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A Sufficient Condition for the C>-Rectifiability
of the Set of Regular Values (in the Sense of Clarke)
of a Lipschitz Map

SILVANO DELLADIO

Abstract. — We prove a result about the rectifiability of class C? of the set of regular values
(in the sense of Clarke) of a Lipschitz map ¢ : R" — RY (with n < N).

1. — Introduction and statement of main result.

1.1 — CH-yectifiable sets

A Borel subset S of RY is said to be a (H", n) rectifiable set of class C¥ if there
exist countably many n-dimensional submanifolds M; of RY of class C such that

H(&%ﬂ%)—&

Observe that for H = 1 this is equivalent to say that S is a countably n-rectifiable
set, e.g. by [15, Lemma 11.1]. Such a notion has been introduced in [3] and
provides a natural setting for the description of singularities of convex functions
and convex surfaces, [1, 2]. More generally, it can be used to study the singu-
larities of surfaces with generalized curvatures, [2]. Rectifiability of class C? is
strictly related to the context of Legendrian rectifiable subsets of RY x SV71,
[12, 13, 8, 9]. The level sets of a W{f)f mapping between manifolds are rectifiable
sets of class CF, [4].

Some of the papers mentioned above put the problem of finding conditions for
the C2-rectifiability of a set, which could be interesting for applications in a
measure-theoretical approach to geometric variational problems. This subject
presents many difficulties and no really satisfactory result has been obtained.
Even about simple matters, intuition is misleading. As a paradigmatic instance,
we recall from [3] the example of the C* function
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where ¥ is a suitable positive measure Cantor-like subset of [0,1]. In [3] the
authors prove that the graph of f is not C?-rectifiable, despite of the fact that
fI(R\E) is of class C*! and f’|E = 0 (in particular the approximate derivative of
[’ exists almost everywhere). Investigations related to this phenomenon have
been developed in the framework of Legendrian rectifiable sets and currents,
compare [6, 7, 12, 13]. One of the conclusions that can be drawn is that a
Legendrian rectifiable set R is not necessarily mapped to a C?-rectifiable set, by
the orthogonal projection 7 onto the base space (compare [13, Proposition 4]).
However it seems natural to conjecture that n(R) is C?-rectifiable, whenever R
carries a Legendrian integral current. In the special one-dimensional case, this
fact has been proved in [8]. A result about one-dimensional C¥-rectifiability
(reducing to the previous one, for H = 2) is provided in [9].

1.2 — Statement of the main result.

Let us introduce some notation. First of all, consider a Lipschitz map
p:R"=>RY  (m<N),
a multi-index y in
I, N) :={(,.. ., 7)) EN"[1 <y <. <, <N}

and s € R". Then, according to [5, p. 133], let d¢’(s) denote the generalized
Jacobian (in the sense of Clarke) of the map

o= (",...,¢") R - R"
at s, that is

09’ (s) == co{ lim D¢’ (s;) | D¢’ (s;) exists, s; — s}
1—00

where “co” stands for the convex hull. In particular, one has
Dy’(s) € 9¢p'(s)

whenever ¢’ is differentiable at s. Recall that d¢7(s) is said to be “nonsingular” if
every matrix in d¢’(s) is of rank n. Finally let

Ry ={s¢€ R™ | 99" (s) is nonsingular for some y € I(n,N)}.
THEOREM 1.1. — Consider a Lipschitz map
p:R"=>RY  (m<N).

Then the image p(R,) is a (H",n) rectifiable set of class C? provided the fol-
lowing condition is met:
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There exist a family of Lipschitz maps w; : R* — RY (i =1,...,n) and a
Samily of bounded functions ¢; : R" — R\{0} (i = 1,...,n), such that
Dip = cyy; t=1,...,n)
almost everywhere in R".

REMARK 1.1. — The condition above implies the existence of a Lipschitz field of
simple n-vectors parallel to the field

t— Dl(ﬂ(t) AERIA Dn(ﬂ(t)

orienting the image of ¢. Thus, the condition above yields a Legendrian-type
property which just extends to any dimension the one-dimensional assumption of
[8] (and of [9D).

2. — Extended technical statement and reduction to graphs.

As a matter of fact we will prove the following result, whose statement looks
quite technical but implies immediately Theorem 1.1 (actually it is strictly stronger).

THEOREM 2.1. — Constder a Lipschitz map

p:R*"=>RY  (n<N).
Let be given a family of bounded functions
¢ R" — R\{0} @=1,...,n),
a family of Lipschitz maps
w, R"—=RY  (=1,...,n)

and denote by A the set of points t € R" satisfying the following conditions:

(i) The map ¢ and all the maps y; are differentiable at t;
(ii) The equality

(2.1) Do) = ¢;Ow;(@)
holds forall i1 =1,... n.
Also assume that

(iii) For almost every a € A there exists a non-trivial ball B centered at a

and such that
LM(B\A) = 0.

Then p(ANTR,) is a (H",n) rectifiable set of class C2.
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REMARK 2.1. — Let E be any subset of R, y € I(n, N) and define
(2.2) E7 .= {s € E|0¢’(s) is nonsingular}.

Then one obviously has

U E'=E.

yel(n,N)

REMARK 2.2. — Let y € I(n,N) and RZ, be defined by (2.2). For s € Ri/;, the

Lipschitz inverse function Theorem (e.g. [5, Theorem 3.12]) implies the existence
of a neighborhood U of s and of a neighborhood V of ¢’(s) such that

o V=y¢'(U)and ¢’|U : U — V is invertible;
e (¢’|U)7! is Lipschitz.

Let 7 denote the multi-index in I(N —n,N) which complements y in
{1,2,...,N} in the natural increasing order and set (for 2 € R")

=@, . a), a = (@, aTN),
Then the map
f=@o@U): VRN
is Lipschitz and its graph
G} :={x e RV |2’ € V and 2’ = f(a")}
coincides with ¢(U).

By virtue of Remark 2.1 (with £ = ANR,) and Remark 2.2, and recalling
that the graph of a Lipschitz map is a rectifiable set (e.g. [15, Theorem 5.3]), the
proof of Theorem 2.1 is reduced to prove the following claim.

THEOREM 2.2. — Under the assumptions of Theorem 2.1, let y € I(n,N) and
consider a map

g:R"— RN
of class C'. Then p(ANR,)) NGy is a (H",n) rectifiable set of class C%
REMARK 2.3. — The remainder of our paper is devoted to proving Theorem 2.2.

With no loss of generality, we can restrict our attention to the particular case
when y={1,...,n}.
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3. — Preliminaries (under the assumptions of Theorem 2.2, withy={1,... n}).

3.1 — Further reduction of the claim.

noted by Gy, F' and 4, respectively.
Consider the set

L:=¢ Y G)NF

and observe that it is measurable. Without loss of generality, we can assume that
L"(L) < oo. Then, by a well-known regularity property of £", for any given real
number ¢ > 0 there exists a closed subset L, of R" with

(3.1) L.CL, L'I\L)<e

compare e.g. [14, Theorem 1.10].
Moreover, since L, is closed, one has

(8.2) L;CcL,
where L} is the set of density points of L.. Recall that
(3.3) LYLN\L) =0

by a well-known result of Lebesgue. In the special case that L has measure zero,
we define L, := 0, hence L} := ().
Observe that

Gy NpE\p(L}) C p(9 (Gy) NF\L}) = p(L\L})
hence
H" (Gg N pN\p(L)) < H" (p(L\L;))
< Lip(p)" L(L\L;)
< ¢ Lip(p)"

by the area formula (compare [11, §3.2.], [15, § 8]), (3.1), (3.2) and (3.3). It follows
that

H (Gg aNOLA /j)) 0,
=1

Thus, to prove Theorem 2.2, it suffices to show that
p(L;) is a (H",n) rectifiable set of class C?

for all ¢ > 0.
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3.2 — Further notation.
Let us consider the projection
I:RY S RN (g, an) — @pst, - &N).

Forie {1,...,n} and s, € R", define

n ag .
(34) Pi(0) := My;(0) — 2. %(/1(8))1//{ (0),

RO(0) := g(i(0)) — g(i(s)) - Z ag ) [p () — p(s)]

and

g g

1) o 1

R; (o) := B (Ao)) — B (A(s)).
REMARK 3.1. — All the maps ¢ — ®;,(0) are Lipschitz.

4. — Lemmas (under the assumptions of Theorem 2.2, with y = {1,... ,n}).

LEMMA 4.1. — Consider the square-matrix field
pilp) - W)
pr=Mp) =] | peRM
vip) - wip)
and let t € F. Then there exists a nontrivial ball B, centered at t, such that

o The matrix M(p) is invertible for all p € B;
e The map
p—Mp~', peB

1is Lipschitz.

PRrROOF. — One has

n -1
M(t) = (H q(t))

= D,o'(t) -~ Dng"(t)

Dip'(t) -+ Dyg"(®)

detM(t) £0.
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But the function p — det M(p) is continuous, hence there exists a nontrivial ball
B centered at t and such that

et 1440

for all p € B, hence the two claims easily follow. a

LEMMA 4.2. — If s € L} then

(1) One has
¢i;s(s) =0

forallie {1,...,n};
(2) Moreover, forle {1,... N —n}

9! _
@—gi%)) - [M(s) l}i-wﬁl(s)

where [ - |; denotes the i row in the argument matrixc and

n+l ., m+l

pith = Ly,

PRroor. — (1) First of all, observe that
g(®) = )

for all t € p~1(G,). Since L’ C A the two members of this equality are both dif-
ferentiable at s. Moreover s is a limit point of L, C ¢*1(Gg). It follows that (for

1=1,...,n)
n

% J(s) = IID;
5 AEIDi(5) = IDig(s)

namely
9
= ol

UNei W) = ci(s) Ty (s)

by (2.1). Recalling that c;(s) # 0, we get

(1) S Gl = i)
j=1

i.e. ®4(s) = 0.
(2) The system (4.1) is equivalent to

Ms)Vg'is) =y i), 1e{l,...,N—n}

hence the conclusion follows. O
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LEMMA 4.3 (Main lemma). — Let s € L} and t € A be such that
(4.2) H([s;t1\A) = 0

where [s;t] denotes the segment joining s and t. Define the map parametrizing

[s;t] as
o:[0,1] = R", p =8+ plt—s).

Ift € p7X(G,) then

n 1
RO®) =Y @ — ) [ cio(p) Pi(otp) dpy
i=1 0

Proor. — First of all, observe that:

e Since s,t € p~1(Gy) one has g(A(s)) = I p(s) and g(At)) = Hp(1);
e The function p+— ¢(a(p)) is Lipschitz, hence it is differentiable almost
everywhere in [0, 1]. Moreover the assumption (4.2) implies that

(poo)(p) =t —s)Dip(a(p))
i=1
at a.e. p € [0,1].

Recalling also (2.1), we obtain
n

RO®) = Mg(t) — ITp(s) — %(1(8)) [0i(t) - p(9)]

1
N~ ‘ " dg
- i;(t -5 )Of {HDZ(IJ(J(/)))— 2. w(ﬁ(s))ngp;(a(p))} dp

n 1 n )
=> (t'—s) f ci(a(p) {17 wi(a(p) — %(A(s))v/i(a(p))} dp.
0 J=1

i=1
The conclusion follows at once from (3.4). O

LEMMA 4.4. — Let Z be a null-measure subset of R" and s € R". Then there
exists a null-measure subset W of R" such that

(4.3) HUZ N [s;t]) = 0
forallt € RM\W.

ProOF. — Let y, denote the characteristic function of Z. By a standard ap-
plication of the coarea formula (e.g. [10, §3.4.4], [11, § 3.2.13]), we obtain

f y, = f < fc V/Z(s+p%)p”"1dp) dH" ()
0

R™ Sw,—l

0=
1
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hence

+o00

(4.4) f w,(s+pwp"'dp =0
0

for all u e S"1\Q, where @ is a measurable subset of S"! such that
H"1(Q) = 0. Define

W:=s+R'Q={s+pu|pcR" ucq}.

By invoking again the coarea formula, we find (denoting with B(0, R) the ball of
radius R centered at the origin)

R
cWnBOR) = [ v, =[ ( [+ pu)pnfldp) -
0

B(0,R) gn-1
4 R"
:f <f [//Q(u)p?kldp) dH" Yu) = — fV/QdHn—l
Sn,—l 0 n Sn,—l
=0

for all R > 0. It follows that £"(W) = 0. Finally the formula (4.3) follows at once
from (4.4). O

5. — Proof of Theorem 2.2.

As we observed in Remark 2.3 above, we can assume y = {1,...,%n} and the
notation introduced in sections 3, 4. Moreover let A’ be the set of a € A such that
there exists a non-trivial ball B centered at a satisfying

L"(B\A) = 0.
One has

(5.1) LYA\A) =0

by assumption (iii) in Theorem 2.1.
For each positive integer j define I', ; as the set of s € L' N A’ such that

(5.2) IR @I < jllA®) - 2)]?
and

(5.3) IRD@) <jllit) — i) G=1,...,0)
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for all ¢ € L} satisfying

1
[t = sl <.
J

PROPOSITION 5.1. — One has

Ur.,=r;nA.
J

ProOF. — Since (obviously!)
I,jcl,j1CL;nA
for all positive integers j, we get at once
Ur.jcrL;na.
J
In order to prove the opposite inclusion, consider s € L* N A’ and let U and V be
as in Remark 2.2. Observe that
(B4)  |t—s| = |G @) — Q) 6| < Lip GU) A0 — As)|
forallt € U. Since s € A’, there exists a non-trivial ball B centered at s such that
BcU, L*(B\A) = 0.
By applying Lemma 4.4 with Z := B\A, we find
H'([s;t\A) = H'(Z N [s;t) = 0
for a.e. t € B. Then Lemma 4.3 and Lemma 4.2(1) imply

1
fci(o'(/))) [éi;s(a(p)) - 451':5(8)] d/)H

0

n
IRP®I < > 1t — s
i=1

n 1
<> Lip(i) I =51 i [ o)~ sldp
1= 0

It — sl o
=5 > Lip(@) [t 5] il
1=1

<C|t—s|?

for a.e.t € BN ¢ 1(G,), where C is a suitable number which does not depend on ¢.
By continuity we get
IRO@)| < C |t - s|I”
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forallt e BN gp’l(Gg). Recalling (5.4) we conclude that

IRO® < Co |2 — A9, Co:=C [Lip(Z|U)]?

forallt € BN gp’l(Gg). By shrinking B (if need be!) we can also deduce the ex-
istence of a number C; which does not depend on ¢ and is such that

IRV®| < Cy i) - 2s)|  (=1,....n)

s
for all t € L} N B, by Lemma 4.1, Lemma 4.2(2) and (5.4). Hence
ENS Fs,j

provided j is big enough. |
Since L} C A, from Proposition 5.1 it follows that

(L) = p(L; NA) = p(L; N(A\A) U p(L; NA) = p(L; 0 (A\A) U (ol )
J

where p(L} N (A\A")) has measure zero, by (5.1). Hence it will be enough to prove
that (for all ¢ and j)

(5.5) o(I'. ;) is a ('H",n) rectifiable set of class C%.

To prove this claim, first consider a countable measurable covering {@;};°; of I', ;
such that

1
diam @; < =

.

for all /, and define
Fii=AT;N Q.
If &, € F), then there exist two sequences
{si} {te} C Iy N @y
such that
lilzn Asp) =&, liin AMte) = 1.
By (56.2) and (5.3) we get
IR @l < jllatte) — Al
and

IRD )l <jllite) — Asp)l|  G=1,...,m)

1,8k
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for all k. Letting £ — oo, we conclude that

Hg@ 00 -3 T o0 | <gln -l
h=1

and

8 .
Hagz( )_a_i(é)H <Jlin =<l t=1,...,n)

for all &,y € F;. By the Whitney extension Theorem [16, Ch. VI, § 2.3] it follows
that each g|F; can be extended to a map in C*'(R", RV ~"). Then the Lusin type
result [11, §3.1.15] implies that p(I"; ; N Q) is a (H", n) rectifiable set of class C2.
Finally, claim (5.5) follows observing that

o) = oy N Q.
l
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