database, and retrieved when
required. An implementation of this database is not a simple task since both the
operations of retrieving elements from the database and insertion of new elements
into it are to be executed rapidly. A possible way for implementing these operations
is suggested (see [29]), and a prototype of the system managing the database is
presented (see also [31]). This prototype can be used to develop various diagonal
methods based on the proposed efficient partition strategy.

5. — New methods based on efficient diagonal partitions and their numerical
testing.

A new efficient scheme for creating fast Lipschitz global optimization algo-
rithms is thus proposed (see [15, 30, 31]). It relies on the introduced diagonal
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partition strategy and opens interesting perspectives for creating new global
optimization methods. First, popular one-dimensional algorithms may be effi-
ciently extended to the multidimensional case by using this scheme. Some new
multidimensional diagonal methods for solving (1)-(3), based on the new strat-
egy, are briefly described in this section. Second, the proposed partition strategy
may be successfully parallelized by the technique from [28, 33], allowing one to
obtain further speed up.

For example, a multidimensional diagonal information algorithm that uses
an adaptive estimate of the global Lipschitz constant and extends the one-di-
mensional information method from [32, 33] to the multidimensional case is
proposed in [15]. The choice of this particular one-dimensional method is mo-
tivated by good estimates of its convergence rate. Sufficient global con-
vergence conditions of a new type are established for the algorithm. The results
of extensive numerical experiments executed to test this new information al-
gorithm and to compare it with diagonal global optimization methods that use
traditional partition strategies (namely, the 2V-Partition and Bisection stra-
tegies) are reported in [15]. The results of the experiments substantiate the-
oretical conclusions about the properties of the introduced partition strategy.
They demonstrate that the proposed information algorithm has considerable
advantages with respect to the traditional diagonal methods in terms of both
the number of function trials and the qualitative analysis of the search domain.
It is particularly important that the advantages of the new method increase
with the growth of the problem dimension.

Another diagonal algorithm for solving Lipschitz global optimization pro-
blems (see [30]) can be characterized by using a new way to estimate the
Lipschitz constant. In this method (which itself is constructed in the framework
of the proposed diagonal scheme), in order to calculate the lower bounds of the
objective function over hyperintervals, possible estimates of the Lipschitz con-
stant varying from zero to infinity are considered at each iteration. The proce-
dure of estimating the Lipschitz constant evolves the ideas of the popular method
DIRECT from [10] (see also [4]) to the case of diagonal algorithms. A new
technique balancing the usage of local and global information during the global
search is also incorporated in the method. Convergence conditions of the algo-
rithm are established. Extensive numerical experiments are performed (on more
than 1600 functions) in order to compare the proposed method with the DIRECT
algorithm [10] and its modification [6], widely used for solving industrial global
optimization problems. The results of numerical experiments demonstrate
(see [30]) that the new method has considerable advantage with respect to both
the DIRECT-family algorithms in terms of the comparison criteria considered.
It is especially important that advantages of the method become more pro-
nounced when multidimensional multiextremal functions with a complex struc-
ture (like in many engineering applications) are considered.
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Other global optimization methods can also be proposed in the framework of

the efficient diagonal scheme (see, e.g., [31]). They can be successfully applied
for solving application problems. For example, the problem of global tuning of
fuzzy power-system stabilizers, present in a multi-machine power system, in
order to damp the power system oscillations (that plays an important role in
enhancing overall system stability) is considered in [13]. The usage of the new
global optimization techniques can provide a significant improvement on both the
algorithm execution time and the quality (e.g., robustness) of the solution. In
fact, the numerical results from [13] demonstrates that the new methods find a

better global solution by spending a significantly fewer number of expensive

function trials with respect to conventional genetic algorithms frequently used
by engineers to solve this problem.

To conclude, it should be emphasized that a particular attention is also paid to the
problem of testing global optimization algorithms. It is noted that despite the ex-
istence of test implementations and good literature studies describing benchmark
databases and test sets (see, e.g., [3, 5, 22, 33, 34] and the references given therein),
there still exist some difficulties during the work with tests. The lack of complete
information (such as number of local optima, their locations, attraction regions, local
and global values, etc.) describing global optimization tests taken from real-life
applications creates additional difficulties in verifying validity of the algorithms.
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A procedure (and the corresponding software, called GKLS-generator) for
generating three types (non-differentiable, continuously differentiable, and
twice continuously differentiable) of classes of multidimensional and multi-
extremal test functions with known local and global minima is presented in [7]
(an example of a test function from a differentiable class is given in Fig. 4). The
procedure consists of defining a convex quadratic function systematically dis-
torted by polynomials. Each test class provided by the generator consists of 100
functions and is defined only by the following five parameters: (i) problem di-
mension, (ii) number of local minima, (iii) global minimum value, (iv) radius of the
attraction region of the global minimizer, (v) distance from the global minimizer
to the quadratic function vertex. The other necessary parameters are chosen
randomly by the generator for each test function of the class. It should be
stressed that the generator produces always the same test classes for a given set
of the user-defined parameters allowing one to perform repeatable numerical
experiments. A set of criteria for comparison of different methods by using
classes of test functions is also introduced (see, e.g., [30]).

The generator is available on the ACM Collected Algorithms (CALGO) da-
tabase (the CALGO is part of a family of publications produced by the
Association for Computing Machinery) and it is also downloadable for free from
http://wwwinfo.deis.unical.it/~yaro/GKLS.html. It has already been downloaded
by companies and research organizations from more than 20 countries of the
world.
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