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Nonlinear Elliptic Equations with Lower Order Terms
and Symmetrization Methods

ANGELO ALVINO - ANNA MERCALDO

Dedicated to the memory of Guido Stampacchia

Abstract. — We consider the homogeneous Dirichlet problem for nonlinear elliptic
equations as

—diva(x, Vu) = blx, Vu) + u,

where 1 is a measure with bounded total variation. We fix structural conditions on
functions a, b which ensure existence of solutions. Moreover, if 1 is an L' function, we
prove a uniqueness result under more restrictive hypotheses on the operator.

1. — Introduction.

Let us consider the homogeneous Dirichlet problem

—diva(x, Vu) = b(x, Vu) + in Q,
11 { v aw, Vu) = b, Vu) + u

u=20 on 0Q

where Q is a bounded open subset of RY.
We assume that

a: (x,2) e Qx RN — a(x,z) = (a;(x,2)) € RN

and
b:@E)eRxRYN—b,delR

are Carathéodory functions such that

(1.2) a,&)- &> ¢,

(1.3) la(e, &) < AJEP,

(1.4) (a(w,o) —a(@,n)-C-m >0, <#,
(L5) b, &) < B@)|&P

where p € ]1, N[, A is a positive constant and B € L"(Q) for some » > N.
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Finally u denotes a Radon measure with bounded total variation; never-
theless it is an L'(Q) function when we deal with uniqueness results.

These conditions on x do not allow us to refer to the notion of weak solution.
Indeed it works well when the known term belongs to the dual space W' of
Wé’p (2); in this case (1.2), (1.3), (1.4), (1.5) (see [18] and also [13]) guarantee the
existence of a unique u € Wé P(Q) such that

(1.6) f (alx, Vo) - Vo) die = f bz, Vg dac + f pdu, Ve WP(Q).
Q Q Q

Even the notion of solution in the distributional sense is not admissible; indeed
the classical Serrin’s example [24] shows that a “local” uniqueness result for
Dirichlet problem does not hold.

So, which is the right definition of solution when the datum is a Radon
measure? This question goes back to Stampacchia’s paper [25] where the Green
function of a linear elliptic operator is studied. First he obtains suitable a priori
estimates for weak solutions in terms, for example, of the L' norm of y, then,
since the problem is linear, by density arguments he gets a solution to the
problem when the datum is a Dirac delta-function. Moreover he characterizes
the set of test functions to be used in (1.6).

This same procedure cannot be extended to nonlinear cases. The first results
in this direction are due to Boccardo and Galloiiet. In [7] they prove, for op-
erators without lower order terms, some a priori estimates which are the starting
point of a delicate limit procedure under integral sign performed to define a
solution known as Solution Obtained as a Limit of Approximations (SOLA for
short). Furthermore it is also solution in the distributional sense.

The procedure can be simplified if a continuous dependence from data result
is available; this holds (see [10]) changing (1.4) into the following “strong
monotonicity” conditions

(1.7 (alw, &) —ale,n) - E—n > |E—74f, if p>2,
& =l
(SERTD

We point out that (1.7), (1.8) can be easily obtained if a(x,0) = 0 and the
following ellipticity condition

(1.8) (a(x, &) —alw,m) - € —n > ifl<p<2.

N

_ oa;

Nl P < D0 @ aEg, (e de@x RYxRY,
ij=1 "

with a suitable 7, is satisfied.
It is worth reminding there are other notions of solution, i.e. the entropy
solution ([3]) and the renormalized solution ([19], [21]). In both these cases the
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same limit procedure is performed; however also the question of the choice of
test functions to put in (1.6) is stressed. We refer to [11] for a complete list of
references on this subject.

In [1] we suggest a different approach to problem (1.1) which follows classical
symmetrization methods, made famous by Talenti and Maz'ya (see, for instance,
[26] and [20]). In this work we extend the method to operators with lower order
terms. The main part in the approach consists in choosing suitable test functions,
built on the level sets of the solution; the rest of the process is based, as usual, on
some isoperimetric inequalities and properties of rearrangements. By this way
we obtain a priori estimates, in some sense optimal, which, on the one side, allow
us to start the limit procedure mentioned above, and, on the other side, suggest
the right set of test functions to put in (1.6). 1

Moreover, for sake of simplicity, we assume p > 2 — — to ensure that the
gradient of the solution is at least summable (see [7], [8]).

In Section 2 we prove the following existence result.

THEOREM 1.1. — Let assumptions (1.3), (1.5), (1.7) or (1.8) hold; if 1 is a Radon
measwure with bounded total variation, then there exists at least o SOLA to (1.1)
which belongs to Wé‘q(!)) with

Np-1)
N-1"

We explicitly remark that similar existence results have been proved in [12] by
simmetrization methods and in [5] for renormalized solutions; however, in both
cases, completely different techniques are used.

As far as uniqueness is concerned the presence of lower order terms does not
allow us to use heavily the strong monotonicity conditions to get a continuity with
respect to data result. However this can be obtained if we strengthen the
structural conditions of a, b and impose further restrictions on the index p. In
some sense our procedure can be understood as a kind of linearization of the
original problem; this allows us to perform an estimate of the rearrangement of
the difference of two solutions again via symmetrization methods.

So we get the following uniqueness results where z is not a measure any more
but merely an L' function. We remind that such results have been proved for
renormalized solutions in [4].

(1.9) q<

THEOREM 1.2. — Assume p > 2, u € L, (1.3),
(1.10) @, &) — a@, ) - & — ) > A+ & + )" %) - nf

and

(1.11) |V.b| < H|z|P 2,
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with H positive constant; then problem (1.1) has a unique SOLA

p<N, if N =34,
-~ = 3 >5.
< N_3 ' if N>5

THEOREM 1.3. — Assume p € }2 —%,2}, uell, (1.3),(1.8) and

(1.13) V.0 < HA + |22,
with H positive constant; then problem (1.1) has a unique SOLA.

We remark that the monotonicity condition (1.10) holds if a(x, 0) = 0 and the
following uniform ellipticity condition

aai P—2) |2
(,sz(%, 2)&E > A+ [=DP7E,

with a suitable value of 4, is satisfied.

2. — Existence result.

We begin by recalling some properties of rearrangements. If « is a mea-
surable function in Q and

vit) ={x e Q: |u(x)| >t}, t>0
is its distribution function, then
w*(s) =sup{t >0 : v(t) >s}, s€(0,|Q),

is the decreasing rearrangement of % and u.(s) = u*(|Q2| — s) is the increasing
rearrangement of u. If wy is the measure of the unit ball of RY and Q7 is the ball
of RY centered in zero with the same measure as Q,

w# (@) = woylelY), us@) = uloylzY), ve Qf,

denote the spherically decreasing and spherically increasing rearrangements of
u respectively. We recall the well-known Hardy-Littlewood inequality [15] which
is crucial in the following

@2.1) f wt () ()de < f () () |de < f w ()t (x)dec
Q

o loia
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For any q € 11, oo we set
1

L PN T d ' .
(‘0}'\/1 [ Jletiut @) %) i r e 10,4 ool
llullq, = v

ot

sup u*(s)s'4, if r=+00.
s>0

The Lorentz space L%"(Q2) is the collection of all funtions u such that [ju/|,, is
finite. These spaces are in some sense refinements of the Lebesgue spaces.
Indeed (see [16], [22]) L?9(Q) = L9(Q) and L?%°°(2) is the Marcinkiewicz space
Li%-weak; moreover, fixed the first index ¢, they become larger as the second
index 7 increases, while, if Q is bounded, we have

22) q < =L""(Q) C LYQ).

In order to prove the existence of a SOLA to problem (1.1) we begin, as usual,
by assuming that the datum in (1.1) is a smooth function we denote by f.

THEOREM 2.1. — Let assumptions (1.2), (1.3), (1.4), (1.5) hold; if u is a weak
solution to problem (1.1) with datum f € C*(Q) and q satisfies condition (1.9) we
have

1
2.3) I1Valll, < CIFIE

The constant C depends on N, p, ¢, |2| and ||B||, .

ProOF. Let v be the distribution function of %. Inserting in (1.6) the test
function

|u()|

o) = sign [w@)] [ DOFdt,

with

N-p
2.4 a>—"r
@4 NG - D
we have

f[v(|u(x)|)]“(a(x, Vau) - Vu) dx :fb(x, Vu)p dx +ff(adm.
2 2 2

By (1.2) and (1.5) we obtain

(2.5) [ vl de < [ BIvup ol de + [ |floldz.
Q Q

Q
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Now we use some arguments of [1]. By Hardy-Littlewood inequality (2.1)
we get

(26) J @y vup de > Cvull?,,
Q

where, henceforth, we denote by C a constant whose value changes from line to
line. Fixed ¢, by (2.4) we can choose a such that ¢ < %; then, from the em-
beddings (2.2), we obtain

2.7) ClIVulllp, < MVl 2, -

Collecting (2.5), (2.6), (2.7) we have
(2.8) [IVulllz, < C fBIVul"’llfﬂ\d% +f|f|\¢|d% :
Q Q

To estimate the right-hand side of (2.8) we have to evaluate the L*> norm of ¢. To
this aim we use the following estimate of the decreasing rearrangement of u

(2.9) w'(s) < C|fIFts ¥,

proved in [20] and [27] for linear operators, in [6] for nonlinear ones as immediate
consequence of sharp comparison results between rearrangements of solutions
to elliptic problems and solutions to suitable problems with radially symmetrie
data. By (2.9) and (2.4) we get

+oo ||

(2.10) ol = f O dt = a f s u(s)ds < C|L I
0 0

If we choose ¢ such that

r(p—1>< <N(p—l)

(2.11) r—1 N-1
we have

1 -1

i
and then

2.12) [ BIvur= e < 1Bl | 1vull,
Q
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By (2.8), (2.10) and (2.12), we obtain
P = p-1
IVl < ANl + 1115 }
and then, via Young inequality, (2.3). O

A priori estimate (2.3) alone does not allow us to conclude the approximation
process which yields a SOLA. We need also to estimate the gradient of the
difference of two different solutions. This can be done by replacing (1.2), (1.4)
with the strong monotonicity property (1.7) or (1.8).

THEOREM 2.2. — Let assumptions (1.3), (1.5), (1.7) or (1.8) hold; if u, v are weak
solutions to problem (1.1) with data f,g € C*°(Q) respectively, q satisfies condi-
tion (1.9) and

Nq
. <g=—"—
(213) me<q =gt
then
1 1 .

(2.14) V@ =l < CU[fllp + gl llw =l i p>2,

1 1 .
(2.15) V@ =Vl < CUfllze + M9l Dlw = vz, ¢ p<2.

The constant C depends on N, p, q, ||, ||B||;

PROOF. — Let v be the distribution function of (u — v). We use in (1.6), with
data f and g, the test function

|u—v|(x)
@) = sign [@-v@] [ D d,
0

with a as in (2.4). Subtracting and using (1.5) we have
(2.16) f[v(|u — v|(@))]*[(alx, Vu) — ale, Vv)) - V(u — v)] da
?)

< [ Bqwul ™ + v i@ de + [ |f - gl|@| de.
Q Q

Now we proceed in a different way whether p > 2 or p < 2.
Let p > 2. To estimate from below the left-hand side of (2.16), we can proceed
as in the proof of (2.8) replacing when necessary (1.2) with the strong mono-
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tonicity condition (1.7). So we obtain
@17) [V - v}, < ( [ BUvuP 4190 @i de+ [ 1 - gl dm) .
Q ?)

As for the L norm of @ we have

+o0 ||
sup | ()| = f L))" dt = a f s 7w —v)' () ds = allu — v/, -
0 0

Fixed m as in (2.13), we choose once again a such that 1/a < m; by (2.2), after all,
we get

(2.18) [l < Cllw =] -

Moreover, if g verifies (2.11), then (2.12) holds both for % and for v. So, from (2.17)
and (2.18), we have

(219) 1V =)l < Cllu— vl (11l + 1190115 + 11 = gl

and then, by (2.3), (2.14).
Let p < 2. Setting

|V(u — v)|f7

G= =
(|Vu| + |Vo|)?

we have

f (s — v|@)]*[(at, Vi) — a(@, Vo) - V(u — )] dee
Q

(by (1.8))

> f W — 2|@)"[G@) da
Q

(by (2.1))

> ¢ [ [6# @] oY de = CGIF,

ot

Therefore, proceeding as in the previous case, we obtain, instead of (2.19),

(220)  IGI, < Cllw— vl (vl + 1I0ll5" + 1 gl ) -
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Since
b 1-4
f\V(u—v)|qdac < f\G|qdac f(|w| Fve)ide |
?) o ?)
by (2.20) and (2.3) we obtain (2.15). O

Proor or THEOREM (1.1). — Let { f,,} be a sequence of C* functions weakly-+
converging in the sense of the measures to u. If u,, € Wé P(Q) solves problem (1.1)
with datum £, then

2.21) f (e, Vi) - Vo) dac = f b, Vet )p d + f fupde, Vg e CXQ).
Q Q Q

By (2.3) the sequence {u,} is bounded in Wé’q(Q) if ¢ satisfies (1.9); hence it is
compact in L™ if m < q*. Therefore, there exists a subsequence, denoted again
by {u,}, converging in L™ and then, by (2.14), in Wé’q(Q) to a function .
Now we start the limit procedure in (2.21) to prove u is a SOLA to (1.1).
Obviously we have

lim [fupde=[pdu, vpeCF@.
Q Q

For the other terms we use properties of Nemytskii operators (see [17]).
If p > 2, the sequence {Vu,,} converge in LP~1(Q) to Vau. So, by (1.3), we have

(LI)N
a(x, Vu,) — a(x, Vu).

If p <2, setting A(x, zi\zi|p72) = a(x,?), from (1.3) we obtain |A(x,w)| < C|w|.

Therefore the operator w — A(x,w) is continuous from LHY into itself. Since
Quy | Oy, p72_ Oy | Ot |P 2 <92 Quy  duy p-1
ox; | 0x; ox; | 0x; - ox; ox; ’
by (2.15), we obtain
Oy |Ou, P2 1 u %”_2
6901' 89@ aﬂé‘i (9901', '
Hence
Oy, | Oy |P2
A n n — .
(90, ax: | 9, ) a(x, V)

converges to a(x, Vu) in (LI)N .



654 ANGELO ALVINO - ANNA MERCALDO

Similarly we prove that
bz, Vi) L b, Vau) .
Therefore we can pass to the limit in (2.21) and conclude that » is a SOLA.
O

3. — Uniqueness results.

The assumptions of Theorem 1.1 cannot ensure the uniqueness too. To obtain
such a result it seems necessary to modify the hypotheses on the structure of the
operator as it is suggested by the following arguments.

Let u(-,¢) be solutions to the problems

—diva(xe, Vyaux, ) = blx, Veulx, ) + (f + eg) in Q,
u(-,e) =0 on 02,

where f, g are L' functions. Setting % = u(-,0) and v = u,(-, 0), function v solves
the linear problem

N .
=1 82]' 896]'

N
ob ov

= e e 1 Q

)xi 2 82i(x,Vu)axi+g in Q,

v=20 on 0Q.

Any a priori estimate of a norm of v in terms of the L' norm of g is essentially
equivalent to a result of continuity with respect to L! data for solutions of (1.1).
For such an estimate to hold, it is enough to assume that the matrix % is
J
elliptic and the coefficients b,, have an index of summability greater than N. If

p > 2 this happens when a satisfies (1.10) and b (1.11) with p < 2 + ﬁ This

last condition on p, plus (2.3), ensures that b, has the required summability.
However it can be weakened if one takes into account how the degenerancy of the
matrix % is linked to the structure of the coefficients of the first order
J

terms. In this framework we prove the following results which give estimates of
the rearrangements of the difference of two solutions in terms of L' norm of the
difference of the known terms. The procedure is adapted from [27] (see also [20])
and uses a trick of [2].

LEMMA 3.1. — Under the assumptions of Theorem 1.2, if u,v are weak solu-
tions to problem (1.1) with data f,g respectively, we have

3.1) U —v)"(s) < C||f —gllps V2N
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The constant C depends on N, |2, p, H and, moreover, on || f|| .1, |9l however
it is bounded when f, g belong to bounded subsets of L.

LEMMA 3.2. — Under the assumptions of Theorem 1.3, if u,v are weak solu-
tions to problem (1.1) with data f,g respectively, we have

(3.2) (u—)'(s) < C|f —gllps™ ¥ 2AFED,

N-1
or some ff > ————, with C as in the previous lemma.

ProoF oF LEMMA (3.1). — Set w =u —vand h = f — ¢g. For any fixed t,k > 0
we consider the function
k sign w if lw > t+k
p=qw—tsignw ft<|w<t+k
0 otherwise .

Using ¢ as a test function in (1.6) with data f and g respectively, subtracting and
dividing by k, we have

(3.3) % f [a(x, Vu) — alx, Vv)] - Vwdx

t<|w|<t+k

= f [bCx, Vu) — bx, Vo)Jsign w dx + f h sign wdx

|w|>t+k Jw|>t+k
1 .
+ 3 f [blx, Vi) — b, Vv)|(w — t sign w) dx
t<|w|<t+k
1 .
+E f Mw —tsignw)yde =1 +1s + 13+ 1.

t<w|<t+k

By (1.10) the limit as k goes to zero of the left-hand side in (3.3) can be estimated
from below by

d
7 f p@) | Vwl? da
Jw| >t
where

(34) p@) = (A + [Vl + Vo).

On the right-hand side, we estimate 7; by (1.11) and /5 by the Hardy-Littlewood
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inequality (2.1); since the terms I3, 1, go to zero as k vanishes, we have

w(t)
d
(3.5) -2 f p@)\VwlEde < H f (@) | Vo] daz + f h* (@) do

[w|>t [w|>t 0

where v denotes the distribution function of w.
By coarea formula and Schwarz inequality we obtain

+00
(3.6) f (@) | V| dae = f (O‘i f p(x)Vw|dac) dr

Jw|>t 13 Jw|>t
+00 d % d %
2
< }[ (—a!p(m)Vw| dx) (—%fp(ac)> dr.
w|>t w|>t

Following [2] we define a function p such that

POEVD) :f% [ s,

[w|>t

A significant property tells that p is weak limit of functions with the same re-
arrangement as p, therefore any Lebesgue or Lorentz norm of p can be esti-
mated from above with the same norm of p. An analogous result is also in [23]
where the directional derivative of the map u — u*, known as relative re-
arrangement, is introduced (see also [14] and references therein).

Therefore (3.6) becomes

1

+00 2
1 1 d
(3.7) f @)\ V| dee < f POV @) <_dr f P(%)vaﬁdac) dr.

|w|>t t |w|>7

Set Ky =N w]%v, by using the isoperimetric and Schwarz inequalities, since p > 1,
it follows

. d d .
(38  Kn®' -2 f V| dee < (% f p(ac)|Vw|2d90) V(@

Jw|>t |w|>t

from which

1 s
N N

|w|>t
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By 8.5), 8.7), (3.9), via Gronwall Lemma, we obtain

w(t)
f @)Vl die < f 1 (o) do

\w\>t

[/0(1’(1))]2 d ) /
+KN}[ )" ( de fp(ac)|Vw\ d”) V(o) dr

[w|>t
< f I (W2))exp ( e tf lp gf))l] |v(z)|dz)|v(f)|dr

Therefore

w(t) W(t)
d 2 H S (o .
(310) - f @)Vl dee < Of exp(KN f o [p(o)] da)h(v)dr.

Jw| >t r

Assume that

||

(3.11) f o p(o)Fdo < +oc.
0

From (3.9), (3.10) and (3.11), in a standard way (see again [27]), we get the
following differential inequality

g 2te/N

which easily yields (3.1).

Now we have to exibit a condition on p which ensures (3.11). It is satisfied if p,
and then p because of the above mentioned property of p, belongs to L* with
B> N /2. By (2.3) this happens if p satisfies conditions (1.12). |

The proof of Lemma 3.2 is similar to that of Lemma 3.1.

Proor oF LEMMA 3.2. — Starting from (3.3) if, in the proof of (3.5), (1.10) is
replaced by (1.8) and (1.11) by (1.13), we get
W(t)
312) -2 f (V| + [Vo)P 2 Vaol? dee < Hf @)\ Vo] dze + f (@) do .

\W\>t [w|>t
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Instead of (3.6) we easily get

ol

+00
t

|w|>t |w|>t

Setting
PO @) = _% f ﬁ% %,

Jw| >t

proceeding as for (3.8), we obtain

Kyv()' % < (% ] <|w|+w|>ﬂ|w|2dac) (PO ENV O

[w|>t

and then

(3.14) 1s#(—% J <Vu+|Vv|>P2|Vw|2dac) [POEEV O
N ¥

[w|>t
From (3.12), (3.13), (3.14), via Gronwall Lemma, we firstly get

v(t)
d p—2 2 *
_ = <
7 (IVu| + Vo)~ V| dx b[ h*(o)do

[w]>t

+o0 %
n H f [p(v(0))] (_i f(|vu|+|vv)p—2|Vw|2dx)|v’(T)|dT

K_N t v(r)lﬁ% dr |w|>7
+o0 T 1
< tf h*(v(z))exp<K£Nt [’:gfm v'(z)|dz>|v’(r)|dr,

then

Ky ) oy

d r o (H [ o
(3.15) — f(Vu|+|Vv|)”2|Vw|2dm§fexp(— P da)h*(r)d%

Jw|>t 0
Assume

2]

(3.16) f o 5o Pdo < + oo
0
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As in the previous case, by (3.14) and (3.15), we have

dw*

s (s) < C||h||L18—2+2/N—/f(2—p)

for some f; then we get (3.2).

Now we have to require the sharp conditions on p such that (3.16) holds true.
Since p has the same summability of p=1, by 2.3),ifp > 2 — %, it is easy to show
that (3.16) is satisfied . O

REMARK 3.1. — We point out that (3.1) allows us to estimate the L™ norm of

u — v in terms of the L' norm of f — g for m < ———
Np-1) N-z
L™ for all m < ———.
N-p

, even if . — v belongs to

By Lemmas 3.1 and 3.2 we have
(3.17) e =l < CIf =9l -

From (2.14), (2.15) and (3.17) we easily deduce the following result of con-
tinuity from the L' data which also gives the uniqueness results Theorems 1.2,
1.3.

THEOREM 3.1. — Let us assume that conditions on a, b and p of Theorems 1.2
or 1.3 hold true. Then if u,v are weak solutions to problem (1.1) with data f,g
respectively, we have

1 .
V@ =)l <Cllf—g 217 if p>2

V@ =l <CIf =gl #F1<p<2

with C as in Lemmas 3.1 and 3.2.

REMARK 3.2. — Let us observe that the set of p for which a uniqueness
result holds is included, when N > 5, in the interval of the values for which
we have existence. This is consequence of the linearization process. We think
that this gap could disappear if one tries to get uniqueness, as in [9], directly
from a comparison result, i.e. if one is able to show that f < g = u < v where
u,v are SOLAs corresponding to data f,g.
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