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The Martingale Problem in Hilbert Spaces

GIUSEPPE DA PRATO - LuciaNO TUBARO

Dedicated to the memory of Guido Stampacchia

Abstract. — We consider an SPDE in a Hilbert space H of the form dX(t) = (AX(t) +
bX(@®))dt + o(X(£)dW(t), X(0) =x € H and the corresponding tmpsition semi-
group P, f(x) = E[ f(X(t,2))]. We define the infinitesimal generator L of P, through
the Laplace transform of P, as in [1]. Then we consider the differential operator

1 . . .
Ly = §Tr [o(@)a* (@)D*p] + (b(x), D) defined on a suitable set V of regular functions.

Our main result is that if V is a corve for L, then there exists a unique solution of the
martingale problem defined in terms of L. Application to the Ornstein-Uhlenbeck
equation and to some regular perturbation of it are given.

1. — Introduction.

Let us first recall the classical martingale problem. Consider a diffusion (or
Kolmogorov) operator in RY,

(1.1) Ly :% Tr [o(x)o* (@)D?p] + (b(x),Dp), « e R?,

where b : RY — R?and ¢ : R? — L(R", R%) are continuous and bounded. Here d
and r are two fixed positive integers.

For any separable Hilbert space H we denote by £ the space of all continuous
functions from [0, +oc0) to H endowed with the distance

s, i) — i llor — o2l o sy 1.0 € Q
’ = 281 + [Jon — o2l oqo sy 7

The space (2, d) is a complete metric space. We denote by F the g-algebra of all
Borel subsets of Q and, for any ¢ > 0, by #, the evaluation function, that is the
random variable in (22, F) defined by

o) =owl), weR, t>0.

Finally, for any ¢ > 0, F; will represent the smallest g-algebra in F such that all
functions #, with s <t are measurable.
We take now H = R? and give the following
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DEFINITION 1.1. — A probability measure p on (Q,F) solves the martingale
problem with initial point x € R? if

1) w@Q*) =1, where Q" = {w € Q: w(0) = x}.
(ii) For any ¢ € Cgc(l[{d) (called the space of test functions) the family of
random variables {My(p)}, defined by

t
(1.2) Mi(p) = p(ny) — f Lo(n,)ds,
0

s a martingale with respect to the filtration (Fi)io.

There is a close relationship between the martingale problem and the sto-
chastic differential equation,

{ dX(t) = bX®)dt + s(XO)AW (), t>0,

(1.3)
X0) =z e H,

where W(t) is an r-dimensional standard Wiener process.

Assume in fact that equation (1.3) has a unique strong solution for all x € RY
(this holds in particular when the coefficients b and ¢ are Lipschitz continuous).
Then the martingale problem starting from « has a unique solution given by the
law of X(-,x) in Q, see [16].

When b and ¢ are merely continuous it is not difficult to show existence of a
solution of the martingale problem, whereas the uniqueness of such a solution
holds in general only when L is nondegenerate, see [16].

The aim of this paper is to extend the above classical results to a Kolmogorov
operator in a separable Hilbert space H of the form,

(14)  Lp= % Tr [o(x)o" @)D%p] + (Az + b(x), D), « € D(A) N D).

Here A: D(A) C H — H is the infinitesimal generator of a strongly continuous
semigroup ¢4 in H, b: D(b) C H — H and ¢ : H — L(H) are nonlinear mappings.
“Tr” means the trace.

The first problem which arises now is how to choose a “natural” space of test
functions. Notice that in order that the operator (1.4) acts in a space of con-
tinuous functions, one has to require that

(@) ¢ is of class C?,
(ii) The function
DA)NDb) — R, © — (Ax + b(x), Dp),

has a unique extension to a continuous function on H,
(i) o(x)o*(x)D?p(x) is of trace class for any x € H and the function
Tr [o6*D?p] is continuous.



THE MARTINGALE PROBLEM IN HILBERT SPACES 841

We also note that a general theory for elliptic operators with infinitely many
variables as the operator (1.4) is not available so far; for some results in this
direction, see [5].

There are in the literature several generalization of the martingale problem
to infinite dimensions, using different settings. We mention only a few: Yor [18],
Viot [17], Metivier [13], Mikulevicius-Rozovskii [14], Flandoli [9], Zambotti [20],
see also the monograph [4] and references therein.

Our approach will be the following. First, we choose a suitable space of test
function V, for instance of cylindrical functions (related to the particular problem
under examination) such that the expression of L is meaningful for ¢ € V; then
we give the following definition, analogous to Definition 1.1,

DEFINITION 1.2. — A probability measure 1 on (2, F) solves the martingale
problem with initial point x € H with respect to (L, V) if

(G w(@Q*) =1, where Q° = {w € Q: w(0) = x}.
(i) Forany ¢ €V the family of random variables {Mi(p)},-,, defined by

t
(15) Milp) = pn) — [ Lot ds,
0

s a martingale with respect to (Fp)i>o.

In similar way as in the finite dimensional case there is a natural stochastic
differential equation in the Hilbert space H related to the operator (1.4), namely

(1.6) { dX(t) = (AX (@) + bX®)dt + o X(@)dW(?), t>0,

XO0)=xcH,

where W(?) is a cylindrical Wiener process in H. We notice that several equations
in the applications have the form (1.6).

In this paper we shall assume that problem (1.6) has a unique mild or gen-
eralized solution X (-, x) for any « € H, see Definition 2.2 below. In this case we
say that problem (1.6) is well posed.

We notice, however, that this solution is almost never strong and so, we
cannot directly generalize the finite dimensional proof and conclude that the law
of X(-,x) is the solution of the martingale problem starting from wx.

So, we shall proceed as follows,

(i) We assume that problem (1.6) is well posed.
(ii) We consider the transition semigroup (which we assume to be Feller),

(1.7) Pip(r) = Elp(X(E, )], ¢ € Cy(H), v € H,

and its infinitesimal generator (L, D(L)), defined through the Laplace transform
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of P;. We notice that P; is not strongly continuous in general in Cy(H) M) but it
enjoys the so-called pointwise bounded convergence introduced in [7] and con-
sidered by several authors, see Section 2 below.

(iii) We show that (L, D(L)) is an extension of (I, V) and that V is a core for
(L, D(L)) with respect to the pointwise bounded convergence.

(iv) We prove existence and uniqueness of the martingale problem.

It would be interesting to consider the case when problem (1.6) is not well
posed, for instance when a weak solution exists (in particular a Markov selec-
tion). We shall consider this problem later.

In Section 2 we shall study basic properties of the transition semigroup P;.
Section 3 is devoted to prove existence and uniqueness of the martingale problem
and Section 4 to some applications. We notice that in the applications the con-
struction of a core V satisfying Hypothesis 2.3 is the difficult part of the job. In
this note we limit ourselves to consider the Ornstein-Uhlenbeck equation and
some bounded perturbation of this equation.

2. — The transition semigroup P;.

We start with the definition of z-semigroup following [15]. For this we need
the notion of 7-convergence see [15] (see also [7], [8] where it is called bp-con-
vergence, [10] and [11]).

A sequence (p,) C Cy(H) is said to be n-convergent to a function ¢ € Cy(H)
(we shall write ¢, I p) if for any x € H we have nh_r& 0,(@) = p(x) and if

sup ||(/)n||0 < +o00.
neN

A subset 4 of Cy(H) is said to be n-dense in H if for any ¢ € Cy(H) there exists
a sequence (p,) C A such that ¢, = g.

DEFINITION 2.1. — A semigroup Py of linear bounded operators on Cy(H) is
called a n-semigroup (of contractions) if

(i) Forany ¢ € Cy(H) and any t > 0 we have,
1Peollo < llollo -

(i) If 9, = ¢ then Pip, = Pyp, Yt >0.
(iii) For all ¢ € Co(H) and for all x € H the function [0,+o00) — R,
t — Pp(x) is continuous.

We now define a concept of solution for problem (1.6).

(") By Cy(H) we denotes the Banach space of all real uniformly continuous and
bounded functions in H endowed with the norm ||¢||, = sup |p(x)|, ¢ € Cp(H).
xeH
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DEFINITION 2.2. —

(i) Let x € D). A mild solution of problem (1.6) is an adapted mean
square continuous process X(-,x) in (2, F, P) such that for all t > 0, P-a.s. we
have X(t,x) € D(b) and

t t
X(t,x) = eda + f eAb(X (s, x))ds + f e G(X (s, 2)dW (s).
0 0

(ii) Let x € H. A generalized solution of problem (1.6) is an adapted mean
square continuous process X(t,x) in (Q,F,P) such that there exists a sequence
(xn) C D(b) convergent to x and

lim sup E[X(,x) — Xt x,)]* =0,
17209 1¢[0,T1

forall T > 0.

In the following we shall assume that,

HYPOTHESIS 2.3. — For any x € H there exists a unique generalized solution
X(-, x) of problem (1.6) such that

() Forallx € H, X(-,x) 1s a continuous homogeneous Markov process.
(iii) There exists a € R such that

(2.1) E(X(t,x) — Xt P < e —y|?, Va,y e H, t>0.

Hypothesis 2.3 is fulfilled by several stochastic PDEs. We shall give some ap-
plication in Section 4.
We can now consider the transition semigroup P; defined by

(2.2) Pip(x) = Elp(X(¢,©))], ¢ € ByH), x € H,

where Bj(H) is the space of all bounded Borel functions from H into R.
We recall that the semigroup P; is called Feller if Pip € Cy(H) for all
p € Cy(H)and all £t > 0.

PROPOSITION 2.4. — P, is Feller and it s a n-semigroup.

Proor. — Since C;(H) is dense in Cy(H) (see e.g. [5]), A to prove that P; is
Feller it is enough to show that P; maps C(H) into Cy(H). Assume that ¢ € CL(H).

(®) We denote by C§(H ), k € N, the set of all elements of C,(H) whose derivatives of
order lesser than k are uniformly continuous and bounded.
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Then for any x,y € H we have, taking into account (2.1),

|Pip(@) — Pip(y)] < [|DollgEIX(¢,2) — X (¢, )|
(2.3) < Dol E(X (¢, ) — X, y)[H)"?
< e Dglyllx —y]|.

So, Pip € Cy(H).

It remains to show that P; is a n-semigroup. Condition (i) of Definition 2.1 is
obviously fulfilled, conditions (ii) follows from the continuity of X (-, x) whereas
conditions (iii) follows from the dominated convergence theorem. O

Let us now define the infinitesimal generator of Py following [1]. For this we
introduce the family of bounded operators in Cy(H),

Fof(e) = f e P, f@) dt, feCyH), xeH, i>0.
0

PROPOSITION 2.5. — For any f € Cy(H) and any 4 > 0 we have F; f € Cy(H)
and

1
(2.4) 15 Fllo < 5 £ ll-

Moreover there exists a unique closed operator L: D(L) C Cy(H) — Cy(H) such
that for any 1 >0 and any f € C,(H) we have F, f = (1 — Dt - Finally, if
fo > fthen F, f, = F; f.

(L,D(L)) is called the infinitesimal generator of P;.

PROOF. — Let first take f in C}(H). Then for all x, y € H we have, taking into
account (2.3),

1
P2 f@ ~ Fof @)l < - 1Df ol — yl.

This implies that F'; f € Cy(H), for A > a.

Since Cg(H ) is dense in C,(H), we can conclude by a straightforward argu-
ment that F, f € C,(H) for all f € Cy(H) and all 1 > a. Let us show that the same
conclusion holds for all 2 > 0. First notice that, by a direct computation, F', fulfills
the resolvent identity

F)L*Fﬂ:(,uf/l)FiF;n }w:u>0'
Consequently, we can write

F,=F,1—(u-)F,]",
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provided A and x are sufficiently close. This implies that F'; f € C,(H) forall 2 > 0
by an iterative argument. Moreover, (2.4) obviously holds.
Since for every f € Cy(H)

+00

lim AF; f(x) = lim f ¢ Pif@)dt = f(0), w€H,
0

F; is one-to-one. So, by a classical result, see e. g. [19], there exists a unique closed
operator L: D(L) c Cy(H) — Cy(H) such that for any 2 > 0 and any f € C,(H) we
have F', f = (1 — )™ f. The last statement easily follows from the fact that P; is a
n-semigroup and from the dominated convergence theorem. O

REMARK 2.6. — Whezl P; is not strongly continuous the domain D(L) of its
infinitesimal generator L, is not dense in Cy(H). In this case P, is an Hille—Yosida
operator in the sense of [2].

We shall prove now, following [15], a useful characterization of D(L).
PROPOSITION 2.7. — Let ¢ € D(L). Then we have

(2.5) lim w = Lo(z), forallzc H

h—0+t
and

Pup—o

(2.6) sup A

he(0,1]

< 400

0
Conversely, if there exists ¢,g € Cy(H) such that

@7 lim Pro(x) — p(x)

Jim W =g), forallxe H

and (2.6) holds, then we have ¢ € D(L) and Lo = g.

PROOF. — Assume that ¢ € D(L). Fix />0 and set f =1p — Lp. Then
F,f = p and for any h > 0 and any & € H we have

+0oo

Pig@) = PuFsf@) = [ e #Pf@)ds.
h
It follows that

+o00

A f e P f(@)ds — f(@)
0
= JF,f(x) —f(x) = LF,f(x) = Lo(x),

Dy, Pro(@)|;,—o
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and so (2.5) follows. Moreover, since

+00

f e PP f (@) ds

h

|Prop(x) — p()] < (e — 1)

h

f e “Pf(x)ds

0

ih —ih
e*—1 _,; l—e

v <Iflo [ P42 <

where c is a suitable positive constant, we see that (2.6) follows as well.
Assume now that there exists ¢, g € Cy(H) such that (2.7) is fulfilled. Since
clearly for any x € H,

Py p®) — Prp(x)

d .
p7 Pip(x) = ;}E& 7 = Pig(x),
we have
1 ¢
_ 1 it
MW—A#WMe
1 1
_ 1 10 i
=5 o) + 7 “0[ e "Pg(x)dt
1 1
= 7 ox) + 7 Fjg(x).
Therefore
1 1
Fipx) = 7 o) + 3 F; 9(w),
which implies ¢ € D(L) and Lo = g. O

PROPOSITION 2.8. — Let 9 € D(L) and t > 0. Then P,p € D(L) and

(2.8) mwm:a%m:%ama

ProOF. — Let us consider the following identities

Py () — Pyop() Pupx) — o) PyPip(x) — Prp(x)
h h - h '

From the second identity, taking in account that P, is n-semigroup, we get

:Pt

d _
7 Pip(x) = PiLop(x);
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then, from the third identity, we conclude that Pyp(x) € D(L) and that

d _ _
T Pip(x) = PiLp(x) = LPip(x), « € H.

3. — Existence and uniqueness of the martingale problem.

In this section we shall assume, besides Hypothesis 2.3, the following,

HyYPOTHESIS 8.1. — There exists a linear subspace V of C2(H) such that for all
o €V we have,

G) For any x € H the linear operator a(x)a(x) D?p(x) is of trace class and
the mapping Tr [60*D?¢p) belongs to Cy(H).
(ii) The mapping

DA)ND®) — H, x — (Ax + b(x), Dp(x)),
has a unique extension to a function of Cy(H) which we still denote by
x — (Ax + b(x), Dop(x)).

(i) V c D(L) and for any ¢ € D(L) we have Ly = Lep.
(iv) For any ¢ € D(L) theve exists a sequence (p,) C V such that

0, =0, Lo, > Lo.

We call V a core of (L, D(L)).

THEOREM 3.2. — Assume that Hypotheses 2.3 and 3.1 hold. Then for any
x € H the law of the generalized solution X(-,x) of (1.6) is the unique solution of
the martingale problem with initial point x.

ProoF. — For any « € H we denote by P, the law of X(-,x) and by E, the
expectation with respect to I, so that

Pip(x) = B lpX (@, 2))], ¢ € ByH), t>0.

Let us prove existence. Let & € H. We check that for any ¢ € V,

i
(3.1) Milp) = gn) — [ Lotn)ds, =0,
0
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is a martingale with respect to the filtration (F;);>o. Let ¢ > r and write,

i
EMAQIF,] = Ealp)l 7] - [ Lot 7, 1ds
(32) 0

r t
= Bl F )~ [ BlLo)|F1ds — [ B, ALp)\F s,
0 r

Clearly E,[Lp@,)|F,]1 = Lo(y,) for s < r. Moreover, by the Markov property of
P; we have,

Eolom)|F il = Prrp(p,), t>7
and
Eo[Lom)|Fr] = (Ps—rLo)1,), s > 7.
Therefore by (3.2) it follows that

r t
(33)  EdM@NF = Prgn,) ~ [ Lods — [ PorLo)n,ds.
0 r

Now by Hypothesis 3.1-(iii) we have ¢ € D(L) and Ly = Lg¢. Consequently by
Proposition 2.8 we have

= d
PS—TL(ﬂ = Ps—'er(ﬂy) = % Ps—ﬂﬂ(’%)

Substituting in (3.3) yields,

r t
d
ELMIF = Progn) — [ Lotds — [ Py pl)ds
0 r

A
@
=~

N’

Il

Py o)~ [ Lot)ds — P vt + 9(n,)
0

o) — [ Lot ds = M)
0

This prove that M;(p) is a martingale with respect to (F;);>o.

We show now the uniqueness. Let x € H and let 1 be a probability measure on
(2, F) which solves the martingale problem which initial point x. We have to
prove that u = P”. We start by proving that the one-dimensional distributions of
1 and P” coincide, that is

(35) B Lf )] = B[ fn)) = Py f(),  Vf € Cp(H)
To prove (3.5) we fix f € Cy(H), 2 > 0and set ¢ = (A — L)"'f. Since V is a core for
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L, there exists a sequence (p,,) C V such that
¢, =0, Lo, > Lo.

We have by assumption

t
0

-
= 0,01 — [ Lo, (1)ds,

0
for all n € N. Letting # — oo we obtain by the dominated convergence theorem,

¢
By | o(ny) —fL¢(ﬂs)ds‘]:r
0

N
= o)~ [ Lotn)ds,
0

which is equivalent to

t
(3.6) Ly [0 — f Lo(,)ds|F, | = ¢@1,).

Next we multiply both sides of (3.6) by le~* and integrate over [, +o0). Since

oo

fie‘”dtftL(p(ns)ds— jol;(p(ns)dsf/le‘”dt:fe‘;'“L(p(ns)ds,

r

we obtain that

o0

f Je oGy, dt — f e“qu(m)dtﬂ} =e "on,),

r r

By

which is equivalent to

Ey [f 6‘”f<m)dt|fr] = e y(,).

r

Setting r = 0 yields

E,

f e”f(nt)dt] = o),
0
which coincides with (3.5).

Iterating this procedure one can show, by a classical argument (see e.g. [12]),
that E,(¢) coincides with P*(g) for any cylindrical function, so that the conclusion
follows. O
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4. — Application to the Ornstein-Uhlenbeck equation.

Let us consider the stochastic differential equation,
{ dX(@t) =AX@®) dt +BdW{®), t>0,

(4.1)
X(0)=2xcH,

under the following assumption.

HyproTHESIS 4.1. —

(i) A is the infinitesimal generator of a Cy-semigroup et on H,
(i) B € L(H), ;
(iti) Tr Q; < oo where @, = [ ¢**BB*e*’ ds,
0

where A* and B* are the adjoint operators of A and B respectively.
It is well known that problem (4.1) has a unique mild solution X (¢, x) (see e.g.
[4]) given by

t
Xt 2) = e + f AGW, 1> 0, v € H
0

and that Hypothesis (2.3) is fulfilled. Moreover, the law of X(¢,x) is given by
Ny, (the Gaussian measure in H with mean et and covariance operator @),
so that the corresponding transition semigroup P; is given by

(42) Pup(@) = [ 9N g, o) = [ p(ea + y)No g ().
H H

In this case, the Kolmogorov operator looks like,
Lo = % Tr [BB*D?¢p] + (Ax, Dp).

Let us consider the following vector space of complex functions in H,

a
Z = linear span {fe”ew’hms ca>0,he D(A*)}.
0

We shall denote by V the subspace of Cy,(H) consisting of all the real and ima-
ginary parts of functions belonging to Z.

ProposITION 4.2. — V fulfills Hypothesis 3.1. Moreover, the martingale pro-
blem for (L, V) has a unique solution.
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Proor. — Let us check Hypothesis 3.1(i). Let

a

o(x) zfe“em“*h)ds, x€eH,
0

where a > 0 and h € D(A*). Then we have

a
Do(x) = if Q) A qs  w e H
0
and

a

Do) = i f ) (A @ (4 h) ds,  x € H.
0

Consequently the operator D?p(x) is of trace class and (i) is proved. To check
Hypothesis 3.1(ii) it is enough to notice that the function x — (Ax, Dp(x)) can be
written as

a
- (v, A" Do) = —i f GENEm) (30 A%5 A ) dis,
0

which clearly belongs to Cy(H). Let us check Hypothesis 3.1(ii). Let again

a
o(x) :fe“eSA“’h)ds, xeH,
0

for some a > 0 and h € D(A*), then, by a straightforward computation we see
that,

a
(43) Pigla) = [ e b @t et e g
0

It follows that
m Pio(x) — o(x)

li — =Lop(x), forallazeH
t—0t t
and
sup P =y <400
te(0,1] 0

By Proposition 2.7 this implies that ¢ € D(L) and Lo = L.
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It remains to prove Hypothesis 3.1(iv). For this we notice that, in view of (4.3)
P, maps V into itself. So, one can repeat the classical proof on [6] and see that V' is
a core in the sense of Hypothesis 3.1(iv).

Now the last statement follows from Theorem 3.2. O

4.1 — Perturbation of the Ornstein-Uhlenbeck equation.

We are here concerned with a perturbation of problem (4.1),

{ dX(t) = (AX(t) + bX®)dt + dW(t), t >0,
(4.4)

X0)=x€cH,

where b is continuous and we have taken B = I for simplicity. More precisely, we
shall assume that,

HYPOTHESIS 4.3. —

(1) A and B = I fulfill Hypothesis 4.1,
(i) b e Cy(H;H).

It is well known that, under Hypotheses 4.1 and 4.3, problem (4.4) has a un-
ique mild solution for any x € H and that Hypothesis 2.3 is fulfilled.

Moreover, the transition semigroup P; is strong Feller and its infinitesimal
generator (L, D(L)) enjoys the properties,

(4.5) D(L) C Ci(H)
and
(4.6) Lo = Lo+ (b(x), D), ¢ € D(L),

where Ly is the generator of the Ornstein-Uhlenbeck semigroup introduced
before, see [5, Corollary 6.4.3].
In this case the Kolmogorov operator reads as follows

1
Lo = 5 Tr [BB*D?p] + (Ax + b(x), Dg) := Lop + (b(x), D),

where we have denoted by Lg the Kolmogorov operator related to the Ornstein-
Uhlenbeck equation.
We still consider the space V defined before.
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PRrOPOSITION 4.4. — V fulfills Hypothesis 3.1. Moreover, the martingale
problem for (L, V) has a unique solution.

Proor. — Hypotheses 3.1(i) and 3.1(ii) are obviously fulfilled. Let us check
Hypothesis 3.1(iii). Write

X, x)

t t
Ay + f DAY (s, ) ds + f AW (s)
0 0

t
2t ) + f e Ap(X (s, 2)) ds,
0

where Z(t, x) is the solution of the equation

dzZ = AZdt +dW (), Z0,x) = x.
Let

a
o) = [ @' ds, weH,
0

for some a > 0 and & € D(A*). Then by the Taylor formula we have

t
pX(t,2) =9 (Z(t, ) + f e Mb(X (s, %))dS)
0

= p(Z(t, @) + <D(/)(Z(t, x)), f e(t‘s)Ab(X(s,x))ds> +o(t).
0
Taking expectation we have
Prop(x) = Elp(Z(t, x)] + E<D¢(Z(t, ), f eIp(X (s, x))d8> + Elo®)].
0
Moreover, it is easy to see that

Pio—
sup 9 — @

te(0,1]

< + 00

0
Now, letting ¢t — 0 yields

lim Pip(x) — plx)

t—0+ t

which implies by Proposition 2.7 that ¢ € D(L) and that Lo = L.

= Lop(x) + (Dg(s), b(x)) = Lo(x), for allx € H,
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It remains to prove Hypothesis 3.1(iv). Let ¢ € D(L). Then by (4.5) and (4.6),
XS D(Ly) N C,} (H) (recall that L is the infinitesimal generator of the Ornstein-
Uhlenbeck semigroup). Arguing as in [3], we see that for any ¢ € D(L) there
exists a sequence (p,) C V such that

29 = @, D(ﬂn = D(pa LO(pn = Lo(ﬂ.

Consquently, (¢,) € D(L) and Lg,, = Lg. So, Hypothesis 3.1(iv) is fulfilled. The
last statement follows again from Theorem 3.2. O
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