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Radial Heat Diffusion from the Root of a Homogeneous Tree
and the Combinatorics of Paths

JOEL M. COHEN - MAURO PAGLIACCI - MASSIMO A. PICARDELLO

Abstract. — We compute recursively the heat semigroup in a rooted homogeneous tree for
the diffusion with radial (with respect to the root) but mon-isotropic transition
probabilities. This is the discrete analogue of the heat operator on the disc given by

A+c g for some constant c that represents a drift towards (or away from) the origin.

1. — Introduction.

Consider an infinite homogeneous tree, regard its edges as thermal conductors,
and assign a temperature distribution on its vertices at time zero. Several papers
have considered the heat diffusion at later times. Because of the discrete nature of
the environment, it is natural to limit attention to discrete consecutive time in-
tervals. The explicit solution of the heat equation on a homogeneous tree equipped
with an isotropic nearest neighbor transition operator (the generator of the heat
semigroup) was obtained in [6] in the form of a computable non-recursive formula
which is not an explicit closed formula because it contains a summation term (the
analogue of an integral over time in the continuous setup). The same expression is
derived in [2] by a different approach (the inversion formula for the Radon
transform). Estimates for the heat maximal functions (the maximum temperature)
for the isotropic nearest neighbor operator are in [7]. For this operator, the
asymptotics of the heat semigroup had been studied previously in the context of the
local central limit theorem in [9] and [8]. The same problem was solved in [4] for
nearest neighbor anisotropic transition operators, and in [5] for finitely supported
operators: these are the first instances where anisotropic heat semigroups are
considered (some related probabilistic topics are considered in [10]).

Here we deal with the case of a homogeneous tree with a fixed vertex as root,
equipped with a nearest neighbor transition operator that is isotropic only for-
ward, but may have a radial drift towards or away from the root. In particular,
our transition operator depends on the choice of the root.

The expression of the heat semigroup given in this paper, being recursive
instead of in closed form, may not be directly applicable to computational
questions, but its proof is remarkably different from the previous approaches: it
is an interesting use of combinatories on paths.
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More precisely, let T be homogeneous tree of degree g + 1 rooted at a vertex
e. Let p € (0,1) and set » =1 — p. We consider a transition operator P on the
vertices of T with probabilities P(u,v) as follows:

1
Pl,v)=——, ifjv|=1
v =g iR

1) Pw,v7) =, ifv#e

P(v‘,v)zg7 ifv#e

where |v| = n is the distance betweeen v and e, and if v # e we denote by v~ the
predecessor of v (that is, its neighbor closest to e).

P acts on functions on the tree by the rule Pg(v) = > P(v, w)g(w). We wish to
study its k-th iterate P*, that is, the transition operator with kernel P*(v,w)
given by the k-th power of the matrix P(v, w). In particular, for f a radial func-
tion, we wish to calculate P*f. Radial functions may be considered as functions on
N ={0,1,2,...}. Since the forward probabilities are isotropic, the action of P on
radial functions is the same as the action of the radialized operator x on functions
on the natural numbers. In this reduction to N the transition probabilities
change to

(2) wo0,1)=1 un,n+1)=p for n>0 and um+1,n)=r.

(As expected: when a path visits 0, the next step is necessarily to 1).
After this radial reduction, 4*f (n) becomes a linear combination of f(s) where
n + k — s is even. That is:

k
3) Wfm) =" Copafn+k —2t).
t=0

In particular, if — by abuse of notation — we write i¥ = 1*d,, then

k Covknihy/2 if n+k is even
W) = . _
0 if n 4k is odd

It is worth observing the relation between 4 (n) and the row by column action of
the n-th iterate 4" of the transition operator i Denote by 1*(v,w) the matrix
coefficient of the k-th iterate of the transition operator on I\ obtained by ra-
dializing P. Then one has:

Wfo) ="l = Y dFmprG)
=0

n-k<j<n+k

k
= Copsfn+k—2t),
t=0
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where C,, j; is the number of paths from n to N = n + k — 2t of length k, each
weighted with its probability. Therefore

k
Prfw) =" Cpaf (0| +k —2t),
t=0

where k — 2t is the distance between |v| and |w|.

There are many more paths in the tree that connect v and w than paths from
|v| to |w| on N, but when we sum over all such paths the respective probability
weighted contributions Cj,;.; and Cj,;; are the same, thanks to (1) and (2).

For example, if n > k, then

k

WIOESY <IZ> P 0+ e — 20)

t=0

where t is the number of backward steps in the paths of length k in IN that start at
k
n. This yields the value Cy . ; = ( t) pF~trt for m > k, that is for the paths that are

too short to return to 0, but unfortunately not for the longer path (see the
comments at the end of this Section). In the rest of the paper we compute C,, s+ in
many other cases. Just counting the arbitrarily long paths that do not reach 0
turns out to be considerably more complicated (Lemma 2.1 below). Let us
compute the recurrence relations satisfied by these coefficients.

The function u satisfies the following rules:

1f () = f(n),
wf ) =),

wm)=pfe+1)+1rf(n—1) forn >1.

Therefore

Crot = Oot

Co1t = dog,

Cy1t =Dyt + 1014 forn>1.
Thus

W) = F (),
(4) and, for n > 1,  pFf(n) = prffn + 1) + riffn - 1),
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or equivalently
Cok1t = Criss
and, for n > 1, Crjer1t = PCriipt +7Cotp-1-

(the last identity follows from (4) and (3), that yield

k+1
Z Cn7k+1,t f(n +k+1-— Zt)

Mw

n+1ksf 7’L+1+k 23 +Z7‘Cn lkhf( 71+k Zh)
h=0

for every function f).

We shall calculate the probabilities C,, ;. as follows: we need to find all the
paths in N which start at n and end at N = n + k — 2t after k steps, calculate the
probabilities of each path, and add them up.

There are two complications. First of all, all forward probabilities are the
same except the probability of going from 0 to 1. Second, the functions are de-
fined only on N and not on 7, and so we cannot use simple group theoretic
calculations to solve the problem.

2. — The graph of a path in the tree: Dyck paths.

A Dyck path of length k is the graph of a length k path in the integers with
respect to time, assuming that the speed of motion along edges is 1 to go up
and —1 to go down (actually, the speed is irrelevant for our approach). So a
Dyck path is a piecewise linear graph whose segments have slope +1. We can
as well restrict attention to the vertices of this piecewise linear curve: then the
Dyck path becomes a finite sequence (a, by), (@ + 1,b1),...,(a + k,b;) in Z x 7,
where b;,1 = b; £1. With a path ¢ = [cy, ..., c;] from n to N, we associate the
Dyck path

0,m) = (0,¢9), A, c1), ...,k c) = (k,N).

We shall need the number of paths with certain properties: we compute this number
in the following lemma, whose first part, taken from [3] (see also [1]), is a good model
for the rest of the lemma and for some of the arguments in the rest of the paper.

From now on we denote by Z, the positive integers. We say that a Dyck path
that start at (0,m) with m > 0 never touches 0 if it remains in N x 7.

LEMMA 2.1. — (2) The number of Dyck paths of length k =N — 1+ 2t from

. o k+1-2t [k
(0,1) to (k, N) which never touch 0 is m<t>
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By reflection about the line x = k/2 the same formula also gives the number
of Dyck paths from (0, N) to (k,1) that never touch 0.
(12) For m, N > 0, the number of Dyck paths that go from (0,n) to (k,N)
without touching 01s 0 if k < [N — n|, and

(1) - ()

Proor. — The ascending paths in part (¢) have length k and goup N +¢t—1

otherwise.

times and down ¢ times: clearly, there are paths of this type. We need to

k
t
restrict attention to those paths that do not touch 0, that is, to exclude those who
do. By the André reflection principle [3, pg. 72], the paths that touch 0 correspond
bijectively to all (unrestricted) paths of length k¥ = N + 2t — 1 from (1, 0) to (k, N):
to see this, simply reflect across the x-axis that part of the latter paths between
(0, —1) and the first point at which it touches the x-axis.

These paths cover an overall distance of N + 1 vertical steps, and since their
length is N + 2t — 1 there are t — 1 cancellations (vertical steps repeated back
and forth). Therefore these paths goup N + ¢ times and down ¢ — 1 times, and so

their number is ( ) Thus the number of paths in the statement is

k
t—1

kN ([ k Ck+1-2t [k

t t—1) k+1-t\t)’
For part (i7), if a path goes fromn > 0to N =n + k — 2t in k steps (and clearly
we must have k > N — n), it must go k — ¢ steps in the direction from » to N and
t in the opposite direction. That is, if n < N such a path goes up k¥ — ¢ times and

down t times, and viceversa for n > N.
As a consequence, the number of all Dyck paths from (0, %) to (k, N) without

restriction, is < ]; ) .
t

André reflection principle, paths from n to N touching 0 correspond to arbitrary
paths from —n to N. Hence they must move up n + k — ¢ times and down ¢t — n.

We now show that there are < fn) such paths that touch 0. By the

So there are ; fn such paths, and so the total number of paths which do not

touch 0 is the difference Y & . |
t t—mn
We now need the cardinalities of the sets of paths for (slightly) different
beginning and end points. To make the paper more readable, we collect in the
next statement the formulas needed later.
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COROLLARY 2.1. — (?) [3] The number of Dyck paths of length 2n from 1 to 1

which never touch 0 is the n" Catalan number C, = —— 2n> .
n+l\n

(12) The number of Dyck paths of length k —1 =N —1+ 2t from (1,1) to

. . k-2 - .
(k, N) which never touch 0 is k-2t (k ¢ 1 ) This is also the number of Dyck

paths that go: fe—t
e from (0,N) to (k — 1,1) never hitting 0;
e from 0to N ink = N + 2t steps again without hitting 0;
e from N to 0in k = N + 2t without hitting 0 before the end.

PRrOOF. — Part (¢) and the first two claims of part (i2) come from Lemma 2.1(z),
the former by setting k = 2n, N = 1, and ¢t = n, and the latter by moving the whole
Dyck path to the left by one, so that it goes from (0,1) to (¢ — 1, N — 1), or from
(k—1,N — 1) to (0,1). The third (resp. fourth) part is equivalent to the first (resp.
second) by noting that the first (resp. last) step goes from 0 to 1 (resp.1to0). O

In the rest of the paper, we split the computation of C,, j; into the cases n = 0
and n > 0.

3. — Starting point n = 0.

In this section we compute the contribution of all the paths from 0 to N in, say,
k = N + 2t steps.

These paths must go up N + t times and go down ¢ times. Let us assume that
the path touches 0 s times before reaching N (this includes the initial step but
excludes the last hit if N = 0). All the up probabilities are p except for those
starting at 0, which are 1, and all the down probabilities are . Hence the prob-
ability for such a path is pV =57, It remains only to find out the number of such
paths. In order to do this, we count the number of Dyck paths from (0, 0) to (k, N).

Let us first study the paths that go from 0 to 0 in k = 2¢ steps without ever
touching 0 in between. The associated probability is p’~1#%. Note that the first step
is from 0 to 1 and the last from 1 to 0. Therefore these paths are in one to one
correspondence with the paths of length 2n = 2t — 2from 1to 1 (or equivalently the
Dyeck paths from (0, 1) to (2n, 1)) that remainin N x 7. We have shown in part (2)
of Corollary 2.1 that the number of these paths is the n”* Catalan number C,.
Observe that the length of the path from 0 to 0is 2 + 2. We recall that in our case
n =t — 1. So there are C;_; paths that go from 0 to 0 in 2¢ steps without touching 0
in between.

Next we consider a path that goes from 0 to N >0 in k = N + 2t steps
without touching 0 in between. The corresponding probability is pV -1+ be-
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cause we go up N + ¢t times (and only once from 0) and down ¢ times. Since the
first step is necessarily from 0 to 1, this corresponds to going from 1to Nink — 1
steps without touching 0. This corresponds to the Dyck paths from (1, 1) to (k, N)
which remains in NN x Z,. The number of such paths, computed in the first
.. k-2t (| —

statement of part (i7) of Corollary 2.1, is — (k t 1).

We are now ready to calculate Cy ¢, that is, the probability of moving from 0
to N = k — 2t in k steps with ¢ backward returns.

THEOREM 3.1. — IfN =k — 2t =0, then

141

k—t—(s—1),.t
CO,lc,t = C()vkvg = Z Z lecmz cee Cms,l p =1y s

s=2 my+..+mg_1=t—s+1

while, if N > 0, then

N (N+2t-1
Cokt = Nt ( ¢ )pNth'y‘t
t+1 N N +2ms — 1\ Nitosi1t
+ Z Z le CWLZ e Cﬁlxq : m ms p "
S

s=2 my+..+my=t—s+1

ProoF. — We deal first with the case N > 0. The paths that we are considering
reach N from 0ink = N + 2t steps. Here ¢ is the number of steps down, that is the
number of backwards steps. There is a finite number s of visits to 0 before the end
of the path (at least one, since the path starts at 0), but remember that now the
path does not end at zero. In other words, there are s — 1 consecutive subpaths
from 0 to 0. Let ny,ng,...,ns_1 be the lengths of these subpaths, that is, the
distance in time between consecutive visits to 0. That is, the path touches 0 at the
steps 0,71, m1 + ng, N1 + N2 + ng, . .. . Kach visit requests a step down (from 1 to
0),s00 < s—1 <t thatis, 1 <s <¢t+1.

The corresponding probability is p™**~*7!. Each n; is positive, and (since the
subpath starts at 0) even. Set m; = (n; — 2)/2: observe that 2m; is the length of
the subpath from 1 to 1 obtained by dropping the first and last segment from the
path from the i-th visit to 0 to the (i 4+ 1)-th, and therefore m; is the number of
cancellations (backwards steps) of this subpath. By part (i) of Corollary 2.1, the
number of paths that touch 0 between the 7 — th and the (i 4+ 1) — ¢k such point is
the Catalan number C,,,. In addition, from the final 0 at time 71 + 1o + - - - + 751
we need to reach N in, say, ns = N + 2m; steps without touching 0 (here, again,
ms is the number of backward steps after the last visit to 0). We have shown in
the third statement of part (iz) of Corollary 2.1 that the number of such paths is

s — 20 (ns -1 ), that is, <N +2m; —1 ) Observe that, in the par-

N — Mg My N + my Mg
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ticular case s = 1, where the paths start at zero and never return there, one has

(5) ng=n1 ==k and ms=1.
s—1
Moreover, > m; is the sum of all backward steps until the last visit to 0 minus
i=1
s—1 (becaﬁse each such m; is the number of backward steps in the subpath from
1 to 1, and so each time we miss the last backward step from 1 to 0). Therefore
s—1
(6) m;=t—ms—(s—1),
i-1
sincet is the total number of backward steps in the whole path, and m is the number
of backward steps after the last return to 0 (remember that we are assuming that
the last visit to 0 occurs before the end of the path). Identity (6) amounts to

S
(7) > omi=t—s+1.
pt

Now we split C .+ as the sum of the contribution of the paths that never return to

zero (case s = 1) and those of the terms with s > 1 returns to zero. Remember

that the number of returns to zero satisfies s <¢+1 and Xg: m;=t—s+1,
i=1

whereas, if there is no such return, then my = t. This proves t};e first equality of

the statement. The other equality in the statement follows from this because

ng—2mg=N=k—2t, hencek—t—s=N+1t—s.

Now it is easy to compute Cy  ; in general. It is sufficient to allow the end of the
path to be 0. The only difference is that, if the path ends at 0, that is if
N =k — 2t =0, then it finishes after n; +ng + ...+ ns_1 steps, and we must
omit the special contribution of the remaining last n; steps considered in the
previous part of the proof: that is, n; = 0, hence my; = 0. On the other hand, in this
case we do not miss a factor p as a consequence of the last visit to zero (at time N),
because there is no further jump from 0 to 1. Therefore in this case one has

t+1

k—t—(s—1),.t
COJC,t = COJQ% = Z Z lecmz e Cmmp @ )'V

s=2 Mmi+..+mg_1=t—s+1
t
fo—t—s .t
= E E Ci,Cy - - . Co, P r.

s=1 my+..+ms=t—s

REMARK 3.1. — If N = 0, then the special term in Theorem 3.1,

N N +2ms — 1
N + my Mg ’

has value 1 because we are taking ms = 0. This leads to a unified formulation of
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the two cases N = 0 and N > 0 in Theorem 3.1. Indeed, identity (7) yields
s—1

(8) ms:t—s+1—2mi.
i1

By defining m, this way when N > 0 (and of course m; = 0 otherwise), the last
identity of Theorem 3.1 holds in both the cases N = 0 and N > 0, provided that
the summation over m;, ..., ms_1 is understood to be zero when s = 1.

4. — Starting point n > 0.

In order to deal with the general case, we first compute the contribution of
the paths that go from n > 0 to N =n + k — 2t in k steps without touching 0
(here k > |N —n|). We have computed their number in part (7) of Lemma 2.1.
We recall from the proof of that lemma that, if » < N, these paths goup k — ¢
times and down ¢ times. We shall limit attention to this case: the opposite case,
n > N, is obtained by swapping the transition coefficients p and r. So, for n < N,
the corresponding probability is thus p*~'+!, and by the lemma the total number

.k k
of such paths is (t) — (t—n)'

Next we compute the contribution of those paths from » to N that touch 0, by
counting how many times they hit 0. For each 7 > 0, we consider the paths that
touch 0 for the first time after n + 27 steps, and continue from there with a path
going from 0 to N in k — n — 2i steps. Here 1 is the number of backward steps
(that is, steps up) in the beginning descent (the first subpath from » to 0), son + ¢
is the number of steps down in the beginning path. In particular, n + ¢ cannot
exceed the global number ¢ of backward steps, that is 7 < ¢t —n.

We have made both calculations previously: in part (i) of Corollary 2.1 we
n+2r—1

1

have proved that this number is ni ; ( ) . Observe that the reflection

swaps the role of forward and backward probabilities: therefore the probability
associated to the beginning path (first descent to 0) is p'+**?. Next we determine
the number of paths going from 0 to N in k —n — 2 steps. The probability
connected to this is exactly the number Copj_,_2it—»—i. Summing these con-
tributions we reach the general result, that is, the expression for the powers of u
at all vertices, in the notation of Section 1:

THEOREM 4.1. — Let n > 0and N > 0. Let k = [N —n|+2t. Ifn < N,

k k s B (n+2i-1 S
Cn,k,t - |:< t ) N (t - 7L>j|pk ! + ;m ( i >CO,k—n—212t—n—i p‘r”“.
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If n > N the same formula holds provided the coefficients p and r are inter-
changed in the first term of the right hand side.
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