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Reaction-Diffusion Equations for Chemically
Reacting Gas Mixtures (¥)

MARZIA BIsI

Abstract. — In this paper we aim at describing the hydrodynamic limit of a mixture of
chemically reacting gases. Starting from kinetic Boltzmann—-type equations, we derive
Grad’s 13-moments equations for single species. Then, after scaling such equations in
terms of a suitable Knudsen number, we apply an asymptotic Chapman-Enskog
procedure in order to build up hydrodynamic equations of Navier-Stokes type.

1. — Introduction and description of the kinetic model.

Kinetic approaches to chemical reactions in a gas mixture have gained in-
terest in past decades in the scientific literature [15, 17, 10]. An extensive bib-
liography may be found in the book [6] and in the survey papers [14, 13]. In
particular, for a bimolecular chemical reaction, governing equations of
Boltzmann type have been proposed in [16], where equilibria have been de-
termined and an H-theorem has been proved. Then, this model has been ex-
tended to the case when reacting species exhibit an internal structure, in the
sense that to each of them discrete energy levels [11] (or, equivalently, a con-
tinuous internal energy distribution [9]) are allowed.

For practical applications, a key point is the availability of closed sets of
balance equations for the main macroscopic observables (number densities of
gases, mass velocity, temperature and so on). A first step in this direction has
been moved in [12], where Euler—type equations have been derived in the
physical situation when elastic scattering plays the dominant role in the evolu-
tion. The range of validity of the macroscopic closed set has been then enlarged
in [2], by using as approximating functions (instead of local Maxwellians) the
ones proposed by Grad (suitably truncated Hermite polynomial expansions
around Maxwellians), which lead to the so—called 13—moments closure. A
Chapman—-Enskog expansion in terms of suitable Knudsen numbers may be
then applied in order to reduce the number of considered unknowns and to write

(*) Comunicazione tenuta a Bari il 26 settembre 2007 in occasione del XVIII Congresso
dell’'Unione Matematica Italiana.
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down closed equations involving only the hydrodynamic variables determined by
the operators driving the evolution [3]. The main available results on this subject
have been collected in the survey [4].

Another way of modelling is based on phenomenological considerations: when
the main process is the diffusion of concentrations (for instance when the con-
sidered species are traces in a background medium), one is led to write down
reaction—diffusion equations for number densities [8]. First attempts to relate
kinetic equations to macroscopic reaction—diffusion systems have been per-
formed in [18, 19] for Fokker—Planck, BGK or discrete velocity models. These
results have been then recently extended to more realistic chemical kernels like
the ones introduced in [16, 11, 9]. More precisely, in [1, 5] the authors deal with a
reacting mixture embedded in a much denser medium, considered as a fixed
background whose evolution is not influenced by interactions with the other
gases, thus it is assumed in local thermodynamical equilibrium. A scaling of the
kinetic equations for the participating species is proposed, in which the collisions
involving the background are dominant while reactive collisions are very rare,
and it is shown that solution of the Boltzmann equations converges towards the
solution of a suitable reaction—diffusion system involving only number densities.

In many physical experiments however it is evident that in a reacting mixture
diffusion of concentrations is strongly depending also on the global temperature
of the mixture, which is not a collision invariant in the evolution since chemical
reactions involve transfer of internal energy of chemical link into kinetic energy
and vice versa. One expects then the presence of a separate additional diffusive
equation for the temperature, as typical indeed on physical grounds in all
thermal processes. We aim here at building up a reaction—diffusion system of
this kind starting from a suitably rescaled kinetic model. Precisely, we consider a
mixture of five gases A%, s =1,...,5 and we denote by f* = f*(t,x,v) the s—th
one—particle distribution function (number density of molecules of the s—th
species which at time ¢ and point x have velocity v). We assume that molecules of
any species s can interact elastically with the molecules of whatever other species
r (including the case r = s); in addition, we take into account also the effects of
the following bimolecular reversible chemical reaction involving only the four
species A1, ... A%

(1) A+ A% = A% 4 AL,

For this physical situation, the extended set of Boltzmann equations reads as

ofs W =
@) éw-%:;Q%L(fﬂf‘”)JrQsm s=1,...,5.

In this formula, the operator Q3 (f*, f") represents the net production of
particles s (with velocity v) due to elastic collisions with the species r, while
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the operator @, stands for the net gain of molecules s due to chemical re-
actions. The bi—species elastic collision operator for the species s and r takes
the form

®) Qo= [9076.0 &) [P - rerw) ded

R® $?

Here (v,w) stand for the pre—collision velocities, and g = g!) is the relative
velocity v — w. The superscript prime affects the corresponding post—collision
parameters: specifically, (v’,w’) represent the post—collision velocities which,
taking into account the conservations of momentum and of klnetlc energy, can be
suitably expressed in terms of (v, w), of the unit vector Q= w')/g" and of
particle masses m’. Finally, ¢ denotes the differential cross section and de-
pends only on g and on 2 4.

As concerns the chemical operators @, since the reaction (1) involves only
the species 1,...,4, we have of course Q%H = 0. Then, if we assume the direct
reaction A' + A% — A3 4+ A* to be endothermic, namely that internal energies
of chemical link are such that A4E = E3 + E* — E* — E* > 0, the operator Q},
reads as

(4) QCH(v)—fo< E)ga12 Q-9

R $?

( 34>f3(l7)f4(lU) fl(v)fz(lU) dlle,Q

Here the post—collision velocities are denoted by (v,w), the symbol u*" re-
presents the reduced mass m’m'/(m® +m"), and U is the unit step function
needed since the endothermic reaction can occur only if the kinetic energy
overcomes the threshold 4E. The expressions relevant to s = 2, 3,4 may be ob-
tained from (4) by suitable permutations of indices, bearing in mind the obvious
symmetry "% = g* and that the differential cross section of the exothermic
reverse reaction is related to the direct one by the microreversibility condi-
tion [11].

In the following, we shall assume that all cross sections are of Maxwell mo-
lecules type, corresponding to inverse power” kind intermolecular forces, for
which the kernels g o*" and g o33 depend only on the angle formed by pre— and
post—collision relative velocities. Moreover, Einstein convention on repeated
indices shall be adopted.

In Section 2 we extend the cumbersome derivation of Grad’s 13—moments
equations, already developed for a four—species mixture [2], to the present five—
species frame: we report all mechanical and chemical contributions in explicit
form, and we point out the main features of such macroscopic equations. Then, in
Section 3 we scale Boltzmann equations assuming that scattering involving gas
A? is much more frequent than other elastic collisions, and chemical reaction is
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even rarer. Species 5 plays thus a crucial role in the evolution; unlike in [1, 5]
however, it is not a fixed background medium but an actually participating
species, and this shall imply that in the asymptotic procedure global temperature
has to be included in the set of hydrodynamic variables. More precisely, here a
Chapman-Enskog algorithm is consistently applied to Grad’s equations, and the
final result shall be an hydrodynamic system at the Navier—Stokes accuracy for
species number densities, global mass velocity and temperature. Equations for
concentrations turn out to be of reaction—diffusion type, but actually depending
also on the diffusion of mixture temperature.

2. — Grad’s equations.

In this Section we aim at deriving a closed set of balance equations for the
major macroscopic fields (moments of the distribution function). As already
pointed out in the Introduction, a first step in this direction has been performed
in [12], in the physical situation when elastic scattering plays a crucial role in the
evolution, and Euler—type equations for reacting mixtures have been achieved.
A further step has been developed in [2], including physical situations farther
from equilibrium. For a mixture of 4 gases, a closed set of 52 equations has been
built up for the 4 number densities »°, the 12 components of mass velocities u;,
the 4 temperatures 7%, the 20 independent entries of the viscosity tensors P}
(symmetric and traceless matrices), and the 12 components of the heat flux
vectors g;. The closure procedure is based on replacing higher order moments
and collision contributions by the ones corresponding to the following Grad’s
distribution functions, suitably truncated Hermite polynomial expansions
around a local Maxwellian:

(5) fa@)=f;0)|1 +—= m oo e é 1 m’ § o8 ms (P>
S SKTS 2KTs Vi 5 kT 2kTs U Y\ 2K 2

where

3
fu = (2nKTs> eXp( 2KT> (09)2)

K is the Boltzmann constant and ¢® = v — u® is the peculiar velocity of the
species s.
The balance equations for »®, u$, T*, P 4 follow from the weak forms of
. . L . 1
the Boltzmann equations, taking as weight functions 1, m®v;, 5 m* ()2,
1. 1 ‘ . ; .
m’ (cf c;? ~3 i (cs)2>, 5 m® c?(cs)z, respectively. The procedure described in [2]

may be easily extended to the present frame of 5 scattering gases, thus
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technical details will be omitted here. The final Grad’s 13—moments equations
read, for s=1,...,5, as

on®  o(n'uf)

e —0OS
(62) o o @
(0w Ouw\  OwKTs) O
8,8 7 s 7 4 s S
(6b) e (815 i 89@-) 0x; * Ox; =Rit R
S S 8 a S 8
1
op;; 9 ou; o 2 ous
Bt oy kP T Pk, Pikgy, 0Pk,
(6d)
ous oud 2 ous\ 2 /8¢ OF oq;
SKTS( =L 4 ) 25, 27k 2 i _f__5<. k s
A (ax,-Jraoci 3% 8xk)+5<8x7+6oci 5% g, ) Vit Vi
aql 8 S S 6uf 2 S 8“; 2 S aufs 5 S 6 KTS
— 20 Z S KTs—
o O * o (] 7” i 00 V5 Y B 75 o, T2 i\
5 . 0 (KT soms O D pj; Opy,
_ KTS _ S S
o Py 690]-( m8> ow; <mbn5 msns Oxy, = Wit Wi

On the right hand side, we have mechanical and chemical collision contribu-
tions. Under the Maxwell molecules assumption, all elastic terms can be obtained
exactly in closed form in terms of the selected moments (13 for each species),
without any need of actually resorting to Grad’s approximated functions (5). The
final output is

5

(7a) R = n Z ViR (g —ul)

ST

5
(7o) S = 2nf E vi’":in”[éK(T fT)+ém’(u’fu*’)},

5 w

SaT Y anS ST r r S r S
g m* +m’“ {n Py — Py twnm {(ui —u)u; — u;)
—1

(70) — 28 —ut)? 88T TS,
361](u u)}} 22 (m8+m’ {mnplﬁ—mnpy

+m*nm'n" {(uf — U] —u) — é oiu” — us)z] }7
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Wi = — §%KTSZ e ] —w) — — pu Z vi’”y”n“(u’f — uj“?)

5 P 8
m'n" s mn’ Al s
7d) + Z; m { g+ o L+ (%;” - M;) <é zrpij o /’)ZTPZ)

1 , o mn® . :
+ é(u;’ — uf){(ﬁ%’# 30 )W KT*+5 o T KT + m*n®fy (" — us)z} },
where 1{", v§" are angular moments of the microscopic collision frequencies, and
pi" are the following coefficients involving masses m* and constants v{", v§":

I {[3(7%5)2 + (mr)Z} + 2mSm” sr}

= 2m° —m")? vim 4+ m"(m® —3m") vy

(8) 2 sr

= (m® —m")* v+ m"@m’ +m")vy

ff = 2m" 220 — ).

As concerns chemical contributions, since species 5 is not involved in chemical
reaction (1), we immediately get Q° = R? = S = Vg = W? = 0. The evaluation
of contributions relevant to species s = 1, . . ., 4 is much more cumbersome. After
some technical manipulations, in order to push the analytical treatment to the
very end an additional assumption is introduced, besides Grad’s approxima-
tion (5). Since chemical processes involve more complicated dynamics than
elastic scattering (such as transfer of mass and of chemical energies), it seems
reasonable to assume that relaxation to the elastic equilibrium occurs faster than
to the chemical one. This implies that chemical terms may be made explicit by
resorting to approximating functions given by local Maxwellians M*® accom-
modated at the mixture mean velocity u and at the global temperature 7'. In this

way, chemical terms for s = 1,...,4 take the form
2\ 2 2 (3 UE
s _ 1_ 3,4 TVM"\" 48 34
(93) QS — }SQ _AS |:7’L n (m3m4> eKT — 7’I/:| 12 \/_F<§,ﬁ)7
9b) Ry = = Pmiui — ) Q
3 ms 1 M-m* 3

s _ sl ) 2 I _ 98 _ S

o S—),Q{Z(KT)M 2(1 ) AE i 2(KT)
c

1 o s M-m* _(5 AE 3 AE\]!
+2m(u u)” + (KT) i F(Z’KT)[F<2’KT>} ,
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(9d) Vi = 2m Q! [(ui’ —u)(wj —uy) — % 05 (W® — u)z} :

5 55 M-
Wi =2Q! {— 5 (0 =) (KT) 57+ 2 (1= 20} — ) 4B ==

5 Dj; 1
(%) + o (BT — ) + 55 (= 1) — 5t — ) (w® — u)?

5 s M —m? 5 4K 3 4K -
—g(ui—ui)(KT)Tr(é’ﬁ> Héﬁ” }

Chemical contributions turn out to be all proportional to @', which involves the
total microscopic collision frequency v3 and the incomplete Gamma function
I'(a,y). Moreover, M is the total reacting mass m! + m? = m? + m* (mass is
preserved by chemical reaction), and A* are the stoichiometric coefficients
=72 =—73=—)%=1. Notice that Q' (and consequently all chemical terms)
vanishes when number densities n!, ..., n* and temperature T are related by the
so—called “mass action law” for chemical equilibrium:

1,,2 12\ 3/2
(10) % = (%) exp (@>
n3n I KT

In spite of its cumbersome appearance, Grad’s system (6) preserves im-
portant features of the kinetic equations it comes from. First of all, it can be
checked that suitable combinations of Grad’s equations correctly reproduce
preservation of n! + 3, n! + n*, n? + n* (besides of course non—reacting species
n?), of global momentum, and of total (internal plus chemical) energy. Moreover,
moments of kinetic collision equilibria, namely u®* = u, T* = T, p®* = 0,q°* = 0 and
number densities n!, ..., n* related by the mass action law (10), turn out to be
collision equilibria for Grad’s equations.

3. — Asymptotic limit and hydrodynamic reaction-diffusion equations.

In hydrodynamic applications, it is usually not necessary a detailed knowledge
of the macroscopic fields of all single species, but a closed balance system for the
quantities preserved by the processes governing the evolution suffices. In order to
build up consistent hydrodynamic equations, it is worth considering Boltzmann
equations (2) in dimensionless form, measuring all quantities in terms of suitable
characteristic values, and scaling space and time in terms of macroscopic units. We
assume here that the non-reacting species A® is dominant with respect to other
gases Al,..., A% in the sense that elastic collisions involving A® are much more
frequent than other scattering processes. Moreover, chemical reaction is taken
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much slower than elastic scattering, and this assumption seems reasonable from a
physical point of view, as explained in [2, 1]. More precisely, if we measure the
relative importance of each process in terms of a small parameter ¢ (playing the
role of a Knudsen number), we have the elastic operator @3, playing the dominant
role and then is taken in the scaling of order 1/¢%, while scattering terms Q5
involving A% and a different partner species are assumed O(1/¢); finally, all re-
maining elastic contributions are taken O(1), while chemical reaction is con-

siderably slower (O(¢)). Rescaled kinetic equations read then as

s s q ‘ 4 ‘ ‘
) Lo QY QR )+ e, s =14,
r=1
af° s 1 1< .
(11b) or 0 e =@ QBT+ D QRS

The evolution of the mixture is driven by elastic scattering, and in particular
by collisions with species 5. Dominant term (O(1/ %)) of equation (11b) yields that
£?is, to the leading order, a local Maxwellian, equilibrium for the elastic operator.
Therefore A® turns out to play somehow (to zero order accuracy) the role of a
“background” (similarly to [1, 5]), in the sense that its distribution at this level is
not affected by the interactions with the other particles A', ..., A%; corrections
taking into account collisions with the remaining participating species will ap-
pear only to next order accuracy. The quantities which are conserved under
dominant mechanical encounters are number densities of single species, global
mass velocity, and total (kinetic plus chemical) energy. Thus, independent hy-
drodynamic variables are in number of nine, and they can be chosen as the five
number densities #°, s =1,...,5, the three components of the mean velocity u;,
and the mixture temperature 7' (K = 1 in dimensionless equations). The relevant
“conservation” equations to be considered in the present asymptotic algorithm
follow from suitable weak forms of the Boltzmann equations: streaming part is
well known in scientific literature [6], while chemical collision contributions are
directly amenable to @' given in (9a). The nine hydrodynamic equations read as

on®  o(n’ul)

— = 15 1 =
8t+ o, e’qQr, s=1,...,4,
o’ Om®u?)
o -0
” ot " o !
opu;)) 0
8tl +8—9(;j(pui?/t_7‘+7’LT5i7'+pi7) =0,

0 (1 3 0 1 5
a(@”““é”) * e Ké”““é“)“”“f'“"*qi} e 4B,
1
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where p is the total mass density, p stands for the global viscous stress tensor,
and g for the global heat flux vector.

In order to close macroscopic equations (12), we have to express drift
velocities u®, viscous stress p and heat flux q in terms of the hydrodynamic fields
n®, u, T. To this aim, we will apply an asymptotic procedure of Chapman—Enskog
type [7] with respect to the small parameter ¢. We start from Grad’s equa-
tions (6), rescaled according to the kinetic system (11). First of all, a factor 1/ &
will affect elastic terms relevant to encounters between particles of species 5
themselves: notice that correspondingly to the option » = 5 we have vanishing

contributions in R? and in &, while in V3 we have — 7 15° #° p}; and in W there

1 : 4 .
is — 5 v’ n° 7. Moreover, a factor 1/¢ will appear in front of elastic contributions

due to scattering between A° and whatever other species A® (s # 5), and a factor
¢ will multiply all non—vanishing chemical terms.

According to Chapman—Enskog method, all non-hydrodynamie quantities
have to be expanded in powers of &:

u = 5(0) + eus(l) T — TS(O) +e Ts(l)

(3
5(0) s(1)
pu Py +epy

(13)
q _ qv(O) + gqs(l)

leaving unexpanded the hydrodynamic fields. This requirement implies some

constraints on first order corrections. In fact, uj and T* are actually expanded,
5

but they must produce unexpanded u; and T'. Since pu; = >~ p*u, imposing that
-1
u; remains unexpanded provides the constraint ’

5
(14) Zps u-;_‘(l) -0
s=1
’ 1
analogously for temperature: nT = Z [WT‘ + 3 p* (uju, — wrw) |, hence we
get the condition s=1
(15) Zn s 4= Zps 8(0) s(l) —0.

Finally, Chapman—-Enskog method requires also the expansion versus ¢ of the
temporal derivative [7]:

a O 01

In order to determine constitutive equations of Newton type and corre-
spondingly Navier—Stokes—like fluid—dynamic equations, we substitute the
expansions (13) and (16) into Grad’s equations, and then in each equation we
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equate the coefficients of equal powers of & First of all, leading order (O(1/¢%))
terms in Grad’s equations imply that p5(0) 0and q5(0> = 0, and these results are
consistent with the fact that, to the zero order, distribution f° is a local
Maxwellian. By considering then O(1/¢) terms, from equations for mass velo-
cities and temperatures we get

s0) __ ,,5(0) 0) _ 750
T A 750 — 750 Vs £5,
hence, bearing in mind definitions of global u and T, we have
(17) w® =y, 70 =1, Vs=1,...,5.
Then, from equations for Dy and ¢ we get

p;;‘” 0, % =0, Vs=1,...,4,

5(1 51
pv]() 0, 1) _ —-0.

(18)

Owing to the constraints (14) and (15), global viscous stress and heat flux turn
out to be, neglecting O(¢?) terms [4],

5 5
5
- Y] — )] s(1)
(19) pij=¢ SEZI Py s g<§ ¢V + 5 T SEZI e ) ,

hence in order to close the macroscopic system (12) we have to determine first
order corrections ug(l), p"’(l) and q‘;(l). To this aim, we have to analyze O(1) terms of
Grad’s system. From equations for u$, we get the equalities

O O o’
m"( T aZ;) *%Z—xiT) Wt (=), s =14,
(20) - N
S [ 2 i _ 55 55 WD _ 50
o (2, ) DS 0 )

s=1

Since the sum of right hand sides vanishes, this system admits solution only if the
same holds for left hand sides, and this “compatibility condition” is just what is

required in order to determine the unknown operator 3;%:
807471 T % B 1 6(nT)
ot o p ow
By substituting into (20) we obtain, for s =1, ...,4,
) 1 mn® onT) Owm’T)
21 s(1) _ _ 5(1)
1) i WS wnb | p o O ou; e
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where u"(l) may be now made explicit taking into account the constraint (14):
L G +md [mn” dOmT) o' T)
22 M — _ = - .
(22) Yi p 4 Z VPmbnd | p o Oy ox;

Considering then O(1) terms of equations (6d) we easily get, for s =1,... 4,

5+ mb) 1 Ou;  Ou; O
2 s _ (m i J
(23) p” mePns 2 v§5 ms +% v§5 mP (9907 ™ ox; i Back

On the other hand, equations (6e) provide, to the same order,

5 ¢ 0 (TN 5 V 25D s(1) mn® 5 s(l)
énT(?_xq(%)i 2 m nnT( Y )+(ms+m5)3ﬁi i
mhn® 1 2P0 _ D
2 (8 5 g T (- )

but resorting to the expressions (8) for ;" it can be verified that the coefficient in

front of (us(l) f(l)) vanishes, hence

oa) g = T ! 5 pp 0 (1
9 MmN [3(ms) + (mP)P]vP + 2mmb vy 2 i \m?

fors=1,...,4.

Now the sought closure of the balance equations (12) is obtained simply by
replacing the non—-hydrodynamic variables with the corresponding approxima-
tions (13), making use of the zero order solutions in (17)—(18) and of the first
order constitutive equations (21)—(24). Thus reactive “Navier—Stokes” equations
involve the nine variables #°, u, T, and read as

o' omfw)  On u“’(D)

e sl _
5 + s +& e =e2°Q", s=1,...,4,
8_%5 N 8(1’05 u;) e 8(77,5 M5(1)) 0.
ot 6901 axi
(25) "
dpu;) 6(/7 Ui Uj) n omT) e Iy 0
ot (9907 Bxi 89&‘7 o
9(1 u? 4= 3 nT 8 1 u? += > nT |u; 76(108) el +¢ _8q<1) =¢Q'UE
a2’ T ) T [\8P" T i a; o ’

with 3" given by (21) and (22), and p{}’ and ¢’ derived from (21)~(24) bearing in
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mind the relations (19):

@62) pif = -

ow; " Ox; 37 owy,

1 (m* + mPd)? n T(Bui ouj 2 auk>
=1

s=1 |25y +§ VEom? | mbd w
1 2 2

_( 4 (m* + mb)? ns> 5 T orT

s=1 [(3(7%5)2 + (WLE’)Z)Vi5 + 2msmP v§5] msmd n )2 a_xz

5 dmt+md (1 )\ [mn® OmT) Om*T)
dply A2 _ .
*3 {Z VPmbnd <ms p> { p 0x o; ]

s=1

(26b)

In (25), chemical effects are all included in the collision term @', which does not
need any correction since it depends only on »* and 7. In equations for number
densities and temperature there appear clearly diffusive terms with respect to
both »n* and T, contributed by the constitutive equations (21)-(22) and (26b),
respectively. Equations for n° are then of reaction—diffusion type, but they take
into account also the effects due to the temperature of the mixture to which they
are coupled and to the non—vanishing global velocity. This is an evident differ-
ence with respect to reaction—diffusion systems recently derived from kinetic
models for a reactive mixture embedded in a background [1, 5], in which mass
velocity is assumed zero, and equations for »°® turn out to be self-—consistent
(independent from the temperature). Even in the present frame, in the parti-

cular case of vanishing mass velocity we can get rid of the third equation in (25),
onT)

provided the compatibility condition =0 is fulfilled; equations for »*

3
however maintain the presence of a Laplacian of the temperature, and this is
physically consistent since, as well known in the literature, kinetic energy has a
non—negligible influence on the evolution of concentrations of the gases.
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