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A Uniqueness Result for Solutions to
Subcritical NLS (*)

Luis VEGA - N1coLA VISCIGLIA

Abstract. — We extend in a nonlinear context previous results obtained in [8], [9], [10]. In
particular we present a precised version of Morawetz type estimates and a unique-
ness criterion for solutions to subcritical NLS.

In this article we investigate some qualitative properties of solutions to the
following family of NLS:

(0.1) 10 + Au — ujul* =0, ¢,x) e R xR", n >3,
u(0, ) = p(x),

under the condition
4 4

Since now on we shall denote by H* and H’ the homogeneous and in-
homogenous Sobolev spaces H*(R") and H*(R"), and similarly the Lebsegue
spaces LP(R") will be denoted by L%. We shall also use the notation V,#, V.7 and
Ojy to describe respectively the full gradient, the tangential part of the gradient
and the radial derivative of a given function  : R" — R.

The main aim in this note is the extension in a nonlinear context of previous
results obtained in [8] for the free Schridinger group {e4},_p and stricty related
with the so called “local smoothing” estimate (see [3], [6] and [7]):

(0.3) sup ~ f f Va(e™F)2 dedt < C|fI2, Vf € HL
Re(0.0) B o <R H

where C > 0 is a constant. More precisely in [8] we have studied the asymptotic

(*) Comunicazione tenuta a Bari il 26 settembre 2007 in occasione del XVIII Congresso
dell’'Unione Matematica Italiana.
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for large R of Lh.s. in (0.3) and we have deduced the following identity:

- it 2
gﬂRfwax(e ') 2daedt = 27| f |2 1Vf6Hx,
—00 |x|<

that in turn implies the following uniqueness result:

(0.4) if liminf - f f|Vx(e”"f)| dadt = 0 then f = 0.

—OC | <R

One of the aim of this paper is the extension of the uniqueness criterion above for
solutions to (0.1).

Let us recall that a basic tool in [8] has been the proof of a family of space—
time integral identities that represent a generalization of the ones presented in
[5]. Let us also underline that the results in [8] have been generalized in [10] to a
family of linear Schrédinger equations perturbed with a short range potential.

Concerning the Cauchy problem (0.1) we recall that it has been extensively
studied in the literature, under the condition (0.2), from the following point of
view: the global well-posedness and the scattering theory. Assume » > 3 and
(0.2) then the following facts can be proved:

(1) Vo € HL 3 a unique solution to (0.1) u(t,x) € C(R; HL);
(2) there exist ¢, € H. such that:

(05) Tim futt, ) — €“p, | =0,
(0.6) oz = llolle = u, e ViR
and

= [ (190 4 2 lor ) o

R"

_ 2, 2 a+2
(0.7) _R[<|qu(t, I+ =5 e, ) )doc vt e R.

For a proof of all those facts see [2] and all the references therein. Let us also
notice that due to the conservation laws of the Schrédinger equations it is easy to
show that the unique solution u(t, x) € C(R; H.) to (0.1) is bounded in H! and in
particular for every ¢ € H. there exists a constant C = C(p) > 0 such that:

(0.8) lutt, )l < C Vt € R.

Next we state the main result of the paper.
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THEOREM 0.1. — Assume n > 3 and (0.2). Let u(t,x) € C(R; H}C) be the unique
global solution to (0.1) with ¢ € H: and let p,. € H. be the functions introduced in
(0.5), then we have the following identities:

1 f 2 2 a2
(0.9) Jim f f <|qu| 5l )dmdt

-0 |e|<R

— : 2 _ 2
=x 3ttty =73 ol

1 r >
(0.10) lim f f Voul? dedt =0
—00 |x|<R
and
. 1 r a+2 _
(0.11) }%grolcﬁflme duedt = 0.
-0 |x|<

In particular we get the following implication:

R 2 _
(0.12) if I%T;‘fﬁf f\a‘x‘u\ dadt = 0 then u = 0.

—00 |x|<R

REMARK4 0.1. — In[9]it is proved a version of theorem 0.1 for solutions to (0.1)
where a = o provided that a smallness assumption is done on the initial data ¢.

Moreover under those conditions it is shown that the r.h.s. in (0.9) is equivalent to
the quantity ||go\|if%.

The proof of theorem 0.1 follows from a family of Morawetz type identities
that in our opinion have their own interest, hence we shall include them in next
theorem.

THEOREM 0.2. — Assume n > 3 and (0.2). Let u(t,x), ¢ and ¢, as in theo-
rem 0.1. Let w be a radially symmetric function such that the following limit
exists:

(0.13) Jim 0y = W (c0) € [0, 00),

and moreover

Yoy, DPy, £y € LY.
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Then the following identity holds:

% 2
2 e 1 1 a+2
(0.14) :f é[[kuD wVu — Ly T (2 12 Ay daxdt
2
)3 lim e, sy =/ (00) 3 s -

1. — Proof of theorem 0.2.

We first state a proposition whose proof can be found in [8].
PROPOSITION 1.1. — Let ¢ € H, v(t, ) = "9 and y as in theorem 0.2, then:
(1.1) hm Imfv(t IV, ) - Vew de = £+ 21y’ (oo)||(0|\ -
Rn

Proor or THEOREM 0.2. — First notice that if ¢, are the functions introduced
in (0.5), then

(12) Jim e, ) - ¢, |, =
where we have used the embedding H! C H%c On the other hand we have the
following identity:

(1.3) le"psl,3 = ool 3 VE € R,
that in conjunction with (1.2) gives

. s
(1.4) Jim I = Tl .

Hence the proof of theorem 0.2 will be complete provided that we show that L.h.s.
and r.h.s. in (0.14) are equal. Following [1] we multiply (0.1) by the quantity

1
(1.5) Vo Vo +

and we integrate on the strip (— T, T) x R". In this way we get the following
family of identities:

T 2
— 2 2 |ul 1 1 at2
(1.6) f f(vqu pVou — £y =5+ (2 ) Aylu|* | dadt

~T R"

u Ay,

:—ImZif (£ T, )Vl £ T,.) - Vo do,
Rn
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(for more details on this computation see [1] and [8]). Next we introduce the
functions _
,U:t(ta ) = eZM(pia

where ¢, are defined in (0.5). It is not difficult to verify that
(1.7) Tlim Im| w(£T, )Vou(£T,.)  Vay dx
R"

= lim [ D (£ T IVes(£T, ) Ve dor = iZm//(oo)H(piHi[ i

R"

where at the last step we have used proposition 1.1. The proof of (0.14) can be
completed by combining (1.6) with (1.7). O

Next we shall deduce some consequences of (0.14) that we shall need along
the proof of theorem 0.1.

PROPOSITION 1.2. — Assume n > 3, (0.2) and ¢, u(t, x) as in theorem 0.1, then

: a+2 _
lim 7[ Rf Ay p@u|*2 daedt = 0

x C
where yp = RW(E) and |Aw(x)| < m

(1.8) hm}—zf f| 2 =

PROOF. — Notice that it is sufficient to show:

In particular

| |a+2

f}ifécff}zﬂ dudt = 0

In turn this fact will follow by the dominated convergence theorem provided that
we can show

(1.9) f W

In order to prove (1.9) we notice that an explicit computation shows that the
function w(x) = /1 + || is a convex function and moreover:

a+2

docdt < 00.

>0 and 4y > ——
Ay V= 1+\9c|

Hence it is sufficient to choose y = /1 +|x| in (0.14) in order to deduce (1.9). O
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PROPOSITION 1.3. — Assume n > 4, (0.2) and ¢, u(t,x) as in theorem 0.1, then
lim f f Ay p@\ul? dedt = 0,
R—o0 oo R

- ry(” 2 _C
where yp = RW(R) and |Ay(x)| < R

Proor. — It is sufficient to show that

RmfngjLH dedt =0

Notice that this fact will follow by combining the dominated convergence theorem
with the following estimate:

[
(1.10) _£R[L1+Ix|3 dudt < oo,

whose proof is similar to the proof of (1.9). In fact notice that the function

w = +/1+ || is a convex function such that
(1.11) — Ay > % on R" for any n > 4.
1+ ||

Hence it is sufficient to choose y = /1 + || in (0.14), in order to deduce (1.10). O

2. — Strichartz estimates for NLS in dimension n = 3.

The main goal in this section is the proof of a partial substitute of proposition
1.3 that works in dimension n = 3. The basic tool that we use is the end—point
Strichartz estimate whose proof can be found in [4].

PROPOSITION 2.1. — Assume n = 3, (0.2) and let ¢, u(t,x) as in theorem 0.1,
then

2.1) I%EIOIOFI [ 1 dudt =

—oo |¢|<R
We shall need the following lemma.

LEMMA 2.1. — Let n = 3, (0.2) and ¢, u(t,x) as in theorem 0.1. Then
(2.2) u(t,x) € L*(R; W'S(R?)).
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ProoF. — Notice that by combining (0.5) with the Sobolev embedding
HY(R?) c LS(R®), we deduce that

(23) Jim [l ) = .|, = 0.

On the other hand by combining a density argument, with the dispersive esti-
mate:

; C
tA
10l < 10 g

and with the a—priori bound:

le™0ll sy < Cllollmn e

(whose proof follows by combining the conservation of the Sobolev norm for the
free evolution with the Sobolev embedding), we get:

. ; 3
Jim (||, = 0 Vg € H'(R).
By combining this fact with (2.3) we get

Jdim e, Dl psgs) = 0

that in conjunction with the conservation of the charge |Ju(t,.)]|| LR = const
gives:
(2.4) tlninw luct, gy =07 2<p<6.

In particular, since we are assuming (0.2), we can apply (2.4) in order to deduce
that:

(2.5) Jim S [, N e s, =
and
(2.6) Tll_{rolO te(ﬁgcpr) e -)||Lga(Rs

Next we shall prove (2.2). Due to the end—point Strichartz estimate (see [4]) it is
easy to show that

ut,x) € L2 (R; W'S(R®)).

loc

Hence it is sufficient to show that u(t,x) € L2((T, 0o); WIS(R?)) and w(t,x) €
L2(( — oo, —T); WHS(R®)) for T > 0 large enough.

Notice that since u(t, x) solves (0.1) we can use the end—point Strichartz es-
timate in order to deduce:

(2.7) ||/M/HL2((TA,0C);W1'6(RS)) < C(”u(Tv ~)HH1(R3) + H“W‘a||Lz((T7m);W1.g(R3))>
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for every T > 0. On the other hand an elementary computation implies:

ot DNt Il g sy < ClIults NI g s 108 sy VE € R
and hence due to the Hélder inequality we get:

el HL‘((Toc)W ¥R

<C ( sup. ||%(t I (,<R3)H%(ta Nz .sorwiowy-

By combining (2.7) with (2.5) we deduce that if we choose T = T'(¢) > 0 large
enough then we get:

1] 2 sopmrssy < C(C@) + el Il peer ooymwiomsy)

where we have used (0.8). In particular if we choose ¢ > 0 small in such a way

1 .
that Ce < then we deduce [|u|[;2(p omog?)y < o0 In a similar way we can
show [|u]| 2o _mywrsa?y < o for a suitable 7> 0 and the proof of (2.2) is
complete. O

PROOF OF PROPOSITION 2.1. — Due to lemma 2.1 and to the Sobolev embedding
WL’G(RS) c L:)O(Rg)
we deduce that if u(t, x) is as in the assumptions, then
(2.8) u(t,x) € L*(R; L= (R?)).
Next notice that for every T' > 0 we have:
f f uPdudt < CR? f sup |u(t, ) [Edt
T |xj<R lel<R
2
< CR3”“HLZ((T,oo);Lx(Rg))-

By combining this fact with (2.8) we get the following implication:

Ve > 0 there exists T1(¢) > 0 s.t. hm sup f f |u| dadt < e.
Tl(f) le|<R

Of course by a similar argument we can prove that:

—Ta(e)
1
Ve > 0 there exists T5(e) > 0 s.t. lim supﬁ f f |u|2 dxdt < e.
R—o0

-0 |x|<R
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In particular, if we choose T'(¢) = max{T1(¢), T2(e)}, then we get:
2.9) Ve > 0 there exists T'(e) > 0 s.t.
1 2
<e.
hg:soljp B f f |u|” daedt < &
R\(-T@:T@) |t|<R
Hence the proof of (2.1) will follow from the following fact:
T
(2.10) VT > 0 we have lim SUp g f f luf? dedt =
R—oo T <R
Notice that by using the Holder inequality we get:

f futt, I dee < CRZ[ut)|2o e,
lc|<R

and this implies:

T
1
2.11) o[ [ P dadt
=T |x|<R
c f 2CT
}—3[||u(t)||m(m dt < —— Hu”L%(RLG(R »:
-T

On the other hand by combining (0.8) with the embedding H 1(R?’) - Lﬁ(Rg), we
deduce that u(t,x) € LOO(R;LS(RS)). Hence (2.10) follows from (2.11). O

3. — Proof of theorem 0.1.
ProOF OF THEOREM 0.1 FOR 7 > 4. — Notice that (0.11) follows from propo-
sition 1.2. Next recall the following identity:

Ol
]

where v is a radially symmetric function. By using this identity and by choosing
in (0.14) the function y = /1 + |x|2, then it is easy to deduce that

(3.2) f f'v wuf ddt < oo,

—00 |o|>1

(3.1) VDN u = B‘x‘q/|8mu| + 292V,
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and in particular:
1 p
(33) Jim f | va,u dadt = 0.
—00 |x|<

Due to this fact, (1.4) and (1.8) we deduce that it is sufficient to prove the fol-
lowing identity:

1 f 2 2
(3.4) Jim = [ | fR|axu| dadt =73 lps
-0 |x|<

in order to deduce (0.9).
For any k € N we fix a function %;(r) € C3°(R;[0, 1]) such that:

(3.5) hi(r)=1Vr e R st. [r] <1 hy(r)=0Vr e R s.t. |r| > u,

k
e (r) = h,( —r) Vr € R.

Let us introduce the functions (), Hi(r) € C*(R):
(3.6) Wi (r) :f(r—s)hk(s)ds and H.(r) :frhk(s)ds.
0 0
Notice that
(3.7 wi(r) = by ("), w;,(r) = Hy(r)¥r € R and 7113210 Oy, (1) = fohk(s)ds.
0
Moreover an elementary computation shows that:

C
My, < —— Ve €R"
ST

and

C

Azy/k = W Ve € R" s.t. |x| > 2 and n > 4,
x

where A4* is the bilaplacian operator. Thus the functions ¢ = y, satisfy the as-
sumptions of proposition 1.2 and 1.3.
In the sequel we shall need the rescaled functions

&xr

(38) Vi@ = Ry (5

)VxeR”7keNandR>0,

where v, is defined in (3.6). Notice that by combining (3.1) with (0.14), where we
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choose w = y;, g and recalling (3.7) we get:

r Dy
3.9 [ [ (vt + 2202 v

_ n ‘x‘
oo R

1 1 1
~1 > Py + (é - m) W|a+21"//k41~3) dadt

2
= n(! hi.(s) ds) g ||(pi||H% vk e N,R > 0.

On the other hand (3.2) in conjunction with propositions 1.2 and 1.3 gives:

o0 2
) [Vl 1 2
Jim _f J(alxll//m W ZAZ'//JC,R|M|

1 1 a+2 _
+<§ a+2>AI//kR|M\ )dxdtfo

for every k € N. By combining this fact with (3.9) we deduce:

(3.10) Jim f f P |y Pded

-0 R

2
=7 <0f hk(s)ds) g los i3y vk < N.

On the other hand, due to the properties of %;. (see (3.5)), we get

%j‘o f|8|xm|2dxdt§fo fa‘zg”Mk’R‘a\szdtdx

-0 |x|<R - R"
:%ffhk( =) l0uldtde < — f [ 10uulPduat
—ooR" B | <ER

that due to (3.10) implies:

(3.11) limsup — f f Ex dacdt<7z<f hk(s)ds) Sllo-l?

R—o0 70(3 <R

k+1
k

< hmlnf— f [ 10uuldadt vic € N.

—30 le|<R
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Since k € N is arbitrary and since the following identity is trivially satisfied:

klim hi(s)ds =1,

we can deduce (3.4) from (3.11).
Finally we shall prove (0.12). Assume that

S 2
hRnng.}f}—Bf f|8‘x‘u| dadt =0,

-0 |x|<R

then by (0.9), (0.10) and (0.11) we get ¢, = 0, and in particular due to the identity
02 = lloll: we get 9 = 0. O

PROOF OF THEOREM 0.1 FOR 7 = 3. — Let i, and y;, , be the radially symmetric
functions on R? corresponding to the ones introduced in the proof of theorem 0.1
for n > 4.

Notice that the point where the proof of theorem 0.1 given for n > 4 fails in
dimension n = 3, is that it is unclear whether or not the following fact is true for
n=3:

(3.12) Jim f f ALy glul? dedt = 0.

| <R
On the other hand an elementary computation in dimension 7 = 3 implies:
APy, =0Ve e R®\ {|x| > 2} and Vk € N,

and hence the proof of (3.12) for » = 3 follows from proposition 2.1.
Once (3.12) is proved in dimension % = 3, then it is easy to verify that proof of
theorem 0.1 for n > 4 still works for n = 3. O
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