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Systems of Bellman Equations to Stochastic Differential
Games with Discount Control

ALAIN BENSOUSSAN - JENS FREHSE

Dedicated to the memory of Guido Stampacchia

Abstract. — Abstract: We consider two dimensional diagonal elliptic systems Au + ou =
H(x,u, Vu) which arise from stochastic differential games with discount control. The
Hamiltonians H have quadratic growth in Vu and a special structure which has not
yet been covered by reqularity theory. Without smallness condition on H, the existence
of a reqular solution is established.

1. — Introduction.

In this paper we consider diagonal systems of elliptic partial differential
equations

(1) Lou; + a;u; = Hi(e,u, Vu), 1=1,...,N, inQ

in u, specially in two space dimensions. Here L is a scalar uniformly elliptic
operator

Lov = — i D;(a(x)Dyv)
ik=1
with Lipschitz or measurable coefficients a;, in particular
Lo=—4
and H = (Hy,...,Hy) is a Caratheodory function
H:QxR"x RN - RN,

The a; are real numbers > 0. Throughout the paper 2 is a bounded domain
of R".
The function H has quadratic growth in Vu, i.e.

2) |H(,u, V)| < K|Vul® + Ko .

We assume Dirichlet, Neumann, mixed boundary or periodic boundary condi-
tions. Systems of type (1) with the quadratic growth (2) occur in many situations,
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e. g. in differential geometry. cf. the survey (1) [Hil82] or [Jos02]; another ap-
plication are Bellman equations to stochastic differential games with quadratic
cost functionals (cf. § 2). The function H is determined by a certain formalism
explained in the next chapter. One of the benefits of this application lies in the
fact, that regularity theory, i.e. C*-regularity of weak L> N H'-solution may fail
for Hamiltonians with quadratic growth in Vu, c.f. [Fre73]. Stochastic differ-
ential games give surprisingly many examples of Hamiltoneans where C*-reg-
ularity takes place and new structure condition for H giving C*-regularity are
discovered via examples of control function of the players, c. f [BF84], [BF95],
[BF02].

In this paper we study Hamiltonians arising from the situation that the
players can influence the discount factor in their cost functionals (see § 2). This
leads to Hamiltonians

(3) Hi(w,u, Vu) = Hy(w,u, Vu;) — Va; - L(x, u, V) — wiFi(e, u, Vu) + fi(x)

where Hy;(x,u, Vu;) and F; has quadratic growth in Vu and L(x, u, Vu) linear
growth in Vu, Fiy > 0.

From the theory of diagonal elliptic systems it is known that there are regular
solutions if either Hy =0 and F; =Fy,i=1,...,N (Wiegner’s Theorem
[Wie81]) or F'; = 0 (the authors’ Theorem [BF84], [BF02]. For treating discount
control, one needs a C%theorem for systems with Hamiltonians satisfying the
structure condition (3) which is not yet available. At least, in two dimensions, we
succeed to treat the case (3) and obtain existence and regularity for the system
(1). This is the purpose of our paper. A part of our considerations work in n-
dimension.

The paper was written while the second author was guest of the Necas center
of Prague. It has been supported by the Hausdorff Institute of Mathematics in
Bonn.

2. — Stochastic Differential Games with Discount Control.

In this section, for convenience of the reader, we present the formalism on
how to derive the Bellman system from a stochastic differential game. We follow
[BF84].

Consider N players 1,...,N, who can modify the evolution of a dynamic
system

4) dy =gy, vy,...,08)dt +o(y)dw, y(0)=2x.

Equation (4) is a stochastic differential equation ; g represents the drift term, ¢
the diffusion term, w(t) is a standardized Wiener process in R" (y(t) € R"). In (4)
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y(t) represents the state of the system at time . The controls v1(?), ..., vy(t) are
stochastic processes.

Let O be a bounded smooth domain of R", and t the exit time of y(¢) from the
domain. Then player 17 is interested in minimizing its own cost functional

(5) Ji(x,v(-)) =E; [fli (y@®); v(t)) exp ( —fci(y(s),v(s)) dx)
0 0

+o@)exp (- [awomw)at],  i=1. 0y,

0

Here v( - ) stands for (v1(-),...vn(-)), and li(@, vy, . .., vN), ¢;(@, vy, . .., 0N), §;(®)
are given functions.
The concept of a Nash point is the following. Find 91(-),...,oy(-) such that

(6) Jl(x7f)l()77®l()77f)N()) SJZ<x7®1a7v()7®N())

for all v( - ) which are admissible for the i-th player. For one player (N = 1), the
problem reduces to the classical stochastic control problem. The factor

t

exp ( — j ci(y(s),v(s)) dx)
0

is the discount factor of the i-th player which can be influenced by him/her.

As it is well known for stochastic control Dynamic programming leads to an
analytic problem (a non linear P.D.E., called the Hamilton-Jacobi-Bellman
equation) whose solution allows to derive an optimal stochastic control.

For Nash points, the situation is similar. However, the non-linear P.D.E.
must be replaced by a system of non-linear P.D.E.

Let /;,p; € R x R" be parameters and

(7) Li(x, A, pi,v) = Li(e,v) + p; g, v) — Aici(x, v).

In the sequel, we will assume a simple form, in which the coupling occurs from
the state only, namely

Li(e,v) = fi(w) + ¢;(v)

Fixing «, A;, p;, we look for a Nash point Vi, AD), .. V(e 4,p) for the
functionals L;. Here A stands for (4;,...,4y) and p for (pi,...,pny). We then
define

(8) Hi(xajwp) :Li(x7/1i7pi7f/(xa ;“7]0)) .
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The non-linear system of P.D.E. is the following
9) Au; = Hi(x,u,Du), u; = ¢; on 90

where

o2
A= 9
2 du, O

1
and the matrix a = E(m*.

Once we have found a regular solution of (9), say u; € W>P(O),p > n, we
may set

(10) biw) = V; (w, u(), Du(x))
and obtain an optimal feedback for the player ¢, in the sense that
(11) vit) = i (y(®))

is a solution to (6). Moreover the left hand side is nothing other than w;(x).

Therefore the problem of finding a regular solution of the system (9) is the
tool to obtain Nash equilibrium points for the stochastic differential game.

Such results are available if H; has a growth (in Du), which is less than
quadratic.

Note that we have limited the presentation to stochastic processes which are
killed at the exit of a domain. This leads to Dirichlet boundary value problems.
Our theory treats also Neumann boundary or mixed boundary value problems.
Neumann conditions require processes which are reflected at the boundary, and
mixed Dirichlet Neumann require processes which are killed at the part of the
boundary where the Dirichlet condition is given, and reflected in the other part.

3. — A Standard Example for Lagrangians Modelling Discount Control.

Let B,, C! positively symmetric definite real m x m matrices and A, be m x n
matrices (4, € Hom(R™ — R"), v=1,...,N). The coefficients may depend
Lipschitz-continuously on x € @; for the sake of simplicity we do not elaborate
this. Fort=1,...,N

(12) fi e L¥(Q)

A reasonably simple class of Lagrangians L; is

1 N 1. & 4
(13)  Lilwe,ipiv) =300 Boi+pi Y A, = 34( Do, Ol ) +fi(@).
v=1 v=1
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A Nash point v* of L; satisfies
(14)  Bw; +Afp; — 2,Clwi =0 and v} =—(B; — 4,C)'Al'p; = Eip; .

K3

Since 4; corresponds to the unknown function u;, one has to arrange via max-
imum principle arguments that «; ranges in an interval such that B; — 4;,C; is
positively semi definite and bounded (see § 8).

Thus we obtain for the Hamiltonian

1
(15) Hi(x,u, Vu) = éEiVui -BiEiVui

N N
1 )
=Vui -y AE N =5y BNV CLE NV, + fi(@)

v=1 v=1
=: Hy;(x,u, Vu;) — Vu; - L(x, u, Vu) — w; F; (e, u, Vu)

where
E;i = —B; —uiC;) AT

4. — Discussion of the Hamiltonian with Respect to PDE-Theory.

The Hamiltonian (15) is of the form
(16)  Hy(x,u, Vi) = Ho(xe, w, Viuy) — VL (e, u, V) — w3 (e, u, V) + f; .

We emphasize that Hy; does not depend on Vu,, v # 1, and that L does not de-
pend on the index ¢ (which belongs to the i-th equation of the diagonal system).
Under the a priori condition

(17) Aol < B; — ?/LZC; < Aol

with 49 > 0, 1y € R, and the assumption that A;, B;, Cf, are Lipschitz continuous
and the positivity assumptions on C!, we have

(18) Hyi, L, F; are Lipschitz continuous on
compact subsets of Q x R" x R™

(19) |HoiGee, )] < Kl + Ko

(20) 0 < Fi(w,u,m) < K|p® + Ko

with some constant K, Ko, € Q,5; € R", 5 € R™, w satisfying (17). In the case
of our Lagrangian

(22) Ky=0.
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For diagonal systems
(23) — Mu; + a;u; = Hi(xe,u, Vu)

with Dirichlet periodic or Neumann boundary without discount control (#'; = 0)
there is a satisfactory theory concerning global solvability and regularity of so-
lutions, even for more general Hamiltonians including some couplings v;v;, of the
controls of the i-th and k-th player ((BF95], [BF02], [BF94]). Alternatively there
is Wiegner’s theorem ([Wie81]) which covers the case Hy; =0, F; = Fy # 0, i.e.
the players control their functionals only via the discount factor and the stochastic
one. There should be a combination of the theory of Wiegner and the authors
which would cover the structures (16), (19)—(21), but this is not available. Thus, it
is of interest that we are at least able to treat the case of two space dimensions.

In (23), the Laplacian 4 may be replaced by a uniformly elliptic scalar op-
erator

n
Ly =~ Z D (ag(x)Dy,)
=1

with Lipschitz coefficients and ellipticity constant vy.

The techniques we use remind to those in [Fre79], where a logarithmic
Morrey condition for Vu is proved. However, due to the special situation
here more complicated test functions are used. We present a simplified
approach concerning the derivation of a logarithmic Morrey condition; this
could be applied also in [Fre79]. The key is always to prove H' and C*
estimates for approximations of the system. This works even in the case of
measurable a;,. The step thereafter, obtaining H?P-estimates, is well known
([LU68], [Fre81]).

5. — Approximation.

Let u; be numbers such that for the matrices B;, C; from § 3 we have that
B, — ,141;sz 1s uniformly positively definite

Recall that B;, C! are positively definite.
Let [u;],, = min (u;, u;). Then the matrix B; — [l CZ is uniformly positively
definite and the matrices

(25) B = —(B; - [u1,C}) AT

are uniformly bounded and Lipschitz continuous in x.
In the definition of Hyy, F'; and L in (15), we replace E; by £’ and denote the

corresponding functions which arise by HY), Fij, L*.



SYSTEMS OF BELLMAN EQUATIONS TO STOCHASTIC DIFFERENTIAL GAMES ETC. 669

We now start the approximation procedure. This concerns also the general
case (16), (18)—(21). Approximate the whole right hand side H; by

(26) HY = [H!. — VL — wiF" @, 1, V)| (1+ OJuf® + 6| Vul?) " +f .

(The function f is put outside of the normalization in case maximum principle
based inequalities are of importance in condition (24).)

Now, H’ ’i“j is bounded and the theory of elliptic equations gives the existence of
a solution u € H?P of the diagonal system

(27) — Mu; + au; = Hé“;(aﬁ7 u, V)

with Dirichlet or Neumann boundary conditions at 022 if the data is smooth. For
more general boundary 02 we may confine ourselves to estimates in
H'NnL> ﬂHlQO‘IZ , however for the final proof it is convenient to have Hoélder
continuity up to the boundary. For this, we assume a Wiener type condition for

0Q or simply “condition A” of Ladyzenskaya-Uralzeva
(28) 1(Brxo) N 0LQ) > coR" Xo € 0Q
or, in the case of Neumann or mixed boundary,

(29) 082 is Lipschitz continuous.

In the case of mixed boundary we need in addition a Wiener type condition for
the Dirichlet part I'p C 9Q of the boundary

(30) cap(FD NBg; BZR) > C()Rn72

for all balls By(x), 2o € I'p, B < 1. cap denotes the relative capacity.

In order to justify the passage to the limit as 6 — 0, we establish several
estimates in § 7 - § 10. In § 7 we derive L*-estimates based on the maximum
principle (which also allow to get rid of the index x in (25)). In § 8 we give H'-
estimates, in § 9 a logarithmic Morrey estimate and, finally, in § 10 an uniform
C“-estimate which allows the passage to the limit § — 0 and H?P-regularity.

The following chapter is devoted to the discussion of the test functions we use.

6. — Iterated Exponential Test Functions.

Similar as in [BF84], we shall work with the iterated exponential functions
N
(31) w; = 1(e?"i — e P exp (c Z (e’ + e’/}“"))
v=1

where 7 > 0 may be a localization function, or r = 1 or 7 is a singular weight. The
parameters ¢ and u will be chosen large.
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We shall use (31) for proving a) maximum principle type estimates and b) an
H'-bound for the solution from a L>-bound; ¢) a logarithmic Morrey estimate.

Effect of the test function on the right hand side of the equation (16). This is
valid for any dimension.

We have the identity

N N

(32) > (Vu, V) +ady f uwy,de =Ty +To+ Ts + Ty
v=1 v=1

where

N
=) f |V, [P + e Py exp ()t dae
v=1 @

N 2
To = c/ﬁ’_lf ’V Z (&P 4¢Py exp ()rdx
Q y=1
N
Ts = +ﬁ*1 f Z V(P + g=Fev) exp ()Vtdx
o =1

N
Ty = Z J-avu‘,(eﬁz“‘ — g Py exp (Dt de.
v=1

If we have to deal with a general diagonal elliptic operator then (32) becomes an
inequality and (Vu,, Vy,) and T are modified respectively.
For the right hand side of the equation in the approximate case or the limiting
case we have
N

(33) Z |:(H0V7 '//V) - (V/I/LWL[//\;) - (quv, ylv) + (ﬁ’7 l//v)i| = Sl + S2 + S3 + S4

v=1

and estimate (in the case Ky = 0; if Ky # 0, then some pollution terms would
oceur)

N N
(34) 1S =1 (Hovw,)| < KZI |V, [P + e~ ) exp ()t dix
y=1 y=1

N
(35) |S:| = ‘Z J‘/TlV(eﬁ”" +e ). Lexp (.)rdm‘
y=1

N 2
2 251 Buy | P
< 50_[L exp () dx + 40, ”V ‘2’:1 " + e "")| exp()rda

(36) S3 <0

since F, > 0 and u, (e — e ) > 0.
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N
Recall exp ()= exp (C Z (e/fup + effmv)) .
y=1

Note, that in all this procedures the Dirichlet boundary condition for y, re-
mains respected. One may also replace u, by u, — ¢,, ¢, constant, provided the
factor ¢ vanishes at the Dirichlet boundary.

From the above calculations we obtain the following estimate for bounded
weak solutions of the system

(87)  —Au; + a;u; = Hoi(x,u, Vi) — VL, w, V) — w; Fi(e,u, V) + fi(x) .

LEMMA 6.1. — Let u € L™ N HY(Q, RN ) be a weak solution of (37) with respect
to one of the boundary conditions Dirichlet, Neumann, mixed or periodic.
Suppose that the growth and sign conditions (19), (20), (21) hold with Ky = 0 and
let a; > 0. Set ¢ = f§ = 2K + 1 where K comes from the growth condition. Then

N
(38) [ [IVa P + e + @y, — fe — e )]

v=1

N
X exp (c Z (" + e‘ﬂ““)) Tdx

pu=1

N N
< - Z .[Vuy(eﬁ“" _ e*/)’u,,) exp (C Z (eﬁ”" + e*/)’%)) Vede.
y=1 v=1

REMARK. — Clearly, the statement of the lemma holds with —A replaced by Ly,
with an additional factor Cy > 0 in front of |V, [>.

COROLLARY 6.1. — Inequality (38) holds if u, is replaced by (u, — ¢,) for any
constant c,, provided that c,7 = 0 at 0.
PRrOOF OF LEMMA 6.1. — In (34) we choose dy = (K + 1)7!. From the PDE we

have the equation iTi = iSi. Inspecting the above inequalities and re-
i—1 i=1
presentation formulés for T;, S;, we see that T; dominates S; and also the first
summand at the right hand side of (35).
The second summand in (35) is dominated by Ts. The term S3 is dropped
due to the sign situation. The terms 75,74, S; remain untouched. Thus we
obtain (38). O

7. — H'-Estimates.
Choosing 7 = 1 in Lemma 6.1 we immediately obtain H'-bounds for the so-

lutions of the system provided that we have an L>-bound. This holds in all di-
mensions.
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THEOREM 7.1. — Let u € L>® N H' be a solution of the system (37) and assume
the conditions of Lemma 6.1. Then the H'-norm of u is bounded by a constant,
depending only on ||ul| .., the growth constants, || f||;: and a.

REMARK. — 1. The explicit dependence of ||u||;; with respect to ||u||,, with use
of Lemma 6.1 is dramatic due to the iterated exponentials.

2. Obviously, the solutions u, of the approximate problem (27) are uniformly
bounded in H! for once an uniform L*>-bound is established.

3. In the setting of Theorem 7.1 the H'-estimate does not depend on Q.

ProOF of THEOREM 7.1. — It is an obvious consequence of Lemma 6.1 using

P p e >2  and  wu (e — e M) > 2Bue I > 0.
O

Other devices for obtaining H'-bounds.
The Hamiltonians arising from discount control as treated in this paper have
the property

Hoi(ee,u, V) ~ K1 + ;) 2| Vul”

if a setting with an adequate sign situation is arraznged. This has the consequence
that one may work also with test functions u;e’"" if certain smallness conditions
for the matrices A,, f,, C¢ not depending on ||u|, are assumed.

8. — L>*-Estimates.

In this section, we deal again with the diagonal system (37) and consider one
of the boundary conditions Dirichlet, Neumann, mixed or periodic. For obtaining
L -estimates for the solution % which covers also Neumann and mixed boundary
conditions we use a weak maximum principle which is proved via a truncation
method (as we learned it long time ago from Guido Stampacchia see also [KS80]).
We consider the following scalar equation:

(39) —tw + (ag + go)w + gVw = f in Q

and assume the following conditions

(40) ap € R, ap >0
(41) g EL'Q), g>0
(42) ge LA Q)

(43) feL™Q)
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There exist q > n such that for any neighbourhood U(I'p) of the Dirichlet
boundary

(44) geLI(Q\UUp)).

The reason why we need (44) is that the lemma below is applied to the case
g ~ |Vu| and Vu need not be regular enough in U(I'p N I'y), even if we ap-
proximate 2 by smoother domains.

In equation (39) we may replace 4 by a more general uniformly elliptic op-
eration in a divergence form.

LEMMA 8.1. — Let w € C(Q) N H}D (Q) be a weak solution of (39) and assume
(40)—(44). Then
(45) agtess inf [f1. <w < ay esssup[f], .

Notation: [f]. = min{f,0}, [f], = max{f,0}.

PRrOOF. — Assume that

maxw =: M > ¢+ a;'esssup[f], .

Then M > ¢ and w— (M — ) <0 on I'p for 0 < § < &. Thus we have for the
truncated function

(- 1= 9), o= max 0~ O — 5,0) € 7}, AL~

and we use it as a test function in equation (39). Since we have assumed that
w € C(Q) we know that (w — (M — 5))+ =0in U(I'p).
By simple calculations, using also (41), we obtain

1
(46) %J|Vw|2dx +I(a0w —f)(w—(M—é))+dac§§J|g|2(w—(M—5)idx.
+

Here [ denotes integration over the set (w— (M — ) > 0).
+

From (46) we see that w cannot be w = const = M since then (46) would imply
in inequality
I< K&

which cannot be true as 6 — 0. Hence we have that the measure of the set of
zeros of (w — (M — 9)) , remains >0 as J — 0.

Since the integration [ avoids U(I'p) we may use (44) and estimate by
Holder’s inequality +

(47) [ 19w — 1 - 9)° dw < k([ (10— @1 - )7 dx)Z/q

+
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2
where ¢* = n—nz + dg with some Jy > 0 if » > 3, or ¢* is some large number, if

n = 2. Since the set of zeros of (w - (M — 6)) N has positive measure as § — 0, we
know from Guido Stampacchia’s work ([Sta66]) that

K[ 19— 01-0). [ de> ([ (0-01-0)"dr)""

with some » = r(q*) < 2.
From Hélder’s inequality we then obtain

) ([w-a-a)" dm)w < [uM — 5 <w < )" [ |Vl da
¥ ¥

with some J; = 6;(r) > 0. Here i denotes the Lebesgue measure. It is important
to observe that in the argument of 1 we have w strictly < M. This implies

M —-o<w<M)—0 aso—0

and from (48) and (47) we see that the term f |Vw\2 dx dominates the term

[lg? (w — (M — 5))i dz for small 6 > 0. Thus we arrive at the inequality
+
[ @ —pw— 1), dz<0

which is a contradiction since aqw —f > 0 on (w > WM — 5)). This proves the
upper bound claimed in Lemma 8.1. The lower bound is proven analogously. [

We apply Lemma 8.1 to the approximation (27). In the case of Dirichlet
boundary condition we need only assume “condition A” (28) at the boundary; for
pure Neumann condition we assume either

(49) 0Q € H*>

or could apply an additional approximation procedure concerning 92 such that
(49) holds and the approximate boundaries are uniformly Lipschitz.
In the case of mixed boundary we assume, for simplicity,

(50) OA\U(I'p) € H?>®
and an uniform Wiener condition for I'p, i.e.
cap(BRﬁFD;BQR)zcoR"*Q, R—0,c>0.

In this setting, we obtain

THEOREM 8.1. — Letu € H }—D () be a solution of the approximate system (27).
Assume the structure conditions (18)—(21) with Ky = 0; let a; > 0, f € L™, and
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let the above regularity assumptions on 0Q, I'p, I'y be satisfied. Then
a;'essmin[f;] < u; < a;'essmax(f), .

Proor. — The statement is an obvious consequence of Lemma 8.1 applied to
each component u; O

Let us mention a simple proof in the case of Dirichlet boundary condition and
smooth functions Hy;, F;, L, f. Due to regularity theory we have u € C? in the
interior of Q. Since u € C(Q) and u|y, = 0, a positive maximum or negative
minimum cannot be at the boundary. If «* is an interior point where a positive
maximum of u; attained, then

— () >0, Hyi (", V(")) =0, Vau;(x*)-L =0, wF; > 0.

Hence
azui (@) < filx").

The inequality from below is proven analogously.
Now we are able to give a criterium such that condition (17) holds.
Since C is positively definite, the inequality (17)

JoI < B; —u;C!
with 49 > 0 holds if the matrix
(51) B; — max (0,esssup f;) Cf
is positively definite; this is the case if the lowest eigen value o; of B; satisfies
(52) y; max (0,esssup fi) < g,

and y; is the largest eigen value of C} .

9. — A Logarithmic Morrey Estimate for Vu.

The following estimate works in n-dimensions but has only a consequence for
n=2.

LEMMA 9.1. — Let u € L>* N H' be a solution of the system (37) and assume
the growth and sign conditions (18)—(21). Let a; >0, i =1,...,N, and f € L4,
with some q > 1. Then, for every a € (0,1) there is a constant K, such that

(53) j V2 |infe — || do < K, , X EQ.

By (o) N2
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The constant K, depends only on the growth constants in (19)—(21), the ellipticity
quotient, if a general elliptic scalar operator is assumed, on the L*>-bound for u,

on diam €, the dimension and on a bound for sup [ |f||ln|x — xo||* da.
LoEQ Q

REMARK. — For n > 3 one can achieve a = n — 2 choosing a Green function for
7in Lemma (6.1) assuming, say, f € L"/2*°, Of one chooses such a function 7 for
7 = 2 one obtains Lemma 9.1 even with a = 1. However the approach here is
simpler and the method of the proof here works in some non-diagonal settings.

PROOF OF LEMMA 9.1. — In Lemma 6.1 we set t = |In(alx — xo|)|" where a = a

(diam Q) is chosen such that a|x — x| < 5 29 € Q. Then Lemma 6.1 yields
u|”|In(alx — 2o < w||In(alx — o X — X €+

| 1vuPmtalz — wo|* de < [ KVullintale - m|" e — 20| dw + K

<1fv 2] “de+ K 2 2+ K

<3 |Vul”|ln(a|x — xo|)|” doe + | — 20| |In(a|x — xo))] v+ K.

This proves the Lemma since 2 —a > 1 and
J ¢ — o) 2| Infa — wo|| " dae < K,
By 2(wo)

if > 1. O

10. — C*-Estimates.
This section treats only the case of two space dimensions. We consider a di-
agonal system
(54) — du; + au; = Hi(e,u, V) + f;
with boundary conditions and a growth condition
(55) \H(x,u, V)| < K|Vul* + K, feL>.
Furthermore, we assume

(56) H(x, 1, v, n) satisfies the Caratheodory conditions.

In fact we need not that the system is diagonal.
We consider solutions

u € L® N HY2(Q) N C“(Q)
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with the corresponding boundary condition and given bounds for |u| . and

|w||2 and the quantity sup| [ Inle — o |ﬂ |Vul? de and prove an a priori
To QN Byya(wo)

bound for the C*-norm of « with some ay € (0, a), ayp and the C* depend only on
|%]| s |2¢]l 2 and the data, i.e. the constants in the growth condition and the
domain Q.

The fact that this works in this setting is well known, see [LU68], [Fre81]. The
proof works via a global version of the hole filling technique. For the sake of
completeness, we present the proof below in the periodic case. The treatment of
other boundary conditions gives slightly more technical difficulties, but it is well
known how to proceed.

We need the following version of Morrey’s Lemma [Mor66]:

(57) [u]%“(BRO(xo)) < K? SUP{R%I j |Vl da ‘BR C 3230(900)} .
Br

Bp,(p) is the ball with center x¢ and radius Ry, Br = Bg(y). As usual the C*-
semi-norm is defined by

[wlosawy = sup {|& — y| ™ |u@) — u@)||x # y,x,y € W}.

Note that in (57) the constant K, does not depend on R, due to the special setting
with the C*-semi-norm extended over Bg,(xy) on the left hand side and the balls
Bpr C Bag,(xp) at the right hand side. This can be seen from a scaling argument
or just looking on Morrey’s old Lemma.

Next, we establish Caccioppoli’s inequality. In (54) we choose the function

— 2
(u —up)ty

as a test function where %y is the mean value of the function u taken over the
annulus Bsp(y) — Br(y) and 1 is a Lipschitz-continuous function such that

supptr = Bar(y), g =1 on Bg(y), |Vig| < R7L.

With standard simple arguments we obtain
(58) f|m|2f§ d < Kf u — g PV irl de
—|—KJ IVullu — up|dd de + KR? =: A + B + KR?.

Since |u —up| < R*[ulc. we immediately see from (58) that Vu satisfies a
Morrey condition if [#]q. < oo, i.e.

1/2
Sg, == sup{R’Z“ f |V dac‘ 2€Q,R< RO} < 0.
Br(2)
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In fact, for B one estimates

B < K@R)" f Yl de,

and the latter term is dominated by the right hand side of (58) for small R < 7
and we conclude S,, < K. Thereafter, one estimates Sg, < K(Ry,79)Sy,. Clearly,
this estimate for Sg, is not yet uniform, but at least we have Sg, < occ.

We now establish the uniformity of the Morrey estimate.

From Morrey’s Lemma we have

[w]ceBopoy < Sar, < KSr, -

Thus we conclude from (58)

f \Vultdx < KR2 f u — g2 de + K j \Vuf? deR2S%, + KR?.
Bp() Bar(w9)—Br () Baray)

We have estimated |Vu|*Sg, % < ¢ Vul*t + K,|Vu/*S%, . (Simplifies the latter
representation.)

We now estimate [ |u — #g| on Beg — B via Poincaré’s inequality and arrive
at the hole filling inequality

(59) f \Vultde < K j |Vu|2dx+KJ Vuf? deR2S%, + KR,
Br(xo) Bar(a0)—Br (o) Bar(ao)

We add | |Vu|2 dx to both sides of the hole filling inequality and obtain
B ()

with 0:L<1

K+1
60) [ vuPdr<o [ [VuPdes K [ [VuP deR S, + KR
B (o) Bag (o) Bor

Now choose f € (0,1) such that f < a and
022/)) = 91 <1.
We divide (60) by R and pass to the supremum R < Ry, ¥y € Q. Then we obtain
Sk, < 0183, + KoS%, sup{ J |Vauf? dx’xo €eQ,r< 2R0}—|—K.
Br(mo)

Since we have the logarithmic Morrey condition from the last chapter we know
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that

sup I|Vu|2 dac‘R < 2Ry ; < K|(InR2Ry)| ™ < L(1 —0)
2K,
Br
if Ry = Ro(K, ap) is small enough.
Hence we arrive at

1+ 6,
2

(61) Sk, < 0185, + K.

Now we have the two possibilities

1/2
Sog, = sup {R’Z“I|Vu|2dx} = Skg,
0<R<R, Br

or

1/2
Sor, = sup {R*Z“ f |Vu|2dx} :
Ry<R<2R, B

In the first case we conclude from (61)

-0 .

in the second case we conclude

Sk, < K, [ IVuf*do + K < Kg,
Q

i.e. in both cases we arrive at an uniform estimate for Sg,.

Thus we have proven the a priori estimate
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THEOREM 10.1. — Let u € C*(Q) N HY(Q) be a solution of (54) and assume the
growth condition (57), the Caratheodory condition (56) and the inequality (53)

from Lemvma 9.1. Let n = 2. Then there is a number f < a

[wley < C

with f and C depending on K, ||[u| ., ||¢] g, | f]l145 ond Q and the constant K, in

(53).

COROLLARY 10.1. — Theorem 10.1 holds also in the case of Dirichlet, Neu-
mann or mixed boundary conditions if the regularity assumptions on 02 (28),

(30) (49), (50) are assumed.
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11. — Passage to the Limit 6 — 0 and Main Theorem.

Once having an uniform C“-bound for approximations (26) it is well known
how to prove H?P(Qq)-estimates, uniformly as § — 0, for fixed Qy cC Q. This
holds for diagonal systems, the elliptic principal must have Lipschitz coefficients.
For a proof see the book of Ladyzenskaya-Uralzewa [LUGS] or the survey
[Fre81].

By Rellich’s Theorem we thus may pass to the limit in the non-linearity
H(ugs, Vus). For Neumann’s problem and mixed boundary we need also com-
pactness of H(us, Vus) in L' near the boundary; this is also well known since
uniform C”-estimates are available up to the boundary. Thus the final theorem
reads:

THEOREM 11.1. — Let the functions Hy;, L, F; in (16) satisfy (18)—(21) with
Ky=0. Let f € L* and a; > 0. Let 022 satisfy condition “A” (28), in the case of
Dirichlet problem, or the smoothness assumptions described in chapter 8 in the
case of Neumann or mixed boundary. Then there is a solution

u € CYQ) N HY2(Q) N H>"(Q)

loc

of the diagonal system (1) with the corresponding boundary conditions, with
some a € (0,1) and any p < oc.

FiNAL REMARKS. — There are many open problems left.

1. Extend the theorem of this paper to the parabolic case in two space vari-
ables. The difficulty is to derive a logarithmic Morrey estimate as in section 9, or
a substitute.

2. Extend the theorem diagonal the elliptic in n-dimensions, at least for the
case F;, = F).

3. Solve a game which leads to super-quadratic Hamiltonians, i.e. H(x, Vu) ~
[Vul!, ¢ > 2.

(A first result in this direction has been proposed by the authors in [BF08].)

Acknowledgment. The authors want to thank Mrs. Inge Schmelzer for her
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