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Bollettino U. M. 1.
(9) I (2008), 767-789

Solitary Waves and Electromagnetic Fields (*)

DONATO FORTUNATO

Abstract. — Roughly speaking a solitary wave is a solution of a field equation whose

energy travels as a localized packet; by soliton, we mean a solitary wave which ex-
hibits some form of stability. In this respect solitary waves and solitons have a
particle-like behavior and they occur in many questions of mathematical physics,
such as superconductivity, phase transition, classical and quantum field theory, non
linear optics, (see e.g. [37], [50], [56]).
We are not interested in the study of a particular model. Here we shall be concerned
with the existence of solitary waves for a class of variational field equations which
exhibit suitable symmetry properties, namely equations which are invariant for the
Poincare group and the gauge group. In particular we shall describe two results
obtained jointly with V. Benci in [17], [18]. These results state the existence of three
dimensional vortices for Abelian gauge theories describing the interaction of elec-
trically charged solitary waves with the electromagnetic field.

1. — The nonlinear wave equation.

We start from a basic variational equation which is invariant with respect to
the Poincare group and the gauge group. Let us consider the nonlinear wave
equation for a complex valued field y defined on the spacetime R*

(1) Oy +W(y)=0
where
Py Py Py Py
= Ay, M=t 4
v =g W W=52" 5z o2
and W : C — R satisfies
(2) W(y) = F(ly|)

for some smooth function /' : R, — R. Hence

W (y) = F'(ly) L.
() (Il//l)w/|

(*) Conferenza Generale tenuta a Bari il 26 settembre 2007 in occasione del XVIII
Congresso dell’'Unione Matematica Italiana.
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Hereafter & = (1, 22, 23) and ¢ will denote the space and time variables.

The field y : R* — C will be called “matter field”.

Equation (1) is variational, namely its solutions are the stationary points of
the action functional

[ codwat
where £ denotes the Lagrangian
1w o e
3) Ly = 3 < ot —|Vy| ) - W).

If W'(y) is linear, W'(y) = may, mq # 0, equation (1) reduces to the Klein-
Gordon equation. Among the solutions of the Klein-Gordon equation there are
those which start as localized wave packets, but disperse in space as time goes on
(see e.g. [74] ). On the contrary, if W’ is nonlinear, the wave packets could not
disperse, actually equation (1) could possess solitary waves solutions which be-
have as relativistic particles (see the review articles [12], [13], [4], [15]).

1.1 — Symmetry and conservation laws.

The Lagrangian £, defined by (3) is invariant with respect to the action of the
Poincare group.

We recall that the Poincaré group %8 is the transformation group in R* which
preserves the Minkowski quadratic form

3
2 2 2
|z|M: —t +Zmia Z:(t, L1, X2, '%'3)
i=1

The Poincaré group is a ten parameter Lie group generated by the following
transformations:

e Time translations:
V=t+0 teR o =x

They form a one parameter group. This invariance guarantees that time is
homogeneous, namely that the laws of physics are independent of time: if an
experiment is performed earlier or later, it gives the same results.

e Space translations:

vy =X+ %, e Ri=1,23, ' =t
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They form a three parameter group. This invariance guarantees that space is
homogeneous, namely that the laws of physics are independent of space: if an
experiment is performed here or there, it gives the same results.

e Space rotations:
2 =gx,9€0@), =t

They form a three parameter group. This invariance guarantees that space is
isotropic, namely that the laws of physics are independent of orientation.

o Lorentz transformations:

x; = 71(a1 — vit) ) = X =2
Ty = X . Jwm =l —vt) ) wp =2
Ty = X3 ’ Ty =3 ’ x5 = yg(as —v3t)
i = yl(t — ?)136‘1) U= Yo (t - ?)2.%'2) i = y3(t - 1)3.7(73)
where
(4) yl:; i=1,2,3

,/1—7)127

with 02 <1, i =1,2,3.

They form a three parameter group. This invariance guarantees the principle
of relativity, which states that an experiment performed in an inertial frame
gives the same results than an experiment performed on another frame moving
with constant velocity v;.

The Lorentz invariance implies the remarkable facts of the Special Theory of
Relativity, such as the celebrated formula E = mc?. For a more detailed dis-
cussion on this point see e.g. [15].

The Poincare group ¥ acts on a field w by the following representation:

(Tow) (t, w1, 22, 23) = w(t' @y, ah,x), (F,a]xh,as) =gt @, x2,23), g €.

The classical Noether’s theorem [52] (see also e.g.[40]) states a deep con-
nection between symmetry and conservation laws. Namely, for a variational
system described by a Lagrangian L, it states that any invariance of £ for a
continuous one-parameter group implies the existence of an integral of motion
for the Euler -Lagrange equations, namely the existence of a quantity which is
preserved with time by the solutions. Thus the invariance of £, with respect to
the Poincaré group implies that (1) has ten integrals of motion.

e Energy. The energy, by definition, is the quantity which is preserved by the
time invariance of the Lagrangian. For a field  described by a Lagrangian £,
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it has the following form (see e.g.[40])

oL oy

(5) £ - Rf pedee, pe = o)

In particular, if £ = £, defined in (3), we get

|t ay|? 2
(6) sf[z (‘at V| ) +W(y/>] da.
R?

e Momentum. The momentum, by definition, is the quantity which is pre-
served by the space invariance of the Lagrangian; the invariance for trans-
lations along x; (i = 1,2, 3) gives rise to the following integrals of motion (see
e.g. [40])

'/f
U i
\R*
In particular, if we take £ = £y, we get
oy 8(// .
) Pi = Re fat G 1=1.2.3

Then, when £ = Ly, the momentum P = (Py, Py, P3) can be written

) P:Ref%—"t’v_q/ dz.

If we write v in polar form
(10) w(t, ) = ut, )™ y» >0, S e R,

we have the following expression for P

(11) pP= f( +—vsu>dx.

e Angular momentum. The angular momentum, by definition, is the quantity
which is preserved by the invariance of the Lagrangian £ under space ro-
tations with respect to the origin (see e.g. [40]).

When we take £ = £y, the angular momentum is given by

ay
(12) M:Re[xwiatdx
R
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where x is the vector whose components are 1, x2, 23 and x denotes the exterior

product.
Using (10) we get the following expression for the angular momentum (12):
ou oS 9
(13) M_fxx(EVu—i-EVSu)dx.

R?

e Ergocenter velocity. The integrals of motion related to the Lorentz in-
variance of the Lagrangian £ are the following ones (see e.g.[40])

(14) &:I%%mfﬂhi:L&S
R3

where p. and P; are defined in (5) and (7).
Let us interprete these integrals of motion in a more meaningful way. Define
the ergocenter @ as follows

(15) Q:= R _R

Taking the derivative with respect to ¢ in (14), when P = (P;, P, P3) and
K =(Kj, Kz, K3) are constants, we get

(16) Pz%(fwﬂa.

R?
When the energy & is constant, we get from (15) and (16)

) Q=7

Then, if £ is Lorentz invariant and P', & are constants of motion, the three
components of the ergocenter velocity @ are integrals of motion.
Let the Lagrangian £ be invariant under the U(1) action

(18) w(t,x) — e“y(t,x), aecR,

where a is independent of the spacetime location (¢, ). Observe that, by (2), the
Lagrangian £y in (3) is invariant for (18). This symmetry (global gauge sym-
metry), by Noether’s theorem, gives rise to another conservation law, namely the
conservation of the charge.

Charge. The charge of a complex valued field w described by the Lagrangian
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L has the following expression (see e.g. [13])

In particular, if £ = L,, we have
Oy _
(19) = Imfgt// d.
R?
Using (10), the charge (19) takes the following expression:
(20) o= o8 uPde.
Along the solutions of (1) the following continuity equation holds

op,,

where
a8
2 . 2
(22) Py =W gy and j, = —u"VS

are the charge and current densities of the matter field y.

If we interpret y as a quantum field describing a swarm of particles, the
charge ¢ represents the total number of particles counted algebrically (namely
an antiparticle counts for —1). Following [7], ¢ will be called hylenic charge. So,
when each particle in the swarm carries an electric charge q, we have

(23) Q=qo

where @ denotes the total electric charge.

1.2 — Standing waves.

The easiest way to produce solitary waves of (1) consists in finding static
solutions of (1), i.e. finite energy solutions y = y(x1, x2, x3) independent on time.
Clearly y solves the elliptic equation

(24) Ay + W) =0

Then, making a Lorentz boost with velocity v = (v,0,0) ( |v| < 1) along the x;
axis, we get

xy — vt
(25) l//v(ta X1, Xe, x?}) =y <17 L2, 903) 5
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Since (1) is invariant under Lorentz transformations, y, (¢, x) is also solution of
equation (1). This solution represents a bump which travels in the x;-direction
with speed v.

In [55], [67] it has been proved that (24) has finite energy nontrivial solutions
provided that W has the following form:

1 1
(26) W(s)zémgsz—ﬁsp, §>0,m2>0,2<p<6,

However it would be interesting to assume
(27) W >0;

in fact, if (27) holds, then the energy (6) is positive. The positivity of the energy,
not only is an important request for the physical models related to the equation,
but it provides good @ priori estimates for the solutions of the relative Cauchy
problem. These estimates allow to prove existence and well-posedness results
under very general assumptions on W.

However Derrick [38] has proved that the request (27) implies that the only
finite energy solution of (24) is the trivial one. His proof is based on the following
equality which, in a different form, was also found by Pohozaev [55] (see also
[13]). The Derrick-Pohozaev identity states that any finite energy solution y of
(24) satisfies the equality

(28) % f VB + f W(p)dz = 0.
R? R?
Clearly (28) and (27) imply that w = 0.

However, we can try to prove the existence of solitary waves of (1), with
W > 0, exploiting the possible existence of standing waves, since this fact is not
prevented by (28). In fact a standing wave is a finite energy solution of (1) having
the following form

(29) wot, ) = u@)e " u >0,w € R.
Substituting (29) in (1), we are reduced to solve the following elliptic equation
(30) —du+ W' ) = wiu, u € H(R?)

Now, as for the static solutions, we can obtain a travelling solitary wave
w,(t, ), just making a Lorentz boost with velocity v = (v,0,0) ( |v| < 1) on the
standing wave y(t, x) = u(x)e . )

Thus, if u(x) = u(wy, &2, 3) is any solution of (30) and y = (1 — v*) 2, then

(31) W, (t, @1, @2, 3) = w(y(1 — vt), @p, 5 )e k210D
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is a solution of (1) provided that
(32) w=ywy and k = ywyv.

Notice that (25) is a particular case of (31) when wy = 0.
The following result holds:

THEOREM 1. — Assume that W is a C? function s.t.

i) W>0,
ii) W) =W'0)=0; W) = mo, mo > 0
iii) there exists sg € R, such that W(sy) < 3 moso

Then (1) has a montrivial standing wave y(t,x) = u(ac)e~ 0t for
|wo| € (R0, mo) where

Q= inf{Q >0:3s € RTs.t. W(s) — %stz < 0}.

Notice that, by iii), Qy < m; then the interval (Qy,my) is not empty.

The existence of standing waves when W > 0 has been established by Rosen
in [57] under more restrictive assumptions than i), ii), iii). Starting from this
pionering paper, many physicists have studied nonlinear wave equations or
gauge theories with W satisfying i), ii), iii) (see for example [27], [43], [46], and
[70] with the reference therein contained). Theorem 1 has been proved in [27].

Coleman [27] calls @-balls those radially symmetric solitary waves which
solve (1) with W satisfying 1), ii), iii) and this is the name usually used in the
physics literature. The study of Q-balls was mainly motivated by the dark matter
problem in cosmology [39], [46], [48].

We point out that Theorem 1 can be derived by a well known general existence
result due to Berestycki and P. L. Lions [20]. In fact, by the previous discussion, it
is sufficient to solve (30). Now equation (30) can be written as follows:

(33) —Mu+ G'(w) =0, u € H'(R?)
where
G(s) = W(s) — —wgsz

By [20], the existence of nontrivial solutions of (33) is guaranteed by the
following assumptions on G:

(34) G(0) = G'(0) = 0 and G"(0) > 0
/
(35) lim sup G (58) >0
§—-+00 S

(36) dsy € R* : G(sg) < 0.



SOLITARY WAVES AND ELECTROMAGNETIC FIELDS 775

It can be checked that, for |wg| € (R0, M), the above assumptions are con-
sequences of the assumptions i), ii) and iii) on W.

The stability of the standing waves of (1) has been studied in [64], [42], [65],
[68], [6]. In particular in [6] it has been proved that the assumptions i), ii), iii) of
Theoreml guarantee the existence of an orbitally stable solitary wave (hylo-
morphic soliton) for (1).

A numerical approach to the construction of hylomorphic solitons and a de-
tailed discussion on some of their mathematical features are contained in [7].

2. — Vortices in Abelian Gauge theories.

Now we want to analyse the interaction of an electrically charged matter field
w with the electromagnetic field. Coupling equation (1) with the Maxwell’s
equations gives rise to an Abelian gauge theory which permits to model various
physical phenomena.

2.1 — Basic facts on Maxwell’s equations.

First we recall some elementary facts. Maxwell’s equations for an electro-
magnetic field E, H can be written as follows in the usual three vector notations

(37) V - E = p Gauss's law

E
(38) V x H— %_t =j Ampere's law
(39) V x E+%—il = 0 Faraday's law
(40) V - H = 0 absence of magnetic poles.

Here V- and Vx denote respectively the divergence and the curl operators.
We look for solutions of the type

(41) H:VXA,E:—%—VQ!L

where the maps
A:R' SR §:RY SR

are called gauge potentials (4 is the vector potential, ¢ is the scalar potential).
Substituting (41) in Maxwell’s equations we see that (39) and (40) are
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satisfied; moreover (37) and (38) become

(42) V. (— 94 _ v¢)
(43) V x (V xA) + g (?3? + v¢)

In the electrostatic case (i.e. whenj = 0, A =0 and 92 — () the system (42), (43)
reduces to the Poisson equation

—Np=p.
In the magnetostatic case (i.e. when p = 0, $=0 and % = 0) the system (42), (43)
reduces to the equation
Vx(VxA)=

Observe that the role of —A in the electrostatic case is taken in the magneto-
static case by the operator V x V x .

Whenj = 0 and p = 0 Maxwell’s equations (42), (43) are the Euler-Lagrange
equations of the functional

S = f Lonas dizdt,
where
0A 2
(44) £max == at + VqS —‘V X A|

Observe that L, satisfies the following gauge invariance property:

for all smooth y = y(t, x) we have Lyax(¢,A) =Liax(@ — / JA+Vy).

2.2 — The interaction with the electromagnetic field.

A gauge theory provides an elegant way to describe an electrically charged
matter field w interacting with an electromagnetic field E, H. Let
A = (A1,42,A3), 4 be gauge potentials of E, H.

Let
Lo= ( o’

be the Lagrangian of the field y and assume that W satisfies (2). Then the

—|Vy/| > - W)
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Lagrangian describing the influence of the electromagnetic field E, H on v is
1 2 1 2
Ly =5 |[Dwy|"— 5 Doy |" =W (W),
2 2
where Dy, D, denote the so called Weyl covariant derivatives, namely

o .
— a + Zq¢7 D%‘V/ = (DII//,DZ(//7D3W)

where 1 is the imaginary unit and

(45) Dy

i— iqd;, j=1,2,3.

D; =
J a%.]

The constant ¢ denotes the elementary charge and it represents the size of the
interaction. If @ and o denote respectively the electric charge and the hylo-
morphic charge of i, we have @ = go (see (23)).

On the other hand y is not only influenced by E, H, but it also is a source for
the electromagnetic field. If we want to take into account this action, also the
gauge potentials A, ¢ have to be considered unknowns of the problem. So the
total system consisting of the charged field w and the electromagnetic field is
described by the total Lagrangian

[ftot = El + Emam

where L,,q. is defined in (44).
Then total action S is

(46) S, 6,4) = [ Lig dudt

Making the variation of S with respect to y, ¢ and A we get the following
system of equations

(47) Diy — Dy + W) =0
oA — ot 2
(48) v (G ve) =a(m g0
d (0A B Vy 2
(49) V x (V XA)+§<E+V¢) —q<1m7—qA)|y/\

When ¢ = 0, (47) reduces to the nonlinear wave equation (1); moreover (48)
and (49) become the Maxwell’s equations (42) and (43) with p =0, j = 0. The
Cauchy problem for the system of equations (47), (48), (49) has been studied
in [45], where the existence of a global solution has been proved when
W=0.
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It will be useful to write y in polar form

y(t, ) = ult,x) S u >0, SeR/2n7Z.

Then
1 ou 2 2
Liot =3 (<8t> —|Vu| ) — W)
a8 z
+= ((at+q¢> —|VS — qA|)
0A z
(50) += ( o +Vé| —|V x A] )

and (46) takes the following form

Sw,S,6,A) = f (% ((%)2—|V®L|Z) - W(u)) devdt
2f<<at+ ¢) VS — q4| >u2dxdt
([

We point out that the Lagrangian £, defined in (50) is invariant under the gauge
transformations 7', defined by

—|v x A )dacdt.

(51) T,w= l//eiql;
_ s
(53) T.\A=A+Vy

where y = y(t,x) is a C™ function on R*. We recall that the Lagrangian £, re-
presenting the matter field y in absence of interaction, is invariant for (51) (see
(18)) only if y is constant, i.e. when the gauge transformation is identically per-
formed at every point in the spacetime (global gauge symmetry). Hence we
conclude that, incorporating the Maxwell field, it is possible to gain a much more
strict symmetry (local gauge symmetry), in which the phase change could de-
pend on the point (¢,x) € R*.
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The equations (47), (48), (49) take the form:

2
(54) O + W' () + (lVS—qAF—(Z—?Jrqcﬁ) )u:O
(55) % ((‘g—f + q¢> uz) ~V-[(VS—qA)®] =0
(56) v- <% + ng) = q<% + ng)uz
(57) V x (V x A) +% (%‘;1 + v¢> =q(VS — qA)u? .

It turns out that (56) and (57) are the Gauss’s and Ampere’s laws (see (42), (43))
with respect to charge and current densities p, j defined by

59 p= (G +a0)an
(59) J = (VS —qA)qu.
Finally equation (55) is the continuity equation
(60) 9 +V-j=0
ol TV I

where the charge and the current densities p, j are defined by (58), (59).
Notice that (55) can be easily deduced from (56) and (57). So we are reduced to
study the system (54), (56), (57).

2.3 — Stationary solutions and vortices.
Now let us consider the problem of the existence of solitary waves for the

Abelian gauge theory described by the system (54), (56), (67). The Lagrangian
Ly 1s invariant for the following representation of the Lorentz group:

vt x) = ', a)
bt @) = [t ') + v - A, &)

At x) = YA, x') + ¢, "))

where t',x" are the Lorentz transformed of ¢, and y,v are as in subsection 1.2.
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Thus, similarly to the case of equation (1), in order to produce solitary waves, it is
sufficient to find stationary solutions of (47), (48), (49) and to make a Lorentz
boost. By definition, a stationary solution of the system of equations (47), (48),
(49), is a solution (y, ¢, A) such that

. R
_ 1(So(x)—wt) >
w(t,x) = u(x)e au>0 weR,S) e 57
0A 0¢
1 — =0, = =0.
(61) ot 0, ot 0

Substituting S = So(x) — wt and taking into account (61), we get from (54),
(56), (57) that u, So, w, ¢, A solve the following system of equations:

(62) -+ (198 — gAP~ (g8 — ) ) u + W'(w) = 0
(63) —4 = q(w — qp)u”
(64) V x (V xA) =q(VSy — qA)u® .

It can be shown (see Theorem 1 in [9]) that the energy of a stationary solution
(u(m)ei(so(x)—wt)’ ¢,A) is

+

_[(Lo,z2
(65) e=[ (5 [V W)+ 5

2 +2 2 A 2
PAi VY x A )dw
R?

where p and j are defined in (58) and (59).

Clearly when » = 0, the only finite energy gauge potentials, which solve (62),
(63), (64), are A =0, ¢ = 0.

It is possible to have three types of stationary, non trivial solutions of (62),
(63), (64):
e electrostatic solutions: A = 0, ¢ # 0;

magnetostatic solutions: A # 0, ¢ = 0;

electromagnetostatic solutions: 4 # 0, ¢ # 0.

Under suitable assumptions, all these types of solutions exist. The existence
of electrostatic solutions has been largely studied when W satisfies (26) (see [10],
[11], [22], [28], [29], [35], [69], [36]). Recently some existence results for the
electrostatic solutions have been proved also when W > 0 (see [16], [49]).

Observe that the angular momentum M (y) (see (13)) of the matter field

y = u(x)ei(So(x)fwt)

is

(66) My) = —wfx X (uzvso)dx.
RR®
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If A = 0 (electrostatic case) and g # 0, by (64) we get
u?VS, = 0.

So necessarily M(y) = 0.
Now we give the following definition

DEFINITION 2. — A finite energy, stationary solution (u(x)e!S@-=) & A) of
(47), (48), (49) is called vortex, if the matter field y = u(x)e!S0@=" has non tri-
vial angular momentum M (y).

Then, in order to find vortex solutions, we need to look for solutions with
A #N0.

Observe that we have to solve the system of the three equations (62), (63), (64)
with respect the unknowns u, Sy, @, ¢, A. We shall consider the frequency w as a
parameter and make an ansatz for the phase Sy. Then we shall solve (62), (63),
(64) with respect u, ¢, A.

We set

2= {(xth)xS) S IP\S X =X = 0}

and define the map

R
CR3\y
0:R\E - 5

O(x) = Imlog (1 + 122).
Observe that 0 € C* (RS\Z,%) and V0 € C> (R?’\Z, RS)

Vi(x) = (902 —a 0), 7 = % + a

2
We set
(67) So(x) = 10(x), l € Z.
Using this ansatz, the equations (62), (63), (64) become
(68) s+ [|lv9 — AP (g — w)ﬂ u+ W) =0
(69) —4¢ = q(w — qp)u”
(70) V x (V xA) = q(IV0 — qA)u?.
So, if (u,¢,A) solves the system of equations (68), (69), (70), then
(1) (v, &,4) with y = u(x)e! %0

is a stationary solution of (47), (48), (49).
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Under some mild growth assumptions on W, it can be shown that, if
2 142y 2 24|VAP )d
(12) J (@502 + [TuP+ Ve + VAP )do < o,

then the energy € (see (65)) of (u(x)e!"@=) & A) is finite.
By (66) the angular momentum of the matter field v is

M(y) = —ol [ x x (42V0)d.
R?

The third component Ms(w) of M(y) is

(73) Ms(p) = —al f wide.
R?

So, if I, w # 0, the nontrivial solutions u, ¢, A of (68), (69), (70) satisfying (72),
give rise to vortices.

2.4 — 3D vortices: results and remarks.

First we state an existence result for vortices in three space dimensions when
W satisfies (26):

THEOREM 3. — Assume that
(74) W(s):%mgsh%sﬂ’, §>0,m>0,2<p<6

and set

Wy = My min(l,p%z).

Then, for any w € ( —p, a)p) and any | € 7., the system of equations (47), (48),
(49) admit o finite energy stationary solution (u(x)e“W®-0 & A) with u # 0.
Moreover

) Ifo#£0then E=—-V¢+#0.

) Ifl#0then H=V xA #0

o) If w,1 # 0 then (u(x) ¢!0@=0) & A)is a vortex.

The proof of this result is contained in [17] (see also [14]).

The existence of magnetostatic vortices in two space dimensions and with W
as in (74) has been recently proved in [8].
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We recall that the existence of vortices of the type u(x)e'@-) for the
nonlinear Schrodinger equation, with nonlinearities like (74), has been estab-
lished in [19].

REMARK 4. — Since u, ¢, A solve (68), (69), (70), assertions a), b) in Theorem 3
follow immediately from (69), (70). Assertion c) follows from (73).

REMARK 5. — By the presence of the term V@ the equations (68), (69), (70) are
not invariant under the O(3) group action. The solutions «, ¢, A we find have only
an S' (cylindrical) symmetry, namely

w=ur,x3), ¢ =¢(r,az), r= /o] +a5.

and A can be written as follows

L1

m —
A = b(r,w3)V0 = br, 903)(77;, — 0)

where b = b(r,x3) is a real function.

REMARK 6. — The presence of the magnetic potential A = b(r, x3) V6 gives rise
to a three dimensional vortex. Since the energy is finite the bundle of the vortex
lines forms a magnetic tube which is similar to the magnetic field originated by a
finite length solenoid.

Theorem 3 is not suitable for physical models since W is not positive and the
conservation of the energy does not give the suitable estimates which could
guarantee global existence for the initial value problems (see discussion in sec-
tion 1). Now we examine the existence of vortices for (47), (48), (49) when W > 0.

Equations (47), (48), (49) have been largely studied when W > 0 is double well
shaped, i.e.

(75) Wis) = (1-2)%

We point out that in two space dimensions, when W is double well shaped and
o = ¢ =0 (magnetostatic case), the equations (62), (63), (64) reduce to the
Ginzburg-Landau equations. For these equations the existence of magnetostatic,
planar vortices (y,4) with

(76) y = u(r)e’™ A = b(r)VO@), r= /22 + a3

has been proved by Abrikosov [1]in a celebrated paper, where super-
conductors of the second type have been analyzed. After Nielsen and Olesen
[51] have also shown the existence of two dimensional vortices (76) in the
context of string and elementary particle theories. However these results
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cannot be extended to the three dimensional case. In fact it can be proved
(see [18]) that, if W > 0, W(0) > 0 and W(s) = 0 for some s > 0 (as for double
well shaped W), then the equations (62), (63), (64) in three space dimensions
do not possess vortex type solutions.

Now we shall consider the case of a C? function W > 0 with W(0) = 0.
More precisely we assume that W satisfies the assumptions of Theorem 1,
namely:

HW>0
i) W(0) = W'(0) = 0, W"(0) = m > 0,
iii) there exists so € R, such that W(sg) < {mZsZ.

Observe that by iii) we can write
2

W(s) = %32 +NGs)
with N(0) = N'(0) = N”(0) = 0 and
(77) N(sp) < 0 for some sy > 0.

The following existence result for three dimensional vortices holds [18] :

THEOREM 7. — Let W satisfy 1),11),1i1). Then for any ¢ € 7,0 # 0 and any
sufficiently small q there exists w # 0 such that the equations (47), (48), (49)
posses a finite enmergy stationary solution which is a vortex of type
(u(x)ei(lﬁ(x)fwt)’ gﬁ,A).

REMARK 8. — When there is no coupling with the electromagnetic field, i.e.
when ¢ = 0, equation (47) reduces to the nonlinear wave equation (1) with W
satisfying i), ii), iii). In this case the existence of three dimensional vortices of the
type u(r, a3)e!W@—ol) has been stated in [5] (see also [71], [72] for related results).
The existence of planar vortices for (1) has been proved in [43] for a particular
class of nonlinearities satisfying assumptions i), ii), iii).

REMARK 9. — The term N = N(s) is negative in some point (see (77)), then,
roughly speaking, it produces an “attractive force” which allows the existence of
solitary waves. The smallness assumption on ¢ plays a fundamental role in the
proof of the theorem 7. This fact can be interpreted as follows: if q is too large, the
repulsive electric force becomes too strong with respect to the attractive force
represented by N and it is reasonable to conjecture that solitary waves cannot
exist.

The proofs of Theorem 3 and Theorem 7 are contained in [17] and [18] re-
spectively. Here we confine ourselves to briefly discuss some features of the
system of equations (68), (69), (70).
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In order to find solutions u, ¢, A of (68), (69), (70) we look for critical points of
the functional

J(u,6,A) = % f(|vm2—|v¢|2+|v x AP)da

1 2 2], 2
+5 f[uve — AP~ (g8 — 0] uPde + [ Wade
on the space H defined by
1
(78) H= {(u, ¢,A) :f((l +772)u2 + |Vu|2+|V¢|2+|VA|2>dac < oo}.

The study of the functional J exhibits the following main difficulties:

e Due to the presence of the electric field, namely of the term — [|V$|*dz, the
functional J is strongly indefinite. This means that the Morse index of any
critical point of J is infinite and, as a consequence, the critical points are
topologically invisible: roughly speaking, crossing a critical value does not
give any change in the topological properties of the sublevels .

e J contains the term [ |V x A[*da which is not a Sobolev norm and it does not
yield a control on [ |VA|*da.

e There is alack of compactness due to the invariance of the functional J under
the representation 7j, on H of the translations along the x3-axis: namely for
any U = (u,¢,A) € H and L € R we have

J(TLU) =J(U)
where
(79) (TLU)(xl,xz,xg) = U(xl,xg,xg -‘rL).
We point out that compactness cannot be recovered, as usual, by working in
the framework of radially symmetric functions; in fact, due to the presence of

V@, J is not invariant under the standard representation of the group O(3) on
H (see Remark 5).

1

2o

G (RN, R) € H and G (R R*) ¢ A,

e Due to presence of the weight function -, we have

Then the critical points of J solve (47), (48), (49), in the sense of distributions,
in R?\ 2. However it can be shown that the singular set X is, in a suitable
sense, “removable” and that the critical points of J are also solutions in R®.
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REMARK 10. — By using the Weyl covariant derivatives (45) it is also possible
to represent the interactions of electromagnetic fields with electrically charged
matter fields y described by other equations, as the nonlinear Schrodinger
equation. Also in these cases an Abelian gauge theory can be constructed [9]. The
research of electrostatic solutions for this Abelian gauge theory leads to study the
so called Schrodinger-Maxwell (or Schrodinger-Poisson) systems. In the last ten
years much attention has been devoted to such systems in presence of changing
sign nonlinearities W satisfying (74) (see [2], [3], [9], [21], [23], [25], [24], [26], [34],
[41], [44], [47], [60], [61], [62], [63], [28], [30], [31], [32], [33], [66], [53], [54]).
However very little is known for Schrédinger-Maxwell systems when W > 0.

REMARK 11. — We have considered matter fields y taking values in C and an
Abelian gauge theory, related to U(1), has been constructed. Let N > 1 and as-
sume that y takes values in CV, which is the representation space of the non-
Abelian Lie group U(N). In this case a non-Abelian gauge theory can be con-
structed (see e.g.[73]) and it would be interesting to properly extend the above
existence results to non-Abelian gauge theories.
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